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DELAY DIFFERENTIAL EQUATIONS MODELS FOR
MECHANO AND ELECTROHYDRAULIC

SERVOMECHANISMS

Daniela Enciu1, Andrei Halanay2, Ioan Ursu3

The problem of modeling hydraulic servomechanisms as sys-
tems with time delay is less researched, although the input-output time de-
lay is herein objective and, in fact, real in every system which involves
load dynamics. The objective of this paper is to propose a few types of de-
lay differential equations which characterize the dynamics of the hydraulic
servomechanisms from the primary flight controls of an airplane. The hy-
draulic servomechanism (mechanical or electrical) is a feedback control sys-
tem. Therefore three possible locations for the time delay are herein taken
into account: on state variables, on measurement variables, and on control
variables.

Keywords: delay-differential equations, mecano and electrohydraulic ser-
vomechanisms, state delay, control delay, measurement delay

1. Introduction

Mechanohydraulic and electrohydraulic servomechanisms are widely used
in those industries where heavy objects must be manipulated, or large forces
and torques with high speeds, meaning fast time constants, must be exerted.
The specific areas of interest are: civil engineering, machine tools, mobile
equipment and robots, radar antenna, land vehicles, and first and foremost in
the field of naval and aerospace systems.
The purpose of this paper is to introduce a very unusual theme in the recent
literature of the field, but also a realistic one, namely the time delay in the
dynamics of hydraulic servomechanisms. The theme of delayed differential
equations was present in the years 1950-1975, and it is supported by a solid
mathematical apparatus: [1]-[5]. We do not refer to more recent works, but
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Figure 1. a. Schematic drawing of hydraulic servomechanism
physical model; b. zoom on the spool type valve

we note that all these newer or older works, with one exception [5], are math-
ematical works and do not belong to the engineering of hydraulic automation
systems. Explanations of the poverty of mathematical models with time delay
in the literature of hydraulic servomechanisms can be multiple: the neglect of
the matter by engineers, the non-involvement of a so-called technological delay
in the block diagram of servomechanism. This is the situation defined in [6]:
the technological delay occurs if it necessary to take into account the finiteness
of the time needed to complete the technological process. Such a delay can
be considered the time necessary for a liquid to enter or leave a column with
recycling in a reactor. But, as shown in the present article, a state delay can
be introduced to simplify for example the mathematical model of dry friction,
or of overlapped spool valve, otherwise strongly non-linear. Other types of
time delays (on control variable, on measurement, or on human pilot input)
are inherent and are introduced as such.

2. Mathematical models with delay for mechanohydraulic and
electrohydraulic servomechanisms

By analysing the dynamics of hydraulic servomechanisms and by study-
ing the literature, several sources of delays can be distinguished in defining
their mathematical models: inertia of moving components of the servomech-
anism and inertia of the controlled load, essential nonlinearities of the ser-
vomechanisms (mainly, the overlap in the spool valve), complex dry friction
between moving and fixed parts of the hydrocilinder (see LuGre model [7]),
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delay in reading signals from transducers taking into account sampling time,
delays in the human pilot’s reaction [8]. There is also a delay induced by the
time required to compute the control variable in the computing unit. These
aspects will be considered in the elaboration of the mathematical models with
time delay described below, in the case of mechanohydraulic servomechanism
(MHS) (Fig.1), but mainly of electrohydraulic servomechanism (EHS) (Fig.
2).
The notations in Fig. 1 and 2 refer to: x - the input, a mechanical displace-
ment in the case of MHS or electrical signal in the case of EHS; x2 = ẋ1; x3 and
x4 - the pressures in the two chambers of the hydrocylinder (HC); x5 - the ser-
vovalve spool displacement; u - control variable; σ - the so-called error signal
describing the opening of the distribution slots; σr - radial clearance spool-
sleeve; pa - supply pressure; pR - tank pressure, around 1 bar (thus negligible);
m - equivalent inertial load; f - equivalent viscous friction force coefficient; k
- equivalent aerodynamic elastic force coefficient; S - servomechanism piston
area (ring shaped); EHSV - electrohydraulic servovalve; TM- torque motor;
CL - controller with an implemented control law; T - transducer.

Figure 2. Physical model of EHS

In the classical books on hydraulic servomechanisms [9], [10], the math-
ematical model of the MHS and EHS without delay is built on the simplifying
hypothesis x3 +x4 = pa. The failing of this equation may indicate, in dynamic
transient behavior, among other things, the presence of cavitation in system
[11]. This allows us to consider a more realistic hydraulic servo model, with
x3 + x4 6= pa, already introduced a long while ago (see [12], for example),
and considered in more recent works (see [13], [14]). Thus, a four-state model
of the MHS in the canonical form, including two pressures, is proposed and
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explained in detail in [11], [15]-[17]

ẋ1 = x2; ẋ2 = 1
m [S(x3 − x4)− fx2 − kx1]

ẋ3 =
B

V + Sx1

[
cdw|σ|sgn[pa(1 + sgn(σ))− 2x3]

√
|pa(1 + sgn(σ))− 2x3|

ρ
− Sx2

]

ẋ4 =
B

V − Sx1

[
cdw|σ|sgn[pa(1− sgn(σ))− 2x4]

√
|pa(1− sgn(σ))− 2x4|

ρ
+ Sx2

] (1)

cd is the discharge coefficient in spool valve, w is the valve ports width, ρ is
the hydraulic oil density, B is the bulk modulus of hydraulic oil, and V is the
cylinder half-volume. The feedback linkage equation is generally taken as an
algebraic linear equation (kinematic equation) connecting the input variable
x, the output variable x1 and the ”error” variable σ

σ = λk(x− x1) (2)

A five-state model of the EHS is given in [11], [18]-[22]

ẋ1 = x2; ẋ2 = 1
m

(−kx1 − fx2 + Sx3 − Sx4)
ẋ3 = B

V+Sx1
[C|x5|sgn[pa(1 + sgn(x5)− 2x3]

√
|pa(1 + sgn(x5)− 2x3| − Sx2]

ẋ4 = B
V−Sx1 [C|x5|sgn[pa(1 + sgn(x5)− 2x3]

√
|pa(1 + sgn(x5)− 2x3|+ Sx2]

ẋ5 = − 1
τSV

x5 + kSV

τSV
u; C := cdw√

ρ

(3)

EHS replaces the spool valve of the MHS with the electrohydraulic servovalve
EHSV, see Fig. 2. Instead of the rigid feedback linkage of the MHS represented
by the lever P1P2 (Fig. 1), the comparison element between the electric input x
(Volts) and the electric signal provided by a load transducer T (Volts) appears.
The distinction of the mathematical model of EHS from the model of the MHS
refers only to the replacement of the kinematic equation (2) with an equation
of the comparison element generating the error signal σ := x−kTx1, where kT
is the gain of the transducer. The relative spool-sleeve displacement in EHSV,
noted x5, is generated by the control variable u which is given by the control
synthesis law, CL. The synthesis is thus based on the error x − kTx1. τSV
is the EHSV time constant and kSV is the associated input gain. It can be
seen that the nonlinear model of the EHS differs from that of the MHS only
by introducing a dynamic equation of the servovalve, the last equation in (3).
Higher orders for the servovalve equation can be considered.
In the following, some mathematical models with delay will be proposed for
MHS and EHS.

2.1. Primary mathematical models with time delay for EHS and
MHS

For EHS and MHS we will present two primary mathematical models with time
delay reducible to a single differential equation. The study of these models
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Figure 3. Transfer functions of the EHS system

will be useful for the preparation of the instruments and understanding the
consequences of the time delay presence in the dynamic equations for hydraulic
servomechanisms. An electrohydraulic servomechanism can be described by
the following system of equations

e = x(t)− xr(t); i(t) = kAe; x5(t+ τe) = kSV i(t)

ẋ1(t) = kV

√
1− |F |

paS
x5(t− τ); xr = kTx1

(4)

The equations transcribe, successively, the components of the block diagram
of the transfer functions from Fig. 3: the electrical comparison element; the
voltage-current converter, in fact the controller; the EHSV; the HC rod dis-
placement x1, and the position transducer. F represents a maximum value of
the load at the servomechanism rod, kV is a velocity gain of the HC, and kA is
the ”controller gain” given by the control law [11]. τ assimilates the influence
of inertia τi, and the influence of other parameters τpn

τ = τi + τpn (5)

kV and τe are given by

kV =
cdw

S

√
pa
ρ

; τe = ατSV (6)

with α a suitable coefficient.

Proposition 1. A primary mathematical model with time delay of the EHS is
described by the delay differential equation

ẋ1(t) + kx1(t− τ0) =
k

kT
x(t− τ0) (7)

where τ0 is an equivalent time delay containing inertia and viscous load effects
in hydrocylinder and electrohydraulic servovalve,

τ0 = τ + τe (8)
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Proof. From (4), the following load movement equations are obtained

x(t+ τe) = kSV kA[x(t)− kTx1(t)]; ẋ1(t) = kV

√
1− |F |

paS
x(t− τ); (9)

From (8) and with the notation

k = kTkAkSV kV

√
1− |F |

paS
, [k] = 1/s (10)

system (9) can be rewritten as follows

x(t+ τe − τ0) = kSV kA[x(t− τ0)− kTx1(t− τ0)]

ẋ1(t) = kV

√
1− |F |

paS
x(t+ τe − τ0)

(11)

Now it is possible to eliminate the x(t + τe − τ0) obtaining thus the delay
differential equation of the EHS (7). �

With this simplified form, a case study of the stability can be considered.

Proposition 2. The characteristic equation of the delay differential equation
mathematical model of EHS is stable (i.e. has roots with negative real parts) if
kτ0 <

π
2
.

Proof. The characteristic equation associated to (7) is

λ+ ke−τ0λ = 0 (12)

With the notations

z = τ0λ, p = 0, q = −kτ0
the equation (12) is rewritten as follows

λ− q

τ0
e−z = 0

or

τ0λe
z − q = 0

or

pez − zez + q = 0 (13)

that is the equation (3) from [23]. According to the theorem 13.8 from [1], a
necessary and sufficient condition of stability of the roots of the equation (13)
is
(1) p < 1
(2) p < −q < (θ2 + p2)1/2

where θ is the unique root of the transcendent equation θ = p tan θ, 0 < θ < π.
For the case p = 0, θ = π

2
. Thus, the condition of stability reduces on the

fulfillment of the inequality θ = π
2
> kτ0. �
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Proposition 3. A primary mathematical model with time delay of the MHS
is described by the time delay differential equation

ẋ1(t) + kx1(t− τ0) = kx(t− τ0) (14)

Proof. Starting from the mathematical model (4), a time delay mathematical
model can also be given for the MHS. The equations are

σ(t) = λk(x(t)− x1(t)); ẋ1 = kV

√
1− |F |

paS
σr(t− τ); σr(t+ τe) = ksσ(t) (15)

with: 1) the tracking error evaluating the desired movement(input), x, com-
pared to the obtained displacement (output), x1, and 2) the equation of the
hydrocylinder HC. λk is a kinematic factor (see equation 2). The error σ will
be performed as σr realized with a time delay τs due to: a) spool inertia and
b) overlap in spool valve. The fifth equation from the system (4) is missing
because the MHS is not equipped with transducers for position, speed, accel-
eration response, those being replaced by the rigid feedback, P1P2.
Thus, the MHS is described by

ẋ1(t) + kx1(t− τ0) = kx(t− τ0) (16)

In conclusion, we have the same characteristic equation as in the EHS case:

λeτ0λ + k = 0 (17)

where

k = λkkV kS

√
1− |F |

paS
(18)

�

2.2. Mathematical models with delay on control

The delay in the control variable of an automatic system is a real current
problem because the determination of the control variable requires a certain
amount of time that is associated with a delay. This problem is relevant to
the electrohydraulic servomechanism. Let us notice that the mathematical
models of the hydraulic servomechanisms imply a switch given by the signum
function. In particular, a nonlinear switching model of the electrohydraulic
servomechanism derives directly from the equations (3). The problem is to
analyse the behaviour of the system in the presence of the delay τ on the two
sequences of the control variables u1 and u2, and to develop some techniques
to compensate the considered delay.
More precisely, for the case when x5 ≥ 0, we have the system of equations

ẋ1 = x2; ẋ2 = −kx1−fx2+Sx3−Sx4
m

; ẋ3 = B
V0+Sx1

(Cx5
√
pa − x3 − Sx2)

ẋ4 = − B
V0−Sx1 (Cx5

√
x4 − Sx2); ẋ5 = − 1

τSV
x5 + kSV

τSV
u1(X(t− τ))

(19)
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For x5 < 0, a different system of equations is obtained

ẋ1 = x2; ẋ2 = −kx1−fx2+Sx3−Sx4
m

; ẋ3 = B
V0+Sx1

(Cx5
√
x3 − Sx2)

ẋ4 = − B
V0−Sx1 (Cx5

√
pa − x4 − Sx2); ẋ5 = − 1

τSV
x5 + kSV

τSV
u2(X(t− τ))

(20)

In the coupled systems (19) and (20) it was considered the general case of
control variable synthesis, u1 and u2, as feedback from the state vector X =
[x1, x2, x3, x4, x5]

T. The real situation is that of a feedback by a measured
output z = C0X. C0 is a matrix of the appropriate size. In fact, there is a
delay in the measurements coming from the transducers. In this case, we have
the linear switching model (let it be the linear case)

Ẋ = A1X + u1(C0X(t− τ)), x5 > 0

Ẋ = A2X + u2(C0X(t− τ)), x5 < 0
(21)

A1, A2 are the Jacobian matrices derived from (19) and (20), see [21].

2.3. A mathematical model of the EHS with delay on the ser-
vovalve state

Let us consider the essential nonlinearities of the EHS spool valve, the
saturation and the overlap. They can be assimilated with a delay on the state
of the servovalve x5 [16], [19]. The models are obtained for the case when
x5 > 0,

ẋ1 = x2; ẋ2 = −kx1−fx2+Sx3−Sx4
m

; ẋ3 = B
Vo+Sx1

(Cx5(t− τ)
√
pa − x3 − Sx2)

ẋ4 = B
Vo−Sx1 (Cx5(t− τ)

√
x4 − Sx2); ẋ5 = − 1

τSV
x5(t− τ) + kSV

τSV
u1(X)

(22)

and also for the case x5 < 0,

ẋ1 = x2; ẋ2 = −kx1−fx2+Sx3−Sx4
m

; ẋ3 = B
V0+Sx1

(Cx5(t− τ)
√
x3 − Sx2)

ẋ4 = B
V0−Sx1 (Cx5(t− τ)

√
pa − x4 − Sx2); ẋ5 = − 1

τSV
x5(t− τ) + kSV

τSV
u2(X)

(23)

2.4. A mathematical model of EHS with two delays

Friction is a phenomenon of interest in the study of systems. For the
hydraulic servomechanism, the problem is focused on the piston-hydrocylinder
friction, and, also, the friction in the transmission line from piston rod to the
inertial mass can be considered. In the paper [7], the authors propose a rel-
atively simplified form of the LuGre friction model [7], [24], described by a
delay model called the ,,Armstrong mode”.
For the EHS it is proposed a mathematical model with delay on the servo-
valve state x5, and on the speed state x2, the latter being caused by the
hydrocylinder-piston dry friction. The delay is included in the expression of
the friction force Ff . Both delays are realistic. For x5 > 0 the following system
of equation is obtained

ẋ1 = x2; ẋ2 =
−kx1−fx2−Ff+Sx3−Sx4

m
; ẋ3 = B

Vo+Sx1
(Cx5(t− τ)

√
pa − x3 − Sx2)

ẋ4 = B
Vo−Sx1 (Cx5(t− τ)

√
x4 − Sx2); ẋ5 = − 1

τSV
x5(t− τ) + kSV

τSV
u1(X)

(24)



Delay Differential Equations Models for Mechano and Electrohydraulic Servomechanisms 35

and for x5 < 0 we have

ẋ1 = x2, ẋ2 =
−kx1−fx2−Ff+Sx3−Sx4

m
; ẋ3 = B

V0+Sx1
(Cx5(t− τ)

√
x3 − Sx2)

ẋ4 = B
V0−Sx1 (Cx5(t− τ)

√
pa − x4 − Sx2); ẋ5 = − 1

τSV
x5(t− τ) + kSV

τSV
u2(X)

(25)

where Ff is given by

Ff =

Fc + Fs
1

1 +
(
x2(t−τf )

νs

)2 sgnx2 + fvx2

 (26)

with Fc, Fs and the other variables to be numerically-experimentally deter-
mined .

3. Conclusions

The present paper continues the works of the authors published in na-
tional and international journals [15]-[22], see also [11], in the field of hydraulic
servomechanisms analysis and synthesis. This time, a special attention is given
to the development of mathematical models with time delay for these ser-
vomechanisms, very important in applications of all kinds, an aspect which
is surprisingly relatively neglected in the domain literature. Therefore, this
paper will be the starting point for the qualitative analysis of the proposed
MHS and EHS mathematical models, as well for the synthesis of the control
laws that compensate, in the case of the EHS, the effects of the time delay.
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