
U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 4, 2015 ISSN 1223-7027

A NUMERICAL SOLUTION OF ANTI-PERIODIC BOUNDARY

VALUE PROBLEMS VIA LEGENDRE POLYNOMIALS

M. Ahmadinia1, Z. Safari2

This paper introduces a numerical method to solve anti-periodic boundary
value problems. The proposed method converts anti-periodic boundary value prob-
lem to a Fredholm integral equation and solves it by Galerkin method. The approx-
imate solution converges to the exact solution and satisfies anti-periodic boundary
conditions completely. Also, the convergence rate of the proposed method is given
by Legendre polynomials properties.

Keywords: Anti-periodic BVP, Fredholm integral Equation, Legendre polyno-
mials, Galerkin method.

MSC2010: 65L10, 65L60

1. Introduction

Consider the following second order differential equation
g(t, y(t), y′(t), y′′(t)) = 0, t ∈ [0, T ],

y(0) + y(T ) = 0,

y′(0) + y′(T ) = 0,

(1)

which is called anti-periodic boundary value problem (BVP) and the above boundary
conditions are called anti-periodic boundary conditions (BC). Anti-periodic BVP
has been applied by many researchers in science and engineering such as optimal
control, physics and neural networks, [8, 11, 14, 18]. A number of papers address
the existence and the uniqueness of solution of problem (1). For example, for a class
of nonlinear second-order equations with delays is discussed in [12]. Also, many
recent papers proved the existence and the uniqueness of solution of the fractional
order differential version (1). The existence and uniqueness of solution of fractional
order anti-periodic BVP with Laplacian operator have been presented in [7, 10].
Lv and Zhang introduced a generalized anti-periodic BVPs for fractional differential
equation with p-Laplacian operator in [13]. The existence and stability of solution for
systems of fractional differential equation with anti-periodic BC have been discussed
in [15, 19]. A new class of anti-periodic fractional BVPs has been introduced in [3]
by Ahmad et al.
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We focus on the special case (1) by the following form:
y′′(t) + p(t)y(t) = f(t), t ∈ [a, b],

y(a) + y(b) = 0,

y′(a) + y′(b) = 0.

(2)

Aftabizadeh et al. [2] proved the existence and the uniqueness of solution of (2),
when [a, b] = [0, π], f ∈ L2[0, π] and p ∈ C[0, π] with the following condition:

(2n− 1− δ)2 ≤ p(t) ≤ (2n+ 1 + δ)2, 0 ≤ t ≤ π,

for some positive integer n and some δ ∈ (0, 1), or

0 ≤ p(t) ≤ (1− δ)2, 0 ≤ t ≤ π,

or

p(t) ≤ 0, 0 ≤ t ≤ π.

Note that, the above conditions can be generalized to any interval [a, b].
Aftabizadeh et al. [1] proved the existence and the uniqueness of solution for higher
order anti-periodic BVPs. Wang and Li [16] proved only the existence of solution of
(1) when

g(t, y, y′, y′′) = y′′ − u(t, y),

u is continuous and there exist constants 0 ≤ C ≤ 8 and M such that

|u(t, s)| ≤ C

T 2
|s|+M,

for all t ∈ [0, T ], s ∈ R.
Aftabizadeh et al. [2] used a repeating shooting method for solving anti-

periodic BVP (2). To find the suitable initial values y(a) and y′(a) for shooting
method is very difficult. Ahmadinia and Loghmani [4] presented a numerical method
for anti-periodic BVPs based on the least square method and splines. The conver-
gence rate of the least square method by splines is constant. The present paper
converts anti-periodic BVP (2) to a Fredholm integral equation of the second kind.
The proposed method solves this integral equation by legendre polynomials. The
properties of legendre polynomials help us to obtain the convergence rate of the pro-
posed method. This paper is organized as follows: Section 2 describes the method
for converting anti-periodic BVP (2) to Fredholm integral equation of the second
kind and to solve the integral equation by Galerkin method. Section 3 proves the
convergence analysis of the method and obtains the convergence rate of the approx-
imation solution. In order to achieve this, we have applied some results of Wang
and Xiang [17] on the convergence rate of Legendre polynomials, and Atkinson and
Han [5] as well. The last section presents some numerical examples to confirm the
theory of the presented method.

2. Description of the Method

Consider the following integral equation

u(t) = f(t) +

∫ b

a
K(t, s)u(s)ds, (3)
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with the kernel

K(t, s) :=

{
W (t, s), a < s < t,

G(t, s), t < s < b,

where 
G(t, s) :=

1

4
p(t)(b− a+ 2t− 2s),

W (t, s) :=
1

4
p(t)(b− a− 2t+ 2s).

Note that, the functions p and f are the functions used in (2). It is obvious that one
can convert the Fredholm integral equation on [a, b] to the same problem on [−1, 1]
by changing variable, then without loss of generality: consider a = −1, b = 1.
We will solve (3) by Galerkin method with Legendre polynomial basis. Legendre
polynomials as an orthogonal basis helps us to prove the convergence rate of our
method. Let Lj denotes the Legendre polynomial of degree j on [−1, 1] as follows:

L0(x) = 1, L1(x) = x,

Lk+1(x) =

(
2k + 1

k + 1

)
Lk(x)−

(
x

k + 1

)
Lk−1(x), k ≥ 1.

Let Πm be the polynomial space of degree m and

⟨f, g⟩ :=
∫ 1

−1
f(x)g(x)dx, (4)

is the inner product on Πm. Note that Legendre polynomials are orthogonal with
respect to the inner product. Consider

un(t) =

n∑
j=0

cjLj(t), −1 ≤ t ≤ 1,

as an approximate solution of (3) in finite dimensional space Πn. Galerkin method
obtains the unknown coefficients cj , 0 ≤ j ≤ n. So the integral equation (3) yields

n∑
j=0

cjLj(t) = f(t) +

∫ b

a
K(t, s)

n∑
j=0

cjLj(s)ds.

By takeing inner product on both sides with respect to Li, the above equation implies
n∑

j=0

cj(⟨Lj , Li⟩+ ⟨KLj , Li⟩) = ⟨f, Li⟩, 0 ≤ i ≤ n.

This linear system yields the coefficients cj , 0 ≤ j ≤ n, then un has been obtained
as an approximate solution of (3). The following function is the solution of (2), when
u is the exact solution of (3),

y(t) =
b− a+ 2t

−4

∫ b

a
u(s)ds+

1

2

∫ b

a
su(s)ds+

∫ t

a
(t− s)u(s)ds. (5)

This fact will be proved in the next section. Relation (5) and the approximate
solution un yield an approximate solution yn for (2).
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3. The Convergence Analysis of the Method

The Fredholm integral equation of the second kind (3) has a unique solution
when the following operator is compact

Ku(t) =

∫ b

a
K(t, s)u(s)ds, t ∈ [a, b], (6)

and I−K : C[a, b]
1−1−−→
onto

C[a, b] is one to one and onto operator such that (I−K)−1 is a

bounded operator (see Atkinson [6] page 13), that is Fredholm Alternative Theorem.
The following Theorem 3.1 converts anti-periodic BVP (2) to the Fredholm integral
equation of the second kind (3) and the unique solution of anti-periodic BVP (2)
can be obtained by the unique solution of integral equation (3).

Theorem 3.1. Let u be the unique solution of (3) then the defined function y in
(5) is a solution of anti-periodic BVP (2). Moreover, if anti-periodic BVP (2) has
the unique solution y, then u = y′′ is the unique solution of integral equation (3).

Proof. Let u be the unique solution of (3). Taking derivative twice in (5) yield

y′(t) =
−1

2

∫ b

a
u(s)ds+

∫ t

a
u(s)ds, (7)

y′′(t) = u(t). (8)

The relations (5) and (7) imply y(a) + y(b) = 0 and y′(a) + y′(b) = 0 respectively.
Also, (5), (7) and (8) show that y is a solution of (2).

Moreover, if y is the unique solution of (2), taking integral on the both sides
of (8) yields

y′(t) = y′(a) +

∫ t

a
u(s)ds. (9)

Anti-periodic BC y′(a) + y′(b) = 0 and (9) imply

y′(a) =
−1

2

∫ b

a
u(s)ds. (10)

The relation (9) and (10) imply (7). The following relation is obtained by integrating
of (7):

y(t) = y(a) +
a− t

2

∫ b

a
u(s)ds+

∫ t

a
(t− s)u(s)ds. (11)

Anti-periodic BC y(a) + y(b) = 0 and (11) yield

y(a) =
a+ b

−4

∫ b

a
u(s)ds+

1

2

∫ b

a
su(s)ds. (12)

The relation (11) and (12) imply (5). Anti-periodic problem (2) can be written as
(3) by considering (5), (7) and (8). �

To prove the convergence analysis of the method, we use the following theorem which
presents the convergence analysis of the approximate solution of (3).
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Theorem 3.2. Assume K : V → V is bounded, with V a Banach space; and assume

λ−K : V
1−1−−→
onto

V . Further assume

∥K− PnK∥ → 0 as n → ∞

where Pn is a projection Pn : V → Vn and Vn is a finite dimensional space. Then
for all sufficiently large n, say n ≥ N , the operator (λ−PnK)−1 exists as a bounded
operator form V to V . Moreover, it is uniformly bounded:

sup
n≥N

∥(λ− PnK)−1∥ < ∞.

For the solutions un with n sufficiently large and u of

(λ− PnK)un = Pnf, un ∈ V

and

(λ−K)u = f

respectively, we have

u− un = λ(λ− PnK)−1(u− Pnu)

and the two-sided error estimate

|λ|
∥λ− PnK∥

∥u− Pnu∥ ≤ ∥u− un∥ ≤ |λ|∥(λ− PnK)−1∥∥u− Pnu∥. (13)

Proof. This theorem has been presented by Atkinson and Han [5] page 479. �

Let Vn be the polynomial space Πn and V = C[a, b]. Consider operator K in
(6) and the following orthogonal projection Pn by the inner product (4):

Pn : V → Πn,

Pnf :=

n∑
j=0

(2j + 1)

2
⟨f, Lj⟩Lj .

The theorem 3.2 implies that ∥u−un∥ converges to zero at exactly the same speed as
∥u− Pnu∥ (it is obvious by considering (13)). Note that u is the exact solution and
un is Galerkin approximate solution. The convergence rate of ∥u− un∥ is obtained
if we know that the convergence rate of ∥u − Pnu∥ . Wang and Xiang proved the
convergence rate of ∥u−Pnu∥ in [17], which helps us to obtain the convergence rate
of the method.

Theorem 3.3. If u, u′, · · · , u(k−1) are absolutely continuous on [−1, 1] and ∥u(k)∥T =
Vk < ∞ for some k > 1, when

∥u∥T =

∫ 1

−1

|u′|√
1− x2

dx,

then for each n > k + 1,

∥u− Pnu∥ ≤ Vk

(k − 1)(n− 1
2)(n− 3

2) · · · (n− 2k−3
2 )

√
π

2(n− 1)
.
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If u is analytic inside and on the Bernstein ellipse εϱ with foci ±1 and major semiaxis
and minor semiaxis summing to ϱ > 1, then for each n ≥ 0,

∥u− Pnu∥ ≤ (2nϱ+ 3ϱ− 2n− 1)ℓ(εϱ)M

πϱn+1(ϱ− 1)2(1− ϱ−2)
.

where M = maxz∈εϱ |f(z)| and ℓ(εϱ) denotes the length of the circumference of εϱ.

Proof. This theorem has been proved in [17] by Wang and Xiang. �

Theorems 3.2 and 3.3 imply that the approximate solution of (3) converges to
the exact solution. The following corollary shows that the convergence rate of the
proposed method. Note that, there is no theorem to state the convergence rate of
∥u− Pnu∥ when u is analytic on the whole complex plane.

Corollary 3.1. If u and un are the exact solution and Galerkin approximate solution
of (3) respectively. The convergence rate of the proposed method has two cases as
follows

• Case 1: If u, u′, · · · , u(k−1) are absolutely continuous on [−1, 1] and ∥u(k)∥T <
∞, then

∥u− un∥∞ = O(
1

nk− 1
2

), n > k + 1.

• Case 2: If u is analytic inside and on εϱ then

∥u− un∥∞ = O(
n

ϱn
), ϱ > 1, n ≥ 0.

Remark 3.1. If u is an analytic function on the whole complex plane then the
convergence rate of ∥un−u∥ is more than the convergence rate of case 2 in corollary
3.1.

Remark 3.2. Note that, the approximation solution yn for anti-periodic BVP (2)
is obtained by (5):

yn(t) =
b− a+ 2t

−4

∫ b

a
un(s)ds+

1

2

∫ b

a
sun(s)ds+

∫ t

a
(t− s)un(s)ds,

consider L = max{|a|, |b|}, the above equation and (5) yield

∥yn − y∥∞ ≤ b− a+ 2L

4

∫ b

a
∥un − u∥∞ds+

L

2

∫ b

a
∥un − u∥∞ds+ 2L

∫ t

a
∥un − u∥∞ds

≤ (
b− a

4
+ 3L)(b− a)∥un − u∥∞ .

Hence the convergence rate of ∥yn−y∥∞ is at least the same as the convergence rate
of ∥un − u∥∞ in both cases of corollary 3.1 and the case of remark 3.1.

4. Numerical Examples and Conclusion

The present section illustrates some numerical examples which confirm the
theory of the convergence of the proposed method. We need the following notations
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to show that the global error and convergence rate of the method.

EN = ∥y − yN ∥∞, LN = ∥y − PN y∥∞,

RG
N
= log2(

EN

E2N

), RN = log2(
LN

L2N

).

The exact solutions of the examples 4.1 and 4.2 are analytic functions on the whole
complex plane. Considering remark 3.1, the convergence rate of the method is more
than the convergence rate of case 2 in corollary 3.1. The values RG

N
and RN show

that the convergence rate of the method is the same as the convergence rate of LN .
The convergence rate of the method for example 4.4 is O(n/ϱn). The constant

ϱ can be obtained by the following relation

ϱ ≈ 2

1 + log2(
E

N
E

2N
)

N . (14)

The numerical results of example 4.3 show that the convergence rate of the method
for this example is the third order. Case 1 in corollary 3.1 shows that the convergence

rate of the method for this example is at least O(n− 5
2 ). All computations of the

following examples have been run by Maple 15 software.

Example 4.1. Consider the following anti-periodic BVP
y′′(t) + (3 + sin(t))y(t) = f(t), t ∈ [0, π],

y(0) + y(π) = 0,

y′(0) + y′(π) = 0,

where

f(t) = sin(t)(
t2 − πt

2
)− cos(t)(2 + sin(t)) +

3

2
t2 − 3

2
πt+ 1.

The exact solution is y(t) = − cos(t) + t2

2 − πt
2 . Note that, p(t) = 3 + sin(t) satisfies

the following condition:

(2n− 1− δ)2 ≤ p(t) ≤ (2n+ 1 + δ)2, 0 ≤ t ≤ π,

where δ = 1
2 and n = 1, then y(t) is the unique solution. Figures (a) and (b) show

the errors for N = 32, 64. Table 1. shows the errors and convergence rates of the
method for N = 2j , j = 1, . . . , 6. The values RG

N
and RN are the same approximately.

Table 1. Errors and convergence rates for example 4.1

N EN RG
N

LN RN

2 1.32e− 00 2.15e− 01
4 8.03e− 02 4.04 9.03e− 03 4.57
8 2.50e− 06 14.97 1.55e− 06 12.47
16 2.89e− 16 33.01 3.28e− 16 32.16
32 2.35e− 40 80.02 3.92e− 40 79.44
64 1.04e− 97 190.4 2.60e− 97 189.96
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Table 2. Errors and convergence rates for example 4.2

N EN RG
N

LN RN

2 9.86e− 01 2.15e− 01
4 2.33e− 02 5.40 9.03e− 03 4.57
8 2.11e− 06 13.43 1.58e− 06 12.47
16 2.81e− 16 32.81 3.28e− 16 32.16
32 2.31e− 40 80.01 3.98e− 40 79.44
64 1.07e− 97 190.46 2.60e− 97 189.96

(a) |y(t)− y32(t)| Ex. 4.1. (b) |y(t)− y64(t)| Ex. 4.1.

(c) |y(t)− y32(t)| Ex. 4.2. (d) |y(t)− y64(t)| Ex. 4.2.

Example 4.2. Consider the following anti-periodic BVP
y′′(t) + cos2(t)

2 y(t) = cos3(t)
2 − cos(t), t ∈ [0, π],

y(0) + y(π) = 0,

y′(0) + y′(π) = 0.

The exact solution is y(t) = cos(t). Note that p(t) =
cos2(t)

2
satisfies the

following condition:

0 ≤ p(t) ≤ (1− δ)2, 0 ≤ t ≤ π,

where δ = 1
2 , then y(t) is the unique solution. Table 2 presents the errors and

convergence order of the method and figures (c) and (d) illustrate the errors for
N = 32, 64.
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Example 4.3. Consider the following anti-periodic BVP
y′′(t)− exp(−t)y(t) = f(t), t ∈ [−1, 1],

y(−1) + y(1) = 0,

y′(−1) + y′(1) = 0.

where

f(t) =
8t2

(16 + t2)3
− 2

(16 + t2)2
− 2

17
− exp(−t)(

1

16 + t2
− t2

17
).

Interval [−1, 1] can be changed to [0, π], then p(t) = −exp(−(
2

π
t− 1)) ≤ 0 on [0, π].

Then the exact solution y(t) =
1

16 + t2
− t2

17
is the unique solution. Figures (e) and

(f) show the errors for N = 32, 64. Table 3 presents errors and the convergence
rates as well as the constant ϱ ≈ 8.2. Which is obtained by (14).

Table 3. Errors and convergence rates for example 4.3

N EN RG
N

LN RN ϱ
2 3.07e− 4 5.05e− 05
4 2.10e− 06 7.19 9.26e− 07 5.76 10.19
8 3.37e− 10 12.61 2.72e− 10 11.73 9.03
16 1.56e− 17 24.36 1.92e− 17 23.75 8.50
32 4.18e− 32 48.41 7.32e− 32 47.89 8.28
64 3.15e− 61 96.75 7.88e− 61 96.22 8.21
128 1.89e− 119 193.41 6.62e− 119 193.03 8.21

(e) |y(t)− y32(t)| Ex. 4.3. (f) |y(t)− y64(t)| Ex. 4.3 .

Example 4.4. The exact solution of the following anti-periodic BVP is
y(t) = |t|3 − t2, 

y′′(t)− (t2 + 3)−1y(t) = f(t), t ∈ [−1, 1],

y(−1) + y(1) = 0,

y′(−1) + y′(1) = 0.
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The coefficient of y(t) is −(t2+3)−1, which is negative. Then the exact solution
y(t) is unique. Figures (g) and (h) show the errors for N = 32, 64. Corollary 3.1,

case 1 shows that the convergence rate of the method for Ex. 4.4 is at least O(n− 5
2 ),

but the convergence rate of the method is the third order, as shown in Table 4.

Table 4. Errors and convergence rates for example 4.4

N EN RG
N

LN RN

2 5.12e− 1 1.25e− 01
4 3.13e− 02 4.03 1.56e− 02 3.00
8 3.01e− 03 3.38 1.95e− 03 3.00
16 3.41e− 04 3.14 2.18e− 04 3.16
32 4.10e− 05 3.06 2.62e− 05 3.05
64 4.98e− 06 3.04 3.22e− 06 3.02

(g) |y(t)− y32(t)| Ex. 4.4 . (h) |y(t)− y64(t)| Ex. 4.4 .

Figure (i) shows the results of tables 2, 3 and 4 which is compared the con-
vergence rate of the method in three cases. It illustrates (N,RG

N
),

N = 2j , j = 1, . . . , 5, for Ex.4.2-Ex.4.4.
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(i) (N,RG
N
), N = 2j , j = 1, . . . , 5, Ex.4.2. Asterisk, Ex.4.3.

Circle and Ex.4.4. Circle solid.

The convergence rate of the proposed method depends on the exact solution. If
the exact solution is finitely differentiable then the order of convergence is constant.
So if the exact solution is analytic inside and on the Bernstein ellipse εϱ then the
convergence rate of the proposed method is O(n/ϱn). Finally if the exact solution
is analytic on the whole complex plane then the convergence rate of the proposed
method is more than the previous case. Aftabizadeh et al. [2] applied shooting
method, but it is very difficult to find the initial values y(a) and y′(a). Ahmadinia
and Loghmani [4] employed splines and least square method. The convergence rate
of the least square method by splines is constant, and independent of the exact
solution.
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