
U.P.B. Sci. Bull., Series C, Vol. 81, Iss. 3, 2019 ISSN 2286-3540

SCHEME OF IOT MIDDLEWARE BASED ON MESSAGE

SERVICE

Weiqing QU1, Chunliang ZHOU1, Qi ZHANG2, Jun LIU3*

Subscription-based message-pushing can effectively reduce the processing

pressure of data servers in the Internet of Things (IOT) system. This paper describes

the architecture of an IOT middleware based on message service. The middleware

integrates processing chips for data acquisition and Wi-Fi modules for networking.

It provides hardware and software interfaces for locale applications and web

services. Both debugging mode and working mode is supplied. Using this

middleware to build an IOT system, the development cost will be greatly reduced.

The stress testing of a module of middleware-based lighting landscape system is

described. With 90 concurrent threads, the response speed and throughput are

normal in a stable network environment. At the same time, using the web service

framework nginx+ tomcat + microservice + zookeeper based on EMQTTD, a

distributed system can be built easily by adding servers in a flat way, and cluster

services be developed.

Key words: Message Service, Middleware, IOT

1. Introduction

In the era of internet, kinds of devices are connected to the network. The

Internet of Things (IOT) system based on traditional equipment came into being.

In order to develop this kind of IOT system, developers must be competent at the

technologies involved locale signal acquisition, processing and transmission,

network programming, wifi module programming, web application design etc.

That is, to master the service application environment configuration and

technology involves from hardware, underlying data processing to front-end [1].

In the IOT system, the locale application and web service should be

customized according to the requirements. But in the transmission process, after

data acquisition and processing, each system has common points while the data

transmitted the Internet through wireless routing from the locale subsystem [2].

Therefore, if an effective solution is ready for this common part, it will reduce the

development cost, and the technical requirements of the development team. The

1 A/Prof., School of Information Engineering, Ningbo University of Finance & Economics, China
2 Eng., School of Information Engineering, Ningbo University of Finance & Economics, China
3 A/Prof., School of Management Science and Engineering, Nanjing University of Finance and

Economics, China

* Corresponding Author’s Email: 852721090@qq.com

16 Weiqing Qu, Chunliang Zhou, Qi Zhang, Jun Liu

developers may focus on the solution of locale requirements and web services,

and development efficiency will be greatly improved. Middleware includes basic

services (functions) for application software, connect various parts of network

application system, realize resource sharing. Middleware technology can provide

common modules in various application system [3], which is widely used in

various system [4].

General, middleware refers to software. Considering that there are a lot of

“things” in IOT, a middleware covering hardware and software may be designed

to meet the common needs of these systems: the middleware provides interfaces

for locale applications and web services respectively, through which the processed

data may be transmitted between the two sides subsystems. Efficient and reliable

message transmitting mechanism can exchange data across platforms and

languages. The traditional implementation mode of messaging middleware has

some characteristics such as peer-to-peer, message queue, remote procedure call

and shared memory [5]. Subscription-based messaging service may effectively

reduce the processing pressure of data server in IOT [6].

2. Technical framework

Messaging-based IOT middleware mainly includes: message service,

database service, web service, communication protocol between device and

server, as shown in Fig. 1:

Web server

Security system

mysql account security auth.

plug-in

ngnix:

web enter
tomcat:

web business

microservice

system

zookeeper:

remote service

invocation

spring MVC

mybatis

protocol between equipment and web service

Message service

message communication

protocol: MQTT

message server:

EMQTTD

Database

mysql

Server OS

CentOS

Fig. 1. Technical framework of IOT middleware

Scheme of IOT middleware based on message service 17

2.1 Distributed open source IOT messaging servers EMQTTD

MQTT is used as the message communication protocol. It is designed for a

large number of remote sensors and control devices with limited computing power

and working in low bandwidth and unreliable networks [7]. It supports all kinds of

platforms and can connect almost all networked devices and networks. Compared

with XMPP, MQTT is easy to implement and low less bandwidth [8]. It supports

the mode of message publishing and subscribing [9]. In the locale of IOT, such as

sensor-server communication and information collection, MQTT is one of good

solutions [10]. EMQTTD is a MQTT server, which mainly supports publishing

and subscribing functions, and supports for cluster deployment.

MQTT was originally designed for IOT [11]. It is good at communication

between client and server. The data of IOT is mainly state information and control

signals. Relatively, the amount of data transmitted is not very large, but the

performance of real-time is required. MQTT can quickly send or receive data

between devices [12].

2.2 Account security

The computational complexity of authentication process is reduced

because of the lightweight security authentication protocol [13]. In the

middleware, Mysql database account security authentication plug-in is used to

ensure system security and maintain the unification of web server and MQTT

account.

2.3 Lightweight web server: nginx + tomcat + microservice +

zookeeper

In order to help developers to build IOT system quickly based on the

middleware, help managers maintaining the system easily, a lightweight web

server is constructed based on the frame of nginx +tomcat + microservice +

zookeeper:

• Nginx: web request entry

It is a lightweight web server/reverse proxy server, which occupies less

memory while having strong concurrency ability [14]. In the middleware, nginx

acts as the web request entry, and performs the request accessing.

• Tomcat: web business processing unit

Tomcat server is a free, open source, and lightweight web application

server [15]. The middleware adopts spring MVC as the technology framework

and Mybatis as the database middleware.

The business unit accepts commands from the client, invokes message

services, and pushes messages to specific devices.

• Microservice system

18 Weiqing Qu, Chunliang Zhou, Qi Zhang, Jun Liu

The server supports multi-cluster deployment. The Frame of Springboot is

adopted to implement business manage and message processing functions.

Business and message services are registered in the registry, and service is

remotely invoked by business processing unit.

Message services include receiving commands from business processing

units and sending messages to specific devices group or all devices. Subscribe the

message from the device and process it accordingly, then send it to the business

processing service for subsequent business processing.

• Zookeeper: configuration and server

It can provide consistent services for distributed applications, such as

configuration maintenance, domain name services, distributed synchronization,

and group services. In the middleware, zookeeper provides a remote service

registry of Dubbo, establishes service remote call docking for tomcat and

microservice system, and supports cluster deployment [16].

2.4 Server operating system: CentOS

CentOS (Community Enterprise Operating System), also known as the

Community Enterprise Operating System. CentOS can build enterprise Linux

system environment just like RHEL [17].

3. Functions and working mode of middleware

3.1 Functions of Middleware

An important principle of designing middleware is to provide the

application system developers with simple and easy-operating interfaces as far as

possible.

To improve the efficiency of development, middleware may integrate

processing chips for locale data acquisition and wifi modules for networking,

provide hardware and software interfaces for locale applications and software

interfaces for web services. Therefore, middleware may be designed based on the

following functions:

-Data is collected from the locale sensors and sent to the message server

EMQTTD after processed.

-Web applications can receive the subscribed data from EMQTTD.

-In general, the locale control will be required in the IOT, that is, data

should be transmitted in two-way.

-Considering that the main function of the data server is data transmission,

not data processing or storage, the data server may be defined as a message server.

All data may be designed as messages with certain format, and transmitted

through the network.

In order to meet these functional requirements, the middleware may be

Scheme of IOT middleware based on message service 19

composed of processing chip, wifi module and message server. It transmits data or

control signal between the middleware and locale application, and message

between the middleware and web application. The architecture of the middleware-

based IOT system is shown in Fig.. 2.

Message server

Internet
Internet

WiFi module

Chip

Signal Message

Middleware Web service

Field application

Router

Vin

GND

Vref

D1

Dn

Sign

ENB

Fig. 2. Architecture of IOT based on middleware

3.2 Working mode of Middleware

In order to meet the needs of application, real-time data interaction

between locale applications and web services, the middleware should be designed

to ensure that programs can be written to 32U4 through PC, and ESP8266 can be

connected to TCP/IP by setting or scanning routers. So, the middleware may be

designed to supply debugging mode for to build an executable IOT application

system:

ESP8266 PC32U4

COM0 MiniUSB

write program

& debug

COM1

Write program

debug

Fig. 3. Debugging model of middleware

The middleware based on 32U4 can be applied in kinds of IOT systems.

The whole system includes web application, message server, sensors or controllers

in the locale, and the middleware containing 32U4 and ESP8266. In the system,

the chip 32U4 connects sensors and controlling mechanism, and connects with

internet by ESP8266. Data or signal is transmitted between EMQTTD and web

application. In Fig. 4, the flow chart shows that the operation instructions sent by

web application to the locale controller, and the web application receives data

from locale sensors, which is a reverse flow of data.

20 Weiqing Qu, Chunliang Zhou, Qi Zhang, Jun Liu

Controller

field operate

APP/web application

send instructions

ESP8266

analyze JSON

instruction

Controlling

signal

Formative

instruction

publish

JSON instruction

subsribe

JSON

instructions

32U4

analyze

instruction

Router

Middleware

Message

server

Fig. 4. Controlling model of middleware

Message pushes and subscription:

In the process of controlling, many kinds of message is required to be

pushed. EMQTTD is associated with users' web application and locale control.

For the web application, subscription requests and user identity are sent to the

server, while the server pushes the locale status to web application according to

the subscription requests, which can be timed or counted according to users'

command. For application sites, the server pushes updated messages, status of

web subscriptions, execution instructions to ESP8266, while ESP8266 sends

device identity, locale data, and subscription requests to the server. The message

transmission is shown as Fig.. 5.

Message server

EMQTTD
updateabl message \

subscribed status \

execute instructions

user id \

subscribe request
Field application

Web service

device id \ field data \

subsribed request

field status

ESP8266 ……

…… ESP8266

ESP8266

ESP8266

Fig. 5. Message transmission

In the process of message transmission, the chip identity reading and

verification are indispensable, which is an important measure for system security.

4. Design for IOT Middleware

According to the function of middleware, the chip 32U4 of arduino is

selected as the main processing chip, and the ESP8266 as the wifi module. And

the two are integrated into a circuit board. So, this middleware should be designed

separately in hardware and software.

Scheme of IOT middleware based on message service 21

4.1 Hardware

• Connecting with PC:

In order to debug the software on 32U4 conveniently, one miniUSB port is

set.

• A/D expanded pin:

Set pins as many as possible, through which the signals of various sensors

may be received, the processed data can be displayed in the locale monitor, and

the controlling operation can be carried out according to the instructions of web

service.

• Internal connection between 32U4 and ESP8266

Programming status: PC can program on ESP8266 through 32U4.

In the operation process of the application system, ESP8266 is a

communication channel. The 32U4 sends the processed data to ESP8266, and

ESP8266 will transmit the data, after appending its own identification number, to

EMQTTD located on the internet through HTTP protocol. At the same time,

ESP8266 may subscribe interested messages from EMQTTD and analyze them

identifiable for 32U4.

4.2 Software

The software in middleware includes four parts:

• Software in 32U4

User’s software runs in 32U4, which generally implements the acquisition

and processing of sensor signals and controlling of devices linked to the ports.

The processed data is sent from 32U4, and messages receives from ESP8266. In

this process, the user can operate the interface for sending and receiving data, and

parse the data meaning according to the predetermined format.

The functions of all pots of 32U4 should be defined clearly.

• Software in ESP8266

ESP8266 connects 32U4 at one end and internet at the other, so the

messages can be transmitted between them. During the process, for the data

received from 32U4, the device number of ESP8266 should be appended and sent

to EMQTTD on the Internet; at the same time, the message subscribed from

EMQTTD must be parsed for 32U4.

Therefore, the software in ESP8266 mainly deals with the sending and

receiving of message, including the definition of messages.

• Software Interface

According to the functions defined for the middleware, software interface

can be divided into two parts:

At first, software of 32U4 for locale application to initialize the chip 32U4,

including its ports definition, and the functions of sending and receiving data

22 Weiqing Qu, Chunliang Zhou, Qi Zhang, Jun Liu

should be supplied.

The second, interface for web application is designed mainly for the

application server, including the nodes definition of sensors and the information

definition displayed on web pages.

• Definition of messages

The message types includes subscription request, control signal, status

data, etc.. A complete message contains device number, message content, message

value and its type. Software architecture of middleware is shown in Fig.. 6.

32U4 port:

self_defined

ESP8266:

message-receive()

message_transfer()

Software

interface

Message:

device id.

msg. Content

msg. value

To the field:

initialize 32U4: init()

send data：data_transfer()

receive data：data_receive()

To web service:

sensor：node

status displaying

control signal setting

Fig. 6. Software architecture of middleware

4.3 Protocol between device and server

Protocol between devices and server is composed of 4 parts:

At first, every device must be registered in the system, to call the web

service to complete the registration of the device and obtain the MQTT

authorization code and the group number. The 2nd part is timed heartbeat report

from device to Server. The 3rd one is status report from device to Server. And the

4th one is the subscribed messages from devices to server: three kinds of messages

may be subscribed to all devices, the defined device with serial number, or group

devices with group number.

5. Application of Middleware

Using the above middleware, a special IOT can be easily accomplished by

simply defining the interface between hardware and software.

5.1 Hardware

According to the needs of locale applications, in principle, the relevant

sensors or control lines should be connected to the predetermined pins. The

Scheme of IOT middleware based on message service 23

problem, how to deal with the anti-interference of the locale signal and reduce the

loss of the signal, should be solved by the locale engineers.

For servers, they can be conveniently selected according to the needs of

applications. Logically, they mainly include application servers, message servers

and data servers. They can be physically separated or placed on the same machine

according to the needs of applications too.

5.2 Software

• Design of User-Level Protocol

Software developers program on the interface function according to the set

of the sensor signal and the control function of pins. In order to achieve

unhindered communication between the locale and the web application,

programmers must define the mean of each data and signal to ensure reading and

writing correctly between both ends.

The problem of time delay in the process of data collection in wireless

sensor networks can be dealt with adaptive technology similar to OFDM system

[16]. It is not permitted that the delay waiting occur in the internet application, to

avoid the loss of subscribed message. It should be processed according to the

predefined interval time (refresh time) of receiving data from network.

After compiling, the program will connect to the network independently,

send the sensor data to the message server, and do controlling operation after

receive message from the message server.

• Design of web application

The functions of the web application includes two parts: one is the

subscription of message; the other is the definition and display of node message.

The former is accomplished by programmers with code modification in the web

program, and the latter may be set directly in the web page.

Middleware provides node definitions on web pages, and the customized

sensor status subscribed from message server supported by middleware.

5.3 Lighting Landscape System

For a lighting landscape system, when each RGB lamp bead can be

controlled by programming, users will hope to find their favorite effects regularly

through the network. Every effect file needs certain storage space and will

consume amount of flow, so it should be stored on the field controller instead of

being provided by the server on line. In addition, the landscape system is located

outdoors generally, and there is demand for signals such as temperature, humidity,

and others. Therefore, the corresponding sensors should be equipped. The

middleware can be applied in the system.

When there are many users, the number of concurrent threads will rise,

and the response time and throughput will be affected. Therefore, the maximum

24 Weiqing Qu, Chunliang Zhou, Qi Zhang, Jun Liu

number of concurrent threads will be limited for each server. For example, in the

lighting landscape system, the maximum number of concurrent threads of will be

200. If the number of threads exceeds, they are queued.

A stress test for the effect setting module is done in Apache JMeter 5.1,

and the summary is presented in table 1. The test data is set as: the number of

concurrent threads is from 10 to 160, each visit is cycled 60 times to reduce the

interference caused by the uncertainty of the network and obtain reasonable data.

Table 1

Stress testing summary of effect-setting module

Number of

threads
Samples

Average

(ms)

Min

(ms)

Max

(ms)
Std. Dev.

Throughput

(KB/min)

10 600 55 22 150 24.1 136.2

20 1200 62 23 177 26.2 250.1

30 1800 63 24 153 22.2 371.5

40 2400 59 23 143 19.5 508.5

50 3000 73 23 163 23.3 541.1

60 3600 93 23 3156 120.3 447.7

70 4200 115 22 481 57.9 405

80 4800 132 22 3071 82.3 460

90 5400 153 6 3197 241.4 432

100 6000 136 4 3414 101.1 623

110 6600 187 3 3661 603.3 384

120 7200 181 3 4003 408 379

13 7800 235 24 3475 483 285

140 8400 235 3 3830 480 409

150 9000 501 2 9225 944 216

160 9600 345 3 9447 777 275

In the table it is shown that when the number of concurrent threads is less

than 90, the average access time, standard deviation and throughput are normal.

When the number exceeds 90, the data is unstable. The long response time will

appear and the throughput is reduced.

The number of concurrent threads that a single server can deal with is

limited. In order to solve this problem, the service architecture of nginx + tomcat

+ microservice + zookeeper based on EMQTTD is applied to support cluster

deployment. Developers can add web servers in a flat way and realize the cluster-

controlled IOT management system easily.

Scheme of IOT middleware based on message service 25

6. Conclusion

Owing to the standard and definable software and hardware interface of

the middleware, it can be applied in the lighting landscape system, the building

monitoring system, air monitoring system, etc. It will greatly shorten the

development cycle of the application system and improve the development

efficiency. At the same time, with the architecture of nginx + tomcat +

microservice + zookeeper based on EMQTTD, the cluster deployment of IOT

management system can be realized to build a large-scale IOT management

platform.

Acknowledgements

This paper was supported by: Zhejiang public nonprofit technology

applied research plan project (No. 2015C33236), Zhejiang university youth

discipline leader academic climbing program (No. pd2013443), Ningbo natural

science foud.((No. 2017A610126, No. 2012A610071), Zhejiang basic public

welfare research program (LGF19G020001), Ningbo intelligent team business

plan project (Ningbo World Information Technology Development Co., Ltd.),

Ningbo leader and top-notch talent and Ningbo Wisdom team project, Ningbo

DaHongYing College Sciences support project, Ningbo Soft Science Fund

(2016A10053), 2017 Zhejiang science and technology innovation program for

college students. National undergraduate innovative training program

(201713001015), Ningbo science and technology benefiting people project

(2017C50024).

R E F E R E N C E S

[1]. W.H. Chen, The Design and Implementation of a User Centric Middleware for Wireless

Sensor Networks, Master Thesis, Zhejiang University of Technology, 2017.

[2]. L. Wang, J. Jiang, Research on Middleware for Wireless Sensor Network, Computer

Engineering &Science, vol. 36, no. 2, Feb. 2014, pp. 244-249.

[3]. L.S. Cui, Overview of Middleware Technology, Science & Technology Vision, vol. 4, no. 3,

Jan. 2014, pp. 198,288.

[4]. Y. Mesmoudi, M. Lamnaour, Y. El Khamlichi et al., A Middleware based on Service Oriented

Architecture for Heterogeneity Issues within the Internet of Things (MSOAH-IoT), Journal

of King Saud University – Computer and Information Sciences,

https://doi.org/10.1016/j.jksuci. 2018.11.011.

[5]. J. Wang, Application of Business Bus Based on Message Middleware in Airport Information

System, Master Thesis, Xidian University, 2016.

[6]. C.N. Wang, Z.T. Wang, Z.G. Bao, H.W. Xing, Design of Telemetry and Command Message-

oriented Middleware System with Publish/Subscribe Model, Journal of Computer

Applications, vol. 35, no.3, March 2015, pp. 878-881.

[7]. H. Bai, Design and Implementation of Internet of Things Platform Based on MTQQ Protocol,

Master Thesis, Xian University of Posts & Telecommunications, 2018.

26 Weiqing Qu, Chunliang Zhou, Qi Zhang, Jun Liu

[8]. R.L. Gai, Y.L. Qian, H.B. Li, J.Y. Jia, Enterprise Push Notification System Based on MQTT,

Computer System & Applications, vol. 24, no. 11, Nov. 2015, pp. 69-75.

[9]. H. Ren, Y. Ma, H.B. Yang, Z.F. Jia, Message Pushing Server Based on the MQTT Protocol,

Computer System & Applications, vol. 23, no. 03, Mar. 2014, pp. 77-82.

[10]. S.T. Li, Q.S. Yin, Application of Message Middleware in IoT Gateway, Internet of Things

Technologies, vol. 9, no. 12, Dec. 2018, pp.48-49, 54.

[11]. C.D. Lyu, Y.C. Li, Lightweight Authentication Protocol for Security Vehicle Network of

Railway Freight Train, Chinese Journal of Network and Information Security, vol. 4, no. 11,

Nov. 2018, pp.23-31.

[12]. K. Xu, Q. Ding, An Internet of Things Communication Gateway Based on MQTT

Protocol, Instrumentation Technology, vol. 26, no.1, Jan. 2019, pp.1-4, 43.
[13]. D.C. Chen, Research and Application of High-concurrent Access Server Based on Nginx,

Master Thesis, University of Chinese Academy of Sciences, 2018.

[14]. Z.Q. Qie, High Concurrency Optimized Processing of Tomcat Application Server, Computer

Programming Skills & Maintenance, vol. 26, no. 2, Feb. 2018, pp.129-136.

[15]. C. Yang, Research and Implementation of Cluster Server Based on Distributed Service

Framework Dubbo, Master Thesis, Beijing University of Posts and Telecommunications,

2017.

[16]. W.Q. Qu, Y.D. Qi, Q. Zhang, C.L. Zhou, Multi-terminal Data Integration Analysis of Internet

of Things Based on Middleware, Acta Technica CSAV, vol. 62, no. 2, Dec. 2017, pp. 263-

272.

[17]. L. Jiang, Design and Implementation of Virtual Host Technology for Apache Server Based

on CentOS, Journal of Changsha University, vol. 27, no. 5, Sept. 2013, pp. 67-68.

