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ON THE KLEIN-GORDON EQUATION IN GRAVITATIONAL 

FIELD OF A MASSIVE POINT 

S. ZARRINKAMAR1*, H. HASSANABADI2 and M. HASHEMZADEH2 

We consider for the Klein-Gordon equation in gravitational field of massive 

point source in general relativity. Using the D’Alembert operator and separation of 

variables, we work on the complicated differential equation governing the radial 

component. We report the quasi-exact analytical solutions by working on a 

corresponding Riccati differential equation. We also provide the numerical solutions 

via the Galerkin method.   

 

Keywords: Klein-Gordon equation, gravitational field, quasi-exact solution, 

Galerkin method.   

1. Introduction 

Finding an acceptable consistent unification of theories of gravity and 

quantum mechanics has been an outstanding challenge in theoretical physics [1,2]. 

Although the related studies began many years ago, we have not been yet 

provided with a solid theory. Nevertheless, there have been motivating clues 

which connect the two theories. Perhaps, the most simple and primary example 

which might come into mind is the effect of gravitational field on the spectrum of 

a quantum particle [3,4]. The possible quantum effects on neutrons in earth’s 

gravitational field were analyzed in Refs. [5,6]. Till now, various equations of 

quantum mechanics, both in nonrelativistic and relativistic regimes, have been 

considered in this field [1,2,7]. In particular, the study of Klein-Gordon equation 

in the gravitational field of a massive point was done in the interesting and 

instructive paper of Fiziev et al. [8] where they reported novel discrete spectra for 

Klein-Gordon test particles in the gravitational field of massive point. In our 

work, we first review the essential formulae from the work of Fiziev et al. [8] to 

preserve the continuity of the manuscript. Next, to solve the resulting radial 

equation and instead of working on the numerical basis, we introduce a quasi-

exact solution. 
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2. The Klein-Gordon Equation is Gravitational Field of a Massive Point 
 

The regular solutions for the gravitational field outside of the massive point 

source can be obtained from [8] 

 
2

22 2 2 2 2 2

4
( ) sin , (1)

( )
G

G

dr
ds e dt r d d

N r

    
 

    
 

where the radial variable lies in the interval (0, )r    and   

 
0

0

( ; , ) : , (2)
/ ln

N

G

N

G M
r M M

r G M M M
  



is the modified Newton potential and  

   
1 2

( ) 2 1 . (3)G

G GN r e



 

The Hilbert luminosity variablemm is defined via [8] 
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where NG is the gravitational constant. In Hilbert space, for the outside region, the 

solution possesses the form 

( ) 1 , ( ) 1 1 ( ) , (5)tt G ttg g g g        

where 2G NG M  denotes the Schwarzschild radius. We have to stress that the 

presence of the matter source forces us to consider this form of the solution only 

on the physical interval of the luminosity variable, i.e. 0( , )    , where  
2
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 where 2ñ is the squared mass ratio. We can now write 
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On the other hand, the 4-dimensional D’Alembert operator possesses the form 

[7,8] 

      4 21 2 2 1 1 , (8)t G g gg g g g          

where 

 1 2 2sin sin sin , (9)           

and the Klein-Gordon equation is neatly written as 
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Introducing [7,8] 
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 with 0,1,2,... ,...,0,...,zl and l l l   , the angular components are separated and 

we have  
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As the final step, we use the well-known solution  
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and write the radial equation in the form [8] 

   

 

 

2 22

02 4 4 22

11
0, [ ,1] (15)

1 1 1

l l

l

l ld R dR
R g g

g dgdg g g g g g g

 
      
    

 
With  and   respectively being the dimensionless total energy and the mass of the 

particle. It should be noted that we have been working in units where 1c    and 

/ Gl L m . Also
2

0 0.g  ñ  The point 1g   corresponds to the physical infinity 

(with respect to the variables r , or  ). 

3. The Quasi-Exact Analytical Solution 

As Eq. (15) has not analytically solved before, we intend to provide the problem 

with a quasi-exact analytical solution which provides us with a better insight into 

the solutions. As the first ste    p, let us introduce the gauge transformation  
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to remove the first order derivative; 
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We now use the simple idea of decomposition of fractions and write  
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At this stage, we review the simple but powerful quasi-exact ansatz technique 

which is based on proposing a solution of the form [9,10] 
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The ansatz technique has provided us with analytical solutions to various 

differential equations of mathematical physics including the Schrödinger, semi-

relativistic spinless Salpeter, and relativistic Dirac, Klein-Gordon and Duffin-

Kemmer-Petiau (DKP) equations [9, 10] in many examples where powerful 

techniques such as supersymmetry quantum mechanics (SUSY), factorization, 

Nikiforov-Uvarov (NU) and Lie groups cannot help us. As the first part of the 

solution, we consider the case of ( ) 1h g  . In this case, the resulting Riccati 

equation gives the term in the exponent as  
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Equating the corresponding powers of Eqs. (21) and (18), gives 
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which can be solved to deter mine the unknown coefficients.  

We can obtain the coefficients in term , and l   as 
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2
    . We have the restriction relations 

on the coefficients , , and     .Due to these restrictions connection of the 

coefficients, we can plot  in term one of the coefficients (here  coefficient), 

where it is shown in Fig (1). 

 

 
Fig. 1.  vs.   

 

For the first excited-state, we have 
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Substitution of the above terms in Eq. (18) gives             
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Making a comparison between the latter and Eq. (18) gives the set of equations 
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which can determine the spectrum of the system.  
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Here   and we take  21
1 2 1 2

2
    . Finally, we have depicted the 

radial wavefunction and probability density by subsisting the 

coefficients , and    in the Eq. (15) in terms of g for the ground state and the 

first excited-state in Figs. (2) and (3). 

 

 
Fig. 2. radial component for ground and first excited state 

 

 
Fig. 3. probability densities for ground and first excited state 

4. Numerical solution 

Let us now check the validity of the result by a numerical solution. The 

eigenvalue problems are described by equation of the type [11] 
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where L  and M are the differential operators. The problem is to determine the 

eigenvalues   and corresponding eigenfunctions )(gR . Comparing Eqs. (15) and 

(30), one can easily find that  L , M  and   can be chosen as  
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Choosing 4N ,   and )(gR  can be achieved as follows: 
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,35.517.1422.383.477.0)(,92.0 5432 ggggggR   
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It should be noted that all three above relations are normalized,  
1

0

2 1|)(| gR . 

Another important point is that the solutions have a degeneracy for 09.1 . In 

Figs. (4)-(6), )(gR  and 2|)(| gR  are plotted as a function of g  for three different 

energies.  

 
 Fig. 4. radial component and probability density for 92.0 . 

 
Fig. 5. radial component and probability density for 09.1 . 

 
Fig. 6. radial component and probability density for 64.10 . 
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5. Conclusion  

We solved the Klein-Gordon equation in the gravitational field of massive point 

source in general relativity. The arising equation, which was obtained in the 

interesting paper of Fiziev et al., to our very best knowledge, has not been 

analytically solved before. Therefore, the authors worked on the equation in 

numerical background. Here, however, we introduced a quasi-exact analytical 

solution by using the ansatz technique, which is based on finding the solution of a 

Riccati-like differential equation. It should be noted that, although we obtained 

the solution for the first two states, the higher states can be simply obtained by the 

same token via choosing ( )h g as, 2 2

1 2( )( )g g   for the first node, second node, 

etc. Nevertheless, this idea, just like any other quasi-exact technique, does have its 

limitations. In particular, finding the solution of the set of obtained equations 

becomes much complicated in higher states. At the last section, we provided the 

numerical counterparts obtained from Galerkin method to check the validity of 

analytical solutions.  
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