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ON THE BICOMPLEX VERSION OF THE WAVE EQUATION

Panagiotis N. Koumantos®

Considering the idempotent decomposition of bicomplex modules and bicomplex
linear operators, we apply operator (Co)-group theory, analogous to the classical case
of the problem, to achieve a unique solution for the bicomplex-valued wave equation.
Also, we formulate the Laplacian and the corresponding problem of the wave equation
in bicomplex Kahler manifolds.
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1. Introduction

In the present work we study the wave equation in the context of generalization with
values in the bicomplex numbers.
Let u:R" x RT — BC: (z,t) — u(z,t), and the wave equation

0u(z,t) "
with initial data u(x,0) = f(x) and % ’t:O = g(x). Here A is the suitable bicomplex version
1 9%u

of the Laplacian and for simplicity, in the standard form Z 5 = Au of the wave equation,
the real positive constant ¢ = 1 is chosen for the propagation speed of the wave.

We also consider the above wave equation (1), more generally in bicomplex Ké&hler
manifolds.

In the search for alternative algebras, and development of special algebras, bicomplex
numbers were introduced in 1892 by Segre in [36]. Also, in the classic book by Price [30]
there is a very comprehensive introduction to bicomplex numbers and their generalization,
as well as an essential presentation of basic topological properties.

Differential equations such as the Schrodinger equation have already been considered
in the context of bicomplex values in works by Rochon and Tremblay in [32], [33] and Rochon
in [34], and by Theaker and Van Gorder in [39]. Also in the paper by Agarwal et al. [3] the
Bochner theorem and applications of the bicomplex Fourier transform for the heat equation
and the wave equation in the bicomplex setting have been studied. We also refer to Luna-
Elizarrards et al. in [24] and [25] for the Laplacian and derivatives of bicomplex functions,
while for the study of differential equations in multicomplex spaces we refer to Struppa et
al. in [38].

The topological bicomplex modules have been systematically studied by Kumar and
Saini in [20]. Also, results have been presented regarding bicomplex C*-algebras in article
by Kumar et al. in [19], while by Kumar and Singh in [21] the bicomplex linear operators on
bicomplex Hilbert spaces were studied, as well Littlewood’s subordination theorem. We also
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refer to Guo in [16] for extension theory of Hilbert modules over semigroups, and to Alpay
et al. [2] for slice hyperholomorphic fractional Hardy spaces, and to Ghiloni and Stoppato
[15] for regularity in one hypercomplex variable. Further, we refer to the article by Colombo
et al. [8] for the study of bicomplex linear and bounded operators and bicomplex functional
calculus, as well as the article by Charak et al. [6] for infinite dimensional bicomplex spectral
decomposition theorem.

In Section 2 we list the necessary terminology from bicomplex numbers, bicomplex
Banach and Hilbert modules, and the (Cp)-group theory we need to develop the results.
Further, in the case of the bicomplex Kéahler manifold we extend the concept of the Laplacian
according to Kodaira (cf. Morrow and Kodaira [28], Moroianu [27]) of the classical complex
analysis to manifolds, again using the appropriate choice of the x-conjugate to the bicomplex
numbers. We also refer to the article by Baird and Wood [4] on the concept of bicomplex
manifold and applications. Also, we refer to the article by Chen and Millman [7] for classical
results on the wave equation on a Riemannian manifold.

Then, in Section 3 we present the main results, where we apply the method of op-
erator (Cg)-group theory to the case of the wave equation (1) for the construction of the
infinitesimal generator of the bicomplex (Cyp)-group obtained through the idempotent com-
ponents and the existence of a generalized solution of the wave equation in the bicomplex
version.

In addition to the books and articles, mentioned above for bicomplex analysis, we
refer to the classical approaches of functional analysis and applications of semigroups to
differential equations in the standard books of Pazy [29], Engel and Nagel [11] Hille and
Phillips [17], and Yosida [40].

2. Preliminaries
2.1. Bicomplex numbers

The set BC of bicomplex numbers consists of the elements of the form z; + jz,, where
21,20 € C(i), i,j ¢ R, with i2 = j2 = —1 and ij = ji.

Here C(i) and C(j) are two copies of complex numbers that coexist in set BC, k := ij
is a hyperbolic unit and the set of hyperbolic numbers D, i.e. the set of the elements o + S8k,
a, B € R is contained in BC.

The set BC is a commutative ring with the standard operations and with a unit
element lgc := 1. Furthermore, the Euclidean-type norm |||z is defined on BC. Then,
1¢1Gllge < V211G Ige [1Cllge, for every (1,¢> € BC, and finally BC is a modified Banach
algebra (cf. [30]).

The simplest elements that are singular and divisors of zero in BC are e; := # and
ey 1= %, for which: e? = e; and e3 = ey are valid, i.e. they are idempotent elements,
leillge = lle2llge = ?, e1 + e3 = 1, and additionally ejes = 0 while e; # 0 and eq # 0.

The role of the elements e and es is very important as they are also linearly indepen-
dent in terms of complex linear combinations and each element in BC is written in a unique
way in the the so-called idempotent representation.

Also, the set of positive hyperbolic numbers DV is defined, and any hyperbolic number
is written in the corresponding equivalent idempotent representation vej +pues, with v, p > 0.
Moreover, a binary relation = is defined on D as follows: a <X 8 < (8 — «) € DT. Then, D
is a partially ordered set with DT being convex and proper positive cone.

Let the projection maps p; : BC — C(¢) and ps : BC — C(j) defined by p1(z1+j22) =
z1 — iz and pa(z1 + j22) = 21 + iz0.
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For X; and X5 be subsets of C(7), the set X; x, X5 consists of all { = z1 + jz2 € BC
such that p1(¢) € X7 and pa(¢) € Xo, is called the bicomplex cartesian set determined by
X1 and Xg.

Also, it is well-known that if X; and X5 are domains (i.e. open and connected) of
C(7) then X7 X, X9 is also a domain in BC. Moreover, if X; and Xs are convex or closed
or compact sets then X7 x. X5 is also a convex or closed or compact set in BC.

For the standard properties, the expression of the Euclidean norm and for the principal
ideals, as well as for detailed proofs of all the above standard concepts and results, refer to
the books (respectively in the first Chapter) [1], [24] and [30].

2.2. Bicomplex version of the Laplacian

In order to formulate the appropriate choice in Equation (1) for the Laplacian in the
bicomplex version, we recall that there are three standard types of conjugates defined and
the corresponding modulus derived from them.

Specifically, for each element ¢ = z; + jz € BC, bar-conjugate ¢ := z; + jZ, tilde-
conjugate E = z1 — jz2 and *-conjugate (* := Z; — jZ, are defined, where z; and Z; are the
usual conjugate complex numbers of z; and 2, respectively. (cf. [1] and [24]).

There are several candidate forms for the bicomplex version of the Laplacian (see for
example in El Gourari et al. [10]).

We note that for the bicomplex version of the Laplacian henceforth we consider the
choice A := %;C*’ so we also write the corresponding idempotent representation A =
e1A1 + eaAo, with Ay = e; A and Ay = es A due to the linearity of the operator.

This is the appropriate choice, because by writing ( = z1+j22 € BC, in the idempotent
representation ¢ = eja + es/3, where v = 2z —izp and 3 = 2 + izy, we have (* = e;& + ez 3.

Also, in this case 8% = % (6%1 —ja%z) = % (61% —|—e2%), and a?* = % (6%1 +j8%2>
=1 (61% + 628%—), applies.

For the other choices of the Laplacian related to the choice of the corresponding kind

of conjugate bicomplex number, and how these operators are related to each other, we also
refer to Luna-Elizarrards et al. in [24] and [25].

2.3. Bicomplex Kahler manifolds and Laplacian

We will then define the notion of bicomplex Kéhler manifolds and arrive at the ex-
tension to the bicomplex version of Kodaira’s Laplacian known in the classical case.

Following Baird and Wood in [4] we give the following definition of a bicomplex
manifold.

Definition 2.1. A bicomplex manifold is a complex manifold endowed with a maximal dif-
ferential structure, i.e. a complex atlas whose transition functions are bicomplex holomorphic
functions.

At this point we mention the Ringleb decomposition Lemma for bicomplex holomor-
phic functions (cf. Riley in [31], while for bicomplex meromorphic functions we refer to
Charak, Rochon and Sharma in [5]).

Lemma 2.1. Let Q C BC be an open set. Then, a function f : Q — BC is bicomplex
holomorphic (resp. meromorphic) on Q if and only if the functions fe1 : p1(2) — C(i) and
fea = p2(Q) — C(j) are holomorphic (resp. meromorphic), where f(¢) = fe1(p1(¢))er +
foa(p2(Q))es, for every ¢ = 2 + jzs € Q.
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Then, it is known that the next result about bicomplex manifolds holds (cf. [4]).

Proposition 2.1. A bicomplex manifold of bicomplex dimension n is locally the product of
complex manifolds of dimension n.

Moreover, it is well-known that in addition to the complex viewpoint for Kahler man-
ifolds, there are other compatible structures such that the symplectic and the Riemannian.
Thus, following Baird and Wood in [4], and LeBrun’s article [22] on which they are based,
the next concept of the complex Riemannian manifold is defined. We also mention the
article by Michelsohn [26] on Clifford and spinor cohomology of K&hler manifolds.

Definition 2.2. Let X be a complex manifold, with complex dimension m, and TX its
(1,0)-holomorphic tangent space, i.e. TX is spanned by {%}, k=1,2,....,m for any
complex coordinates {zk} Then, the pair (X, g) is called a complex-Riemannian manifold
if g is a harmonic metric, i.e. g is a holomorhic section of TX ® T X which is symmetric
and non-degenerate.

For U be an open set of C™ the complex Laplacian Ac is defined as A¢ := ZZI:1 %,
with Acf =>4, gié, where f: U — C and (21,29, - , zmm) are the standard coordinates

on C™.

Also, a holomorphic function f: X — C is said to be complex-harmonic if it satisfies
the complex-Laplace equation A¢f = 0, where the complex-Laplace operator is defined by
complexifying the formulae for the real case.

Then, in local complex coordinates {zk}, defining the matrix (g;;) by gas = g (%, 8%}))

and for (gab) its inverse, yields Acf = ¢ (8312ga — I”;b%), where the usual summation

convention is assumed in terms of indices, and T'¥, = g™ (%97”:" + 85;;" - ggjj), are the
corresponding Christoffel symbols.

In this direction, for examples of bicomplex manifolds by complexifying complex man-
ifolds, and results on complex-harmonic morphisms and bicomplex manifolds, we refer to
Baird and Wood in [4].

Now we give the next definition and keep in mind that from the three types of con-
jugates (*-, bar-, tilde-) in bicomplex numbers we need the concept of x-conjugate to define

the concept of *-Hermitian form (cf. [1]).

Definition 2.3. A bicomplex Kdhler manifold is a bicomplex manifold X with a bicomplex
x-Hermetian metric h whose associated 2-form w is closed. That is h gives a positive definite
x-Hermitian form on the tangent space T, X at each point x € X, and the 2-form w is defined
by w(u,v) = Reh(iu,v) = Imh(u,v), for tangent vectors u and v.

A bicomplex Kéhler manifold can also be viewed as a Riemannian manifold, with
the Riemannian metric g defined by g(u,v) = Reh(u,v). Equivalently, a bicomplex Kéahler
manifold X is a bicomplex Hermitian manifold of complex dimension n such that for every
point € X, there is a holomorphic coordinate chart around = in which the metric agrees
with the standard metric on C" to order 2 near x.

After the above, we have the optimal assumptions so that the next result holds.

Proposition 2.2. A bicomplex manifold X is bicomplex Kdahler manifold if and only if the
idempotent components X, := ey X are Kdahler manifolds, for £ = 1,2 respectively.

On a Riemannian manifold of dimension m, the Laplacian on smooth r-forms is
defined by Ay = dd* 4+ d*d, where d is the exterior derivative and d* = —(—1)™" x dx, where
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% is the Hodge star operator. Equivalently, d* is the adjoint of d with respect to the L2-inner
product on r-forms with compact support.

Let QP9 be the space of (p, q)-forms, E* be the space of all complex differential forms
of total degree k, so that EF = Q0 @ QL1 g ... @ QLk-1 g Q0F = +EB kavq, and
for each k and each p and ¢ with p + ¢ = k, the canonical projections ofpvgctor bundles
aPd . B QP

For a Hermitian manifold X, d and d* are decomposed as d = 0+ and d* = 9* +0*,
and the two Laplacians are defined: Ag = 09" + 0*9 and Ay = 99* + 0*0.

Here 0 and O are the Dolbeault operators: 9 := 7Pt od : QP9 — QP14 and
0 = mPitlod . QP4 — QP49FL while 0* and 9* are the (formal) adjoints of @ and 0,
ie. 0 : QP9 — QP14 with 9% := — % Ox, and 0* : QP9 — QP91 with 0% := — x 9«
respectively.

At this point we also refer to the work of Ghiloni and Perotti in [14], where global
differential equations for slice regular functions are studied, and the global differential op-
erators 0 and 0 are particularly studied. Also, in the same article [14] examples are given
in quaternions, octonions and Clifford algebras for the form of the differential operators 0
and 0, while the characterization of Ker(9) via semi-step functions is given.

Since X is Kéhler, the Kéahler identities imply these Laplacians are all the same up
to a constant, A := Ay = 2A5 = 2A,.

Hence, on a Kéhler manifold X, H"(X) = +69 HP4(X), where H" is the space of
ptq=r
harmonic r-forms on X, i.e. forms a with Aa = 0, and HP-? is the space of harmonic (p, ¢)-
forms. Therefore, a differential form « is harmonic if and only if each of its (p, ¢)-component
is harmonic.

Further, in order to ensure self-adjointness results (cf. Morrow and Kodaira in [28])
for the Lapalacian, and subsequently to be a semigroup infinitesimal generator, we consider
a compact Kahler manifold. So we will have a compact bicomplex Kéahler manifold if and
only if the idempotent components are compact Kéhler manifolds.

For pointwise gradient estimates results and poinwise semigroup domination inequali-
ties on E-valued (r, k)-forms over a complete K&hler manifold X we refer to Li [23], while the
Kodaira Laplacian is essentially a Schrodinger type operator acting on C'*° (QT’]“T*X ® E)7
where FE is a holomorphic Hermitian vector bundle on X.

Therefore, after the above, and due to the linearity of the operators, we write in the
idempotent representation: d = ejd;+eads = €1(01+01)+ez(02+0s) and d* = ey d} +eads =
e1(07 4+ 97) + e2(05 + 03),

1AISO7 Ag = elAg;l —|—€2Ag;2 =€ (515T + 51"51)4—62 (5255 + 5552) and Aa = 61A3;1—|—
82Aa;2 =e (8181* + 8f81) + e (8285 + 8;82)

Consequently, we consider the best possible situation, so that the compact bicomplex
Kahler manifold X is written in the idempotent representation X = e; X1 + e3 X5, where
X1 =e1X, Xo = X are compact Kéhler manifolds.

2.4. Bicomplex Banach and Hilbert Modules

For the concept of topological bicomplex modules we refer to Kumar and Saini [20],
and for standard results of functional analysis with bicomplex scalars to Saini et al. in [35].

Let X be a BC-module with the idempotent decomposition X = e; X; 4+ es X3, or
equivalents X = e1 X + es X, where X; :=e; X and X5 := ex X.

If we assume that X; and X, are spaces with norm |[|-|| -, and ||-|| x, respectively, then

g : X > Rz — 2]y := %\/H%H?{l + ||x2||§(2, where x = e1x1 + eawa, wWith 71 € X3
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and x5 € Xo is the idempotent representation of z € X, is a norm in X, the so-called
Euclidean-type norm in X.

In fact, then it applies ||¢zy < v2|/¢|lgc |z] , for every ¢ € BC, for every z € X.

Moreover, X can also be equipped with the hyperbolic-valued norm or D-norm ||z||, =
e1 |1y, + ez |72l x,, and for every z € X it holds that [||z[|p| = ||z -

Further, we refer to the books [1] and [24] for the standard notions of sequence
convergence in terms of the above norm types, as well as for Cauchy sequences.

The following result is well-known (cf. [21]).

Proposition 2.3. The pair (X, ||| ) is a bicomplex Banach module, if and only if the pairs
(X1, ||HX1) and (X, ||||X2) are complex Banach spaces.

Respectively, if we have in X; and X, the inner products (-,)x and (-,-), , then
the formula: (z,y)y := (€121 + ea2, €11 + €2Y2) x = €1 <x1,y1>X1 + es <x2,y2>X2, defines
an inner product in X.

Then the hyperbolic norm in X is defined as ||z||p = [[e1z1 + eaz2|lp = /(@ )y,

2 2
and the real-valued norm ||z||y = %\/@cl,xl)Xl + (22, 22) x, = %\/Hxlﬂxl + llz2l, -
Thus, a BC-module X with inner product (-,-)y is said to be a bicomplex Hilbert
module if it is complete with respect to the hyperbolic norm induced by inner product

square.
The following result is valid (cf. [1]).

Proposition 2.4. The pair (X, (-,-)y) is a bicomplex Hilbert module, if and only if the
pairs (X1,(,)x,) and (Xo,(-,-)x,) are complex Hilbert spaces.

Applying the above, we formulate the following bicomplex Banach modules by analogy
with the classical infinitely differentiable functions with a compact support C2° and Sobolev
spaces WP of functional analysis.

More specifically we have C°(R™,BC) is the set of all ¢ € C°(R",BC) such that
supp(¢p) is compact, where supp(p) := {z : p(x) # 0} is the support of .

Moreover, for f : C°(R",BC) — BC, s € Njj, the Schwartz generalized |s|-order
distributional derivative in the bicomplex setting is (9°f) : C*(R",BC) — BC, with
(0°F) () := (=151 £(8°¢), for every s € NI, for every ¢ € C°(R",BC), where (0°p)(z) :=
fnjl%%’ where s = (s1,82,...,8,), |8| ;=81 + 82+ -+ sp.

Then, for 1 < p < co and m € Ny, we have the bicomplex Banach modules W™ P (R™, BC)
consisting of all g € LP(R",BC) such that exists (0°g) € LP(R",BC), for every s € N,
|s| < m, with the norm

1 1
19llm.p = (Zocisicm 10°915c)” = (Zostsicm Jin 10°9(@)|[Bedz) ", where LP(R",BC) :=
{f:R" = BC: 3 [g. ||f(z)|[Ecdr < +oo}, under the norm
1

1 fllpic = (Jan |1/ (@)][5cd) ™.
Also, WoP(R",BC) = LP(R",BC), and for s = (0,0,...,0), we have °g = g. For
p = 2 as usual we write W™2(R",BC) := H™(R",BC) and W/2(R",BC) := H™(R",BC),
for the corresponding bicomplex Hilbert modules.
In the idempotent decomposition, for £ = 1,2, we write:
CSO(R",B(C)Z = engo(Rn,B(C) = CSO(RH, 6213((:),
w,P(R",BC) := ¢,W"™P?(R",BC) := W™P(R", ¢,BC), and
L?(R",BC) := e,LP(R",BC) := L?(R", ¢,BC),
so that in the idempotent representation:
C(R™,BC) = €;C°(R™, ¢1BC) 4 e2C°(R™, e2BC),
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WP (R™ BC) = e; WP (R",BC) + ea W, (R™, BC), and
LP(R™,BC) = e; LY (R",BC) + e2 LE(R™, BC).

We can also consider the corresponding functional bicomplex modules with X instead
of R™ in the left hand sides and X, = ¢, X, £ = 1,2, in the corresponding right hand sides
of the above idempotent decompositions, where X = e; X7 + e3 X5 is a bicomplex Kéahler
manifold.

For differential-difference bicomplex we refer to Zharinov [41]. We also cite the papers
by Degirmen and Sagir [9] for bicomplex If;~ sequence spaces, and Eryilmaz [12], [13] (and
references therein) on bicomplex versions of function spaces and in particular L bicomplex
Lebesgue spaces.

For more details, corresponding results in bicomplex Hilbert modules, the bicomplex
vesrion of the parallelogram law and for bicomplex polarizarion identities we refer to the
book of Alpay et al. in [1] (especially Chapters 3 and 4) and the article of Kumar and Singh
in [21].

2.5. Bicomplex groups of operators

Let (X,|-|lx) be a bicomplex Banach module and let {T;},., be a family of BC-
linear and D-bounded operators, where T3 : X — X : & — Ty(z). Then, the definition of a
bicomplex (Co)-group {7;},.p and its infinitesimal generator A is typically the same as in
the classical case (cf.[17] and [40]).

Furthermore, considering the idempotent representation of the linear operator Tj,
i.e. for —oo < t < oo writing Ty = ey (Th), + e2 (T2),, where (T}); : e, X — e/ X
with (Ty):(x) := eeTi(epx), for £ = 1,2 are linear operators respectively, the conditions
of a bicomplex (Cp)-group (or of class (Co) or strongly continuous group) are reworded
in the idempotent components as follows: (1y), o (1p), = (T¢),,,, ¥V — 00 < t,s < oo,
s— %Lr% (Te), (x) = (Ty), (x) = x, Vo € e,X, and (1), = 1o, for £ = 1,2 respectively, where
I, the identity operator on e; X and Iy the identity operator on es X.

Also, for the infinitesimal generator A, if the limits exist, we will have the idempotent
representation

A=el A +exAs,
with the idempotent components

N E -1 _

Az =S hgrg+ h ((Tz)h Ig)

defined pointwise. As usual, the corresponding domains of definition will be the sets D(Ay),

consisting of all elements x € €, X such that the limit hli]rg+ h=t ((Tv),, (z) — I(x)) exists,
—

for £ = 1,2 respectively. Further, we will have that D(A) = e1D(A;) + e2D(As).

We also refer to our paper [18] where we have studied linear operators and semigroups
of linear operators on bicomplex Banach modules, with results on the mean ergodic theorem.

At this point we recall the norm of a bounded bicomplex linear operator 7" and for
standard concepts and results we also refer in [1].

Also, the operator T is called D-bounded, if there is a A € DT so that for every z € X
it holds, [ T(x) [ < Alle]l,.

The D-infimum with respect to these A is called the D-valued norm of the operator
T, and is denoted by ||T'||. It follows that the operator T" is D-bounded if and only if the
operators T and T5 are bounded.

Then, combining and applying the known results for bounded and bicomplex linear
operators (cf. [1], p. 75), we have that for the case of a bicomplex group {T;},.p of class
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(Co) yields [|Ti[lp = ex [I(Th)elly + e2[[(T2)¢lly, where [[(T1)¢]l, and [|(T2):]|, are the usual
norms of the idempotent components (74); and (T%); respectively.

3. Solution for the wave equation in the bicomplex setting
3.1. The case of bicomplex-valued wave equation

Following the usual practice (cf. Yosida [40], Pazy [29]), denoting by O and I the
zero and identity operators, we observe that also in the bicomplex case the wave equation
(1) is rewritten equivalently in the form:

5()=(2 ) (2). wemiimo o

o Bu s o .. uw(z,0)\ [ f(x)
where v := %, with the initial condition <v(x, 0)> = (g(x) .

Then, in the idempotent representation for the problem (2), writing u = eju; + eaus,
f=eifi+eafs and g = €191 + €292, and due to the linearity of the operators, we will have:

g e1u; +eau2) €101 + €309 e1l1 +esls eiul + esus
Ot \ e1v1 + eav2 e1A1 + ey 101+ €202/ \ervr +eav2 )’
or equivalent

e g Ul +e g U2 —e 01 Il U1 +e OQ IQ U2
Yot \ v ot \wa) — P\Aar 01) \n \Ay 0y) \w)-
Thus,
O (ue _ (Or Ip\ (we (3)
ot \ve) \Ar Op) \we)’

where vy = %, with the initial condition (ul(:c,O)) = (fl(m)), Ay =eA, Iy = e/l and
Uy (1‘, 0) gf(z)

O¢ = €40, for £ = 1,2 respectively.

Then, as in the classical case following Yosida [40], Pazy [29], Engel and Nagel [11],
we will have in our case as well that an operator A, can be associated with the differential
operator (Oe eﬂ), for £ = 1,2 respectively, as follows.

AV

Let D(4;) = H2(R",eBC) x H'(R",¢,BC) and for Uy = (fi,g¢) € D(A) with
AU = Ao(fe, 90) = (90, Acfe).

Then, we will show that the operator A, is the infinitesimal generator of a (Cy)-
group on the Hilbert space $, = H!(R",¢,BC) x L?(R", e,BC) which is the completion of
C(R™, e/BC) x C*(R", e,BC) under the norm

il :Il(fe,ge)llle(/R <||fz|§mc+|er|3em+||ge||zm)dx) ,

for £ = 1, 2 respectively.
We start with the next Proposition, which collects the preliminary results, in order
to arrive at the infinitesimal generator Ay, for £ = 1,2 respectively.

Proposition 3.1. (i) Let v > 0 and f, € H*(R",e,BC), k > 0. Then, there is a unique
function uy € H*2(R™, ¢,BC) satisfying ug — vAgug = fo, for £ = 1,2 respectively.

(i) For every Fy = (¢¢,0¢) € C(R™, e,BC) x C(R", e,BC) and real A # 0 the equa-
tion Up—\A,Up = Fy has a unique solution Uy = (fy, g¢) € HF¥(R™, e,BC) x H*2(R"™, ¢,BC),
for every k > 2. Moreover, |||U||le < (1 = 2|X))7H||Fellle, for € = 1,2 respectively.
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(iii) For every Iy = (¢, 0¢) € H(R™, e,BC) x L?(R", ,BC) and real X satisfying 0 <
A< % the equation Uy — NAUy = Fy has a unique solution Uy = (fe,g¢) € H*(R™, e,BC) x
H' (R, eBC), and [[|Ue||le < (1 —2X) " || Fellle, for £ = 1,2 respectively.

Proof. (i) Let f; = (2m)~% Jgn €7 fo(z)dx be the Fourier transform of f, and (&) =
(1 + v[€2)~1fo. Since f; € H*(R™, ¢,BC) and (1 + [£]2)2 f; € L*(R", ¢,BC) follows (1 +
€[%) 5" a, € L*(R™,eBC). Then, for ue(x) = (21)% [y, €ay(€)d¢ follows that u, €
HF2(R"™, ¢,BC) and uy is a solution of uy — vAguy = fy, for £ = 1,2 respectively.

(i) Let A # 0 be real and w1, wea be solutions of wpy — A2Apwp; = ¢ and
wea — N2 Apwps = 0, for £ = 1,2 respectively. Then, w1, wpo € HF(R™, e,BC) for every
k>0, and setting f, = wea + Awp2 and gp = weo + AAgwe,; we verify that Uy = (fe, g¢) s
a solution of Uy — NA,U, = Fy. Hence, fy — Age = ¢¢ and gy — XAy fo = 0,.

Moreover, Uy € H*(R™, ¢,BC)x H*~2(R", ¢,BC), for every k > 2, and for (({-,*))) r2(rn ,Bc)
the scalar product in L?(R", ¢,BC) we have:

1Fellle = (({Pe — Dee, De))) L2 erBC) + ({(O2, 02))) 12 (R e BC)

= (((fe — Age — Do fo+ ADyge, fo — Age))) L2 (®n e0BO)
+ ({({ge — Mo fe, g0 — Mo fe))) L2 (®7 e,BC)
> (((fe — Acfe, o)) L2@n eomey + 1196113 2.0 — 2IMRe({((fe, 90))) L2(®n e,BCT))-

Finally, for 0 < A < 1 follows |[|[Fy|[|2 > (1 — 2|A)?[||U¢|||2, that is, it holds |||U||[e <
(1= 27) | el

(iii) For every Fy = (¢¢,0;) € HY(R", e,BC) x L*(R™, ¢,BC) and real \ satisfying 0 <
A< % the equation U, — MA,Uy = F, has a unique solution U, = (fy, g¢) € H?*(R", e,BC) x
HY(R™, ¢,BC), and |||U¢|||e < (1 — 2X)7Y||F¥|]|¢, for £ = 1,2 respectively. O

Theorem 3.1. The operator Ay is the infinitesimal generator of a (Co)-group on $p =
HY(R™, e/BC) x L*(R™, e,BC) satisfying ||(Ty)¢|le < €2, for £ = 1,2 respectively.

Proof. The domain of Ay, H?(R",e,BC) x H'(R", e,BC) is dense in $,. Also, (ul, — As)~*
exists for || > 2 and holds ||(uly — Ag) 7| < |/l'|+2 Hence, Ay (applying Theorem 6.3, p.

23 in [29]) is the infinitesimal generator of a (Cg)-group (T}), satisfying ||(T¢)¢|]e < €. O

Proposition 3.2. For every f, € H*(R",e,BC) and g, € H*(R",e,BC) there exists a
unique uy, € CH([0,+00), H?(R™, ¢,BC)) satisfying the initial value problem % = Ayuy,
wue(x,0) = fo(z), %Lﬁ:o = go(x), for £ = 1,2 respectively.

Proof. Let (Ty); be the (Cp)-group generated by Ay and set (fe(x,t), ge(z, 1)) = (Tr)e(Pe, 00)-
Then, %(fg, 9¢) = A¢(fe,9¢) = (g0, Aefe), and thus we have the desired solution. a

In closing, we mention that by standard arguments and Sobolev’s Theorem (cf. p.
222; Theorem 4.7 in [29]), if the initial data f;, g¢ in the above initial value problem are
smooth for £ = 1,2 respectively so is the solution.

Finally, we have that the operator A = e; A1 + e As is the infinitesimal generator of
a bicomplex (Cp)-group T}, with T3 = e1(T1): + e2(T2): on the bicomplex Hilbert module
H = e1HN1 + eaH9, and the idempotent combination of the solutions uy, £ = 1,2 respec-
tively, i.e. u := ejuj + esus, is the desired unique solution of the original problem on
the bicomplex module C1([0, +00), H*(R",BC)) with idempotent components for ¢ = 1,2
61{01([07 +OO), H2 (Rn, BKB(C))
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3.2. The case of the wave equation in compact bicomplex Kihler manifolds

Let X be a compact bicomplex Kéahler manifold. Then, we have the wave equation
2
written in the compact bicomplex Kéhler manifold X, in the homogeneous form %u(w, t) =
Au(z,t), z € X, t € R", and with the corresponding conditions we have set.

Equivalently, we then have the idempotent decomposition a—éw(az, t) = Agug(xyp, t) =

0, zp € Xy, t € RT, for the homogeneous problem, formulatgfi in the compact Kahler
manifolds Xy := e, X, where Ay, = e,A, for ¢ = 1,2 respectively.

That is, again we can consider the corresponding forms of equations (2) and (3) for
the problem, now formulated in the compact bicomplex Kéhler manifold X = ey X7 + e3X5.

Then, corresponding to the previous case, we have the following results.

Proposition 3.3. The operator Ay is the infinitesimal generator of a (Co)-group on $Hy =
H'(Xy,eBC) x L*(Xy, eBC) satisfying ||(Ty)e||e < €2!l, for € = 1,2 respectively.

Proposition 3.4. For every f; € H?*(Xy,e/BC) and g, € H'(X,,e,BC) there exists a
unique ug € CH([0,4+00), H?(Xy,e/BC)) satisfying the initial value problem 882;52 = Ayuy,

we(x,0) = fo(z), %L::O = ge(x), for £ = 1,2 respectively.

Corollary 3.1. The operator A = e Ay + esAs is the infinitesimal generator of a bi-
complez (Co)-group Ty, with Ty = e1(T1): + ea(T2)¢ on the bicomplex Hilbert module $ =
e191 + €292, and u = eju; + exus, is the unique solution of the problem on the bicomplex
module C1([0, 4+00), H2(X,BC)) with idempotent components e,C* ([0, +o0), H(X,, e,BC)),
(=1,2.

In conclusion, under the conditions we have set, we can propose new results of non-
trivial and generalized solutions in this case for the wave equation formulated in the bicom-
plex setting.
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