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GENERALIZED CONVEXITY AND MATHEMATICAL PROGRAMS

Bhuwan Chandra Joshi!

In this paper, we derive the sufficient condition for global optimality for a nonsmooth mathe-
matical program with equilibrium constraints involving generalized convexity. We formulate the Mond-
Weir type dual model and establish weak and strong duality theorems to relate the mathematical pro-
gram with equilibrium constraints and the dual models in the framework of convexificators.
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1. INTRODUCTION

A mathematical program with equilibrium constraints is usually defined by complementarity
system or a parametric variational inequality. There are many equilibrium phenomena that arise
from economics and engineering, characterized by either a variational inequality or an optimization
problem, which justifies the name mathematical program with equilibrium constraints (MPEC) for
the smooth case [30, 9] and for the nonsmooth case [23, 18]. By using the standard Fritz-John con-
ditions Flegel and Kanzow [7] obtained the optimality conditions for MPEC. Moreover, Flegel and
Kanzow [8] introduced a new Slater type constraint qualification and a new Abadie type constraint
qualification for the MPEC, and proved that the new Slater type constraint qualification implies a
new Abadie type constraint qualification.

The concept of convexificators was introduced by Demyanov [5]. Convexificators has been
employed to extend the results in optimization and nonsmooth analysis [11, 12]. It has been shown
in [12] that the Clarke subdifferentials, Michel-Penot subdifferentials, and Treiman subdifferentials
of a locally Lipschitz real-valued function are convexificators.

Invex (invariant convex) function is one of the important generalization of a convex func-
tions. Invex function was introduced by Hanson [10] and later named by Craven [4]. Generalized
invex functions [19, 20, 21, 22] play a vital role in optimization and related areas. For the last four
decades, optimality and duality conditions in optimization have been discussed by several authors
(see [3, 15]). Duality results are very useful and fruitful in the development of numerical algorithms
for solving certain classes of the optimization problems. Duality theory is very important subject
in the study of mathematical programming problems as weak duality gives a lower bound to the
objective function of the primal problem. Mond and Weir [17] dual model is most popular in non-
linear programming problems. These dual models have been abundantly studied for semi- infinite
programming problems [14], mathematical programs with vanishing constraints (MPVC) [16] and
bi-level problems [29].

The organization of this paper is as follows: in Section 2, we provide some preliminary def-
initions and results. In Section 3, we derive the sufficient optimality condition for MPEC under
generalized convexity assumptions. In Section 4, we establish weak and strong duality theorems
relating to the MPEC and dual model using generalized convex functions in the framework of con-
vexificators. In Section 5, we conclude the results of this paper.

Department of Mathematics, Graphic Era Deemed to be University, Dehradun-248002, India, e-mail:
bhuwanjoshiO070@gmail.com

151



152 Bhuwan Chandra Joshi

2. Preliminaries

Throughout this paper, R" denotes the n-dimensional Euclidean space with inner product
{,.,) and X is a nonempty subset of R". The convex hull of X is denoted by coX .
We consider the MPEC in the following form:

MPEC  min  F(u)
subjectto: g(u) <0, h(u)=0,
H(u) 20, G(u) =2 0, (H(u),G(u)) =0,
where F:R* 5 R, g:R" - RF h:R" - RP, H:R" — R! and G : R” — R! are given functions. If
we take h(u) := 0, H(u) :=0, G(u) := 0, then, the optimization problem with equilibrium constraint
coincides with the standard nonlinear programming problem, which is well studied in the literature,

see e.g., Mangasarian [13].
The feasible set of the problem MPEC is denoted by X and defined by

X:={uecR":g(u) <0, h(u)=0, H(u) >0, G(u) =20, (H(u),G(u)) =0}.
The following index sets will be used throughout the paper:
I, =1L@) ={i=1,2,...,k: gi(ii) =0},
6:=06(a):=4{i=1,2,...,1: Hi(&d) =0,G;(@) > 0},
o:=oi):=4{i=1,2,...,1: H(ii) = 0,G;(i&) = 0},
k:=xk(a):={i=1,2,...,1: H;i(#i) > 0,G;(it) = 0},
where i € X is a feasible vector for the problem MPEC and the set & denotes the degenerate set.
Definition 2.1. Let F : R" — RU{+o0} be an extended real-valued function, u € R", and let F(u)

be finite. Then, the lower and upper Dini directional derivatives of F at u in the direction y are

defined, respectively, by
_ .. F(u+ty)—F(u)
F = liminf —————=
d (u,y) t—0t t
and
F ty)—F
F (u,y) :=limsup M
t—0+ !
Definition 2.2. (see [11]) A function F : R" — R U {+oo} is said to have upper convexificators,
d*F(u) atu € R" if *F (u) CR" is a closed set and, for each y € R",

Fy (w,y) < sup ().
E€d*F(u)

Definition 2.3. (see [11]) A function F : R" — RU {+oo} is said to have lower convexificators,
0+F (u) at u € R" if . F (u) CR" is a closed set and, for each'y € R",

Ff > inf ).
oy (1Y) 56(19?““)@ y)

The function F is said to have a convexificator d*F (1) C R" at u € R", iff 9*F (u) is both
upper and lower convexificators of F at u.

Definition 2.4. (see [6]) A function F : R" — RU{+oo} is said to have upper semi-regular convex-
ificators, *F (u) at u € R" if *F (u) C R" is a closed set and, for each'y € R"

Ff(u,y) < sup (E,y). (1
ECI*F(u)

Based on the definitions of generalized invex functions [2], we are introducing the definition
of generalized invex functions in terms of convexificators.
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Definition 2.5. Ler F : R" — RU{+o} be an extended real valued function, which admit convexi-
ficator at ii € R" and 1 : R* x R" — R" be a kernel function then, f is said to be

(i) @*-p-invex at i with respect to 7 if for every u € R",
F(u) > F(i)+ %(5,@’”(“"1) —1),VE € d*F(i),p #0.
(ii) d*-p-pseudoinvex at i with respect to 1 if for every u € R",
3E € 9*F (@), %<g7em<uaﬂ> 1) > 0= F(u) > F(@),p £0.
(iii) d*-p-quasiinvex at i with respect to 1 if for every u € R”,
F(u) < F(id) = %@,em("’@ —1)<0,Y & € d*F(i),p #0.

We provide following examples in support of the definition of d*-p-invex function and generalized
d*-p-invex functions respectively.
Example 2.1 Consider the function F : R — R is given by

then the function becomes d*-p-invex at ¥ = 0 with respect to the kernel function, 1 (x, %) = cosxsin ¥
and d*F(0) = {0,1}.
Example 2.2 Consider the function F : R — R is given by

1+x; x>0,
F(x) = 2.
14+x%; x <0,

if we take point ¥ = 0, then the function becomes strongly 0*-p-pseudoinvex function at ¥ = 0 with
respect to the kernel function, 1 (x,%) = sinx¥ and d*F(0) = {0, 1}.

Example 2.3 Consider the function F' : R — R is given by

if we take point ¥ = O then the function becomes d*-p-quasiinvex function at £ = 0 with respect to
the kernel function, 7 (x, %) = cosxsin, and *F (0) = {—1,1}.

The following definitions of generalized alternatively stationary point and generalized strong
stationary point are taken from Ardali et.al. [1].

Definition 2.6. A feasible point ii of MPEC is called a generalized alternatively stationary (GA-
stationary) point if there are vectors T = (78,7, 7 10) € RPH2 gnd y = (y',y1,y°) € RPF2
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satisfying the following conditions

p
0 € cod*F (i) + Z ¥ c0d” g;(if) Z {‘L’ cod* hy, thoa*(—hm)(ﬁ)}
i€lg m=1
!

+Z[T cod* (—H;)(ii) + 18 cod* (— )(ﬂ)]

i=1

l
+ Z [ cod” (Hy) (&) + 109" (G (a)] @
0 Tm?%n>07m:1727-“apa (3)

Oy >0 i=1,2,....1, 4)
r,c:r(;:%?:ygzo, )
Vicao, ' =0oryf =0. (6)

Definition 2.7. A feasible point ii of MPEC is called a generalized strong stationary (GS-stationary)
point if there are vectors T = (8,7, t1 10) € R*P2 gnd y = (Y, ¥, y°) € RPT2 satisfying (2)-
(5) together with the following condition

Vica, y1=0,y¢=0.

In the next section, we show that under certain MPEC generalized invexity assumptions,
generalized alternatively (GA) -stationarity turns into a global sufficient optimality condition.
3. Optimality condition

We consider the following index sets:

af::{iea:}/iazo,%”>0},

ayG::{iea:in>0,yiH:0}

5;::{1'65:71»H>0},

K ={ick:y >0}
Theorem 3.1. Let ii be a feasible GA-stationary point of MPEC, assume that F is 0*-p-pseudoinvex
at ii with respect to the kernel n and g;(i € I,), £h,,(m=1,2,...,p),—H;(i€ dUa),—Gi(i € aUKk)

are 8*-1) quasiinvex at ii with respect to the common kernel 1 and for the same real number p # 0.
Ifoc U Oc U 6+ U K+ @, then ii is a global optimal solution of MPEC.

Proof. Let u be any arbitrary feasible point of MPEC, i.e.,
gi(u) <0=g;(i), Vi€l

By 0*-p-quasiinvexity of g; at i, we get
1

—(E8,ePM0) 1) <0, V EF € 9% gi(id), Vi€ . @)
p
Similarly, we have
;<§m,e1’"““ 1> 0, ¥ & € (), ¥ m = {1,2,...,p}, 8)
<v,,, ePmwi) _ 1> 0, ¥ Vi € " (—hy)(@),¥ m = {1,2,.... p}, )
$<<§H ePn(wd) 71> 0¥ EH € 9*(—H) @),V i€ S U, (10)
1 G pT] u,ii) * ~ .
;< 1> 0,V 0 € 9*(~Gy) (i), Vi € aUk. (11)
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If off Uy U, Uk, = ¢, multiplying (7)-(11) by 7 >0 (i €L,), T >0(m=1,2,...,p), 1:
>0(m=1,2,...,p), T >0 (ie Ua), ¢ >0 (i € aUk), respectively and adding, we obtain

p l l
(g e+ £ [Boon] + B s L oer) mea 1) <o
m=1 i=1 i=1

P\ \iel,

forall &EF € cod*gi(ii), & € c0d* M (i), Vin € c0d* (—hy)(il), EH € cod* (—H;) (i), EF € cod™ (—G;)(i).
Thus by GA-stationarity of i, we can select & € cod*F (ii), so that,

(g 1) 0

By d*-pseudoinvexity of F at ii with respect to the common kernel 1 and for the same real number
p # 0, we get

F(u) > F(i)

for all feasible points u. Hence ii is a global optimal solution of MPEC. ]

The following example illustrates Theorem 3.1.
Example 3.1 Consider the following MPEC problem
MPEC

. u;
mmF(u)—{MZ; “ <0,
subject to : g(u) = —u® <0,
H(u)=u®>>0,
G(u)=ul 20,
(H(u), G(u)) = (i, |ul) =0,

Here F is d*-p-pseudoinvex at i = 0 and p = 1 with respect to the kernel, 1 (u.if) = cosuii.
Further, g, —H and — G are d*-p-quasiinvex at i = 0 with respect to the common kernel, 1 (u, i) =
cosuii and p = 1. The feasible point for the given MPEC is i = 0. We have cod*F (0) = [0, 1], cod*
2(0) = {0}, cod*(—H)(0) = {0} and cod*(—G)(0) = [—1, 1]. One can easily verify that there exist
78 = 1,7 =1, and 7° = 1 such that i = 0 is a GA- stationary point, and i = 0 is a global opti-
mal solution for the given primal problem MPEC. Hence, the assumptions of the Theorem 3.1 are
satisfied.

Remark 3.1. Based on the Definition 2.5, the definitions of generalized invex functions can also be
given in terms of upper semi-regular convexificators.

4. Duality
Now, we formulate the Mond-Weir type dual problem (MWD) for the problem MPEC and
establish duality theorems using convexificators.

MWD max{F(v)}

»wT,Y
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subject to:

p
0 € cod*F(v)+ Z Tc0d*gi(v) Z [T cod*hy, V’coc?*(—hm)(v)]

i€ly m=1

!
+) [t/ cod* (—H;)(v) + t7c0d* (—G;)(v)] ,

1

gi(v) =20 (i€ly), hu(v)=0(m=1,2,...,p),

Hi(v)<0(iedUa), Gi(v)<0(icauUk),

T >0, >0, m=1,2,.

gl >0 i=1,2,....1,

=t =yl =yf=0Vicay =0,/ =0, (12)
where, T = (78,7, t1,19) € RF P2 and y = (', ¥, y°) e RPH2L.

Theorem 4.1. (Weak Duality) Let ii be feasible for the problem MPEC, (v,T) be feasible for the dual
MWD and the index sets 1,0, a,k be defined accordingly. Suppose that F,g; (i € Iy),xh, (m =
1,2,...,p),—H; (i€ dUa),—G; (i € aUK) admit bounded upper semi-regular convexificators and
are 0*-p-invex functions at v, with respect to the common kernel 1 and for the same real number
p#0. IfOCH U OtG U 5+ U K“L @, then for any u feasible for the problem MPEC, we have

F(u) > F(v).

>
<

Proof. Since f is d*-p-invex at v, with respect to the kernel 7, then, we have

F(u)—F(v) > %@,em(w) —1),VE€I*F(v). (13)

Similarly, we have
gi(u)—gi(v) > %(&ig,e”m””) -1), VES €dgi(v),Vi€ly, (14)
hm(”)_hm(v) %(gm epﬂ(uv)_1>, vcmea*hm(v)avm:{lazaap}a (15)
(1) 4 B () > %(vm,e”m“"’) C1), Vv € (—hn) (W)Y m={1,2,....p},  (16)
)+ H) > - (G -1), VE! €0 (<H)().V i€ U, (a7
~Gi(u) +Gi(v) > %@G M) 1), VES € 9°(—Gi)(v), Vi€ aUK. (18)

If off U US, Uk, = ¢, multiplying (14)-(18) by 78 >0 (i € L,), T >0 (m=1,2,...,p), 7 >
0(m=1,2,....,p), " >0(iedUa), ¢ > 0 (i € ®UK), respectively and adding (13)-(18), we
obtain

D+ Y i)~ X )+ Y )~ Y f

i€lg i€ly m=1 m=1

+ f Vol (v) Z tf Hi(u) + Z o Hi(v Z 70 Gi(u) + Z Gi(v
m=1 i= i=
;G+Zﬁﬁ+z[ﬁnm AR %JH%JJW”1>

i€ly m=1 i=1
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From (12), 3€ € cod*F(v), &f € c0d*gi(v), G € c00* hn(V), Vi € c0d* (—h)(v), EF € cod*(—H;)(v)
and EC € c0d*(—G;)(v), such that

§~+Zfig§zg+ i [,nCm+ }4- {TZH&H—FTF&G} -

icl, m=1 i=1

-

Therefore,

0+ T wul)~ T efas)+ 1 ehn(e) — 3 ehin(s) = Y thhn)

i€lg i€ly m=1 m=1

+i;¢; ZTHH +ZTHH Z’L’GG Z “Gi(v) > 0.
m=1 i=1 i=1

Now using the feasibility of u and v for MPEC and MWD, it follows that
F(u) > F(v). Hence, the proof is completed. O

Theorem 4.2. (Strong Duality) Let ii be a local optimal solution of the problem MPEC and let F be
locally Lipschitz near ii. Suppose that F, g; (i € I,), £h, (n=1,2,...,p), —H; (i€ dUa), —G; (i €
o U k) admit bounded upper semi-regular convexificators and are 0*-p-invex functions at i with
respect to the common kernel 1 and for the same real number p # 0. If GS-ACQ [1] holds at i,
then there exists T, such that (ii,%) is an optimal solution of the dual MWD and the corresponding
objective values of MPEC and MWD are equal.

Proof. Since, i is a local optimal solution of MPEC and the GS-ACQ is satisfied at &, now us-
ing Corollary 4.6 [1], 3 ¥ = (%¢,%", %7, 70) € RFPH2 5 ¢ (7, 7,7°) € RPT2 such that the
GS-stationarity conditions for MPEC are satisfied, that is, 3 & € cod*F (i), ég € cod*g(ii), & €
c0d*h,(ii), V, € cod*(—h,)(@), EM € cod*(—H;)(#) and EC € cod*(—G;)(i), such that

E+ Y TEf Z {r C,ﬂﬁv,} +Z{ e+ GEF} =
l
#>0(i=1,2,...,m), &, >0, (r=1,2,...,p),
#2090, (i=1,2,...,1),
=t =P =§{=0Viea, 71 =0, 7 =0.
Since i is an optimal solution for SIMPEC, we have
m ] 1
§' 4160 0.3 #hh(a) =0, % #/hm) =0. 3206, (0) -
i=1 i=1

i=1

Therefore (i, %) is feasible for MWD. By Theorem 4.3, for any feasible (v, 7), we have F (i) = F(v).

It follows that (i7, ) is an optimal solution for MWD and the respective objective values are
equal. This completes the proof. ]

Next, we establish weak and strong duality theorems for MPEC and its Mond-Weir type dual
problem (MWD) under generalized 0*-p-invexity assumptions.

Theorem 4.3. (Weak Duality) Let ii be feasible for the problem MPEC, (v,7T) be feasible for the dual
MWD and the index sets I,, 8, &,  are defined accordingly. Suppose that F is *-p-pseudoinvex at
v, with respect to the kernel 1 and g; (i € I,), £h,, (m=1,2,...,p), —H; (ie dUw), —G; (i €
o U K) admit bounded upper semi-regular convexificators and are 9*-p-quasiinvex functions at v,
with respect to the common kernel 1 and for the same real number p # 0. If (x{f U ch U 6;r U K‘;‘ =0,
then for any u feasible for the problem MPEC, we have

F(u) > F(v).
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Proof. Assume that, for some feasible point u, such that F(«) < F(v), then by d*-p-pseudoinvexity
of F at v, with respect to the kernel 1, we get

ll)<¢§,e!’"<“> —1) <0,YE € d*F(v). (19)
From (12), 3€ € cod*F(v), &f € c0d*gi(v), & € 00" h(v), Vi € c0d* (—hp)(v), EF € cod* (—H;)(v)
and EC € c0d*(—G;)(v), such that

= P N
~Y e - Y [l | - X E - Y O8O €0 F (), (20)
icl, m=1 SUa auk
Using (12) and (19), we get

(5 £

i€ly

e, + vm]+Zr”a§”+ZrG§ ) ePn () 1>>0. (21)

Sua aJk

For each i € Iy, gi(u) < 0 < gi(v). Hence, by d*-p-quasiinvexity, we obtain

1<§§7ep’7<w> ~1) <OV E €dq(v), Viel 22)
)
Similarly, we have
1<§,,,,el"7<“»v) - 1> <0,V & € O (V)Y m={1,2,....p}, (23)
P

for any feasible point v of the dual MWD, and for every m, —h,,(v) = —h,,(#) = 0. On the other
hand, —H;(u) < —H;(v),Vi € U, and —G;(u) < —G;(v),Vi € a U k. By 9*-p-quasiinvexity, we
obtain

I%<vm,ep”(“’v) - 1> <0, ¥ Vi € 3 (—hy)(V), Y m={1,2,....p}, 24)
%<.§iH,e””(”’v>—l><O VER € 0" (—H;)(v),V i€ dUa, (25)
<§G Py —1> <0,V EC € 9" (—G)(v), Vi€ aUk. (26)

From Egs, (22)—(26), we have
l<gig,epn<u-,V> _ 1> <0(iely), l<§m,epn(u-,v> _ 1> <0, 1<9m,epn<u,v> _ 1> <0,
p p p
L/gn omwy) , l/¢6 .
— ! uv) _ < — A pr’(u,v) — < .
p<§, o 1>\0,V165UO€, p<e§, e 1>\O,VZE(XUK

: H oGS+ 1wt —
Since a, Uy’ U6, Uk, = ¢, we have

p<zrg§g elﬂ”l uy) _ > <i [T Cm“‘ } el”l(uv) 1> <07

i€ly 1

m=
1<zfﬁ~,.ﬂ,em<w_1> 0 < Gemw>_1><o.
p SUa

Therefore,

;<<Zflg§g+i[ Cm‘i'%nvm}'i‘z H§H+Z G& ) epnuv 1>§0,

i€l m=1 SUa auk

< -

which contradicts (30). Therefore F(u) > F(v). Hence the proof is completed. O
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Theorem 4.4. (Strong Duality) Let ii be a local optimal solution of the problem MPEC and let F
be locally Lipschitz near ii. Suppose that F is d*-pseudoinvex at ii, with respect to the kernel 1,
gi(i€ly), £h, (m=1,2,...,p), —H; (i€ §Ua), —G; (i € aUK) admit bounded upper semi-
regular convexificators and are d*-quasiinvex functions at ii with respect to the common kernel 1
and for the same real number p # 0. If GS-ACQ [1] holds at ii, then there exists T, such that (i, T) is
an optimal solution of the dual MWD and the respective objective values are equal.

Proof. The proof can be done similar to the proof of Theorem 4.2 by invoking Theorem 4.3. ]

5. Conclusions

We have studied a mathematical program with equilibrium constraints (MPEC) and derived
the sufficient conditions for global optimality for MPEC using generalized convexity assumptions.
We have formulated the Mond-Weir type dual model for the problem MPEC in the framework of
convexificators. Further we established weak and strong duality theorems relating to the problem
MPEC and dual model using generalized convexity assumptions.
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