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EFFECT OF ATEMPERATURE-DEPENDENT THERMAL
CONDUCTIVITY ON A FIXED UNBOUNDED SOLID WITH A
CYLINDRICAL CAVITY

Ashraf M. ZENKOUR!

This article investigates the thermoelastic interactions in an orthotropic
unbounded solid containing a cylindrical cavity with variable thermal conductivity.
A generalized solution is developed in the context of the one relaxation time
thermoelasticity theory. The surface of the cylinder is constrained and subjected to a
harmonically varying heat. The governing equations are treated to be timeless
dependence by using the Laplace transform. Finally, the transformed equations are
inverted by the numerical inversion of the Laplace transform. A numerical example
has been calculated to illustrate the effects of the variability thermal conductivity
parameter and the angular frequency of the thermal vibration on all fields.
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1. Introduction

The classical coupled theory of thermoelasticity is insufficient to deal with
thermoelasticity problems. One part of its solution to the heat equation is extended
to infinity. This matter contrary to the physical phenomenon since that a part of
mechanical or thermal disturbance should include an infinite velocity of
propagation. This paradox may be treated after using one of the generalized
thermoelasticity theories [1-3]. Lord and Shulman [1] and Green and Lindsay [2]
introduced new theories of generalized thermoelasticity that predict a finite speed
for heat propagation. Tzou [3] formulated a new generalized thermoelasticity
theory called dual-phase-lag (DPL) heat conduction model.

Most investigations in thermoelasticity are based on the assumption of the
temperature-independent material properties [4-12]. The applicability of the
solutions of such problems is limited to certain ranges of temperature. Generally,
the thermal conductivity should be temperature-dependent at high temperature,
which definitely alters the thermoelastic behaviors. The effect of temperature-
dependent thermal conductivity is investigated by many authors [13-22]. Most of
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these authors are taken into account the variable thermal conductivity for problem
concerned with generalized thermoelastic solids subjected to various types of
heating sources.

The aim of the present paper is to investigate the thermoelastic interactions
in an orthotropic unbounded body containing a cylindrical cavity with variable
thermal conductivity. The surface of the present cylinder is constrained and
subjected to a time-dependent thermal shock. The problem is solved in the context
of generalized thermoelasticity with one relaxation time, developed by Lord and
Shulman [1]. A direct approach of the Laplace transform is used to obtain the
solution of the present problem in the Laplace domain. In addition, a numerical
technique is employed to obtain the solution in the physical domain. The effect of
the angular frequency of thermal vibration and the variability of thermal
conductivity parameters is investigated graphically and discussed.

2. Formulation of the problem

The unbounded orthotropic body with cylindrical cavity and constrained
surface is considered to be subjected to a harmonically varying heat. The
cylindrical coordinates system (r,60,z) with z-axis as the axial axis of the
cylinder. The present problem is considered as a 1D problem due to symmetry and
all the functions are depending on the radial distance r and the time t.

For axially symmetric problem, the radial, hoop, and axial displacement
components are reduced to be

u, = u(r,t), ug(r,t) =u,(rt) =0, 1)
with radial &, and hoop &4 strains given by

g =200 gy =20 2)
So, the stress-displacement relations may be written as

Oy €11 C12] (%% P11
{09} = [Cu C22 {%} — {ﬁzz] o, (3)
Oz Ci13 Ca3l\ B33

where o,, gy, and o, are the radial, hoop, and axial stress components,
respectively, c;; are the isothermal elastic constants, f;; are the thermal elastic

coupling components, and ® = T — T, is the dynamical temperature increment of
the resonator, in which T, is the environmental temperature. The dynamic
equation of motion of the cylindrical cavity, without considering the body forces
or the heat sources acting in the medium, is expressed as
2

S m =il @)
where p is the material density of the medium. From Eq. (3), the above equation
of motion will be in the form




Effect of a temperature-dependent thermal conductivity [...] solid with a cylindrical cavity 233

10u u 9%u L) )
C11 (arz +;§)_ zzr_zzpﬁ'*‘ﬁn;'*‘(ﬁn_ﬁzz);- (5)

Here, the generalized heat conduction equation is given by [1]
10 20
——(rKr ar) (1 + 7o at) [pCE ac T Tog, (ﬁll or T B2z )] (6)

ror
where K, is the thermal conductivity, C is the specific heat per unit mass at
constant strain, and t, is the thermal relaxation time parameter. The above heat
equation is given according to the generalized dynamical theory of
thermoelasticity of Lord and Shulman [1] that eliminate the paradox of the

classical coupled theory of thermoelasticity.
3. Temperature-dependent thermal conductivity

Generally, the assumption that the solid body is thermosensitivity (the
thermal properties of the material vary with temperature) leads to a nonlinear heat
conduction problem. The exact solution of such problem can be found by
assuming the thermal conductivity K, and the specific heat C; to be linearly-
depending on the temperature [23], but thermal diffusivity is assumed be constant.
That is

K, = K (0) = ko(1 + k10), (7
where k, is the thermal conductivity at ambient temperature T, and k, is the slope
of the thermal conductivity-temperature curve divided by the intercept k,. Now,
we will consider the Kirchhoff transformation [23]

=l K-(0)do, ®)

where ¥ is a new function expressing the heat conduction. By substituting Eq. (7)
in Eq. (8), one gets

Y =06(1+1k0). 9)
From Eq. (9), it follows that
Kr(@) Y _ Kr(0) 20
vy = O, 3= o (10)

After substituting Eq. (10) into Eq. (6), the new form of the general heat equation
of solids with temperature-dependent thermal conductivity is obtained by

2 10y

Vi = (1+ Oat)[kat-l_koat(ﬁllar Paz )] (11)
where k = K,./pCg is thermal diffusivity and

2_ 0% (10

‘_7 oz ror ) ) (12)

Then, the equation of motion, Eq. (5), will be in the form
62 10u u az_u ﬁll %
€11 (6r2 ;ar) ~ 22 r2 p 0t?2 = 1+2k.0 Or

+% [VT+ 2k — 1], (13)

or in an expanding form
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10 92 F]
‘11 (6r2 + ‘_u) - szriz = Pa—;; + ﬁ11¥ [1— (2k,0) + (2k,0)?

ror
- --]+%[1+;(2k1¢)—§(2k1¢)2+---—1]. (14)

Now, it is assumed that the temperature change ® = T — T,, accompanying the
deformation is small and does not result in significant variations of the elastic and
thermal coefficients. So, one can consider these coefficient be regarded as
independent of T. In addition to the assumption |@/T,| < 1 one can assume that
second powers and products of the components of strain may be neglected in
comparison with the strains themselves. Thus, the usual linear theory of
thermoelasticity is obtained by considering the case where only terms linear in
strain and temperature change. Then, Egs. (14) and (3) take the forms

‘11 (arZ +%3_1:) B a - ='3p%+ﬂ112_1f+ (B11 _ﬁzz)% (15)
“ 11
{ u } {5221 12 (16)
r Bas

Oy €11 C12
Oy C13 C23

In what follows, the following dimensionless variables will be used
L RY= 2w Ry, 1) = Dt ),

Y= T%, o = :l—jl, ki = Tok,, cf =%, G=r0,2).

Therefore, the governing equations take the following forms after dropping the

primes for convenience,
0%u . 10u u oY P
arz  ror €2 r2 + & or T &, r’ (18)

vy = (1 * 7o at) [ at (84 ar T &5 )] (19)
o, 1 ou 1

)-=[e sl
o, 3 Cul\ 7 &3

T,
{e1, 2, &3, 56} = ;01 {311: B22, B33, B11 — ,322},

1 1
{4, 65} = Cn {B11, B2z}, {c1, €2, €3, €4} = —{C12, €22, €13, €23}
PCE C11

(17)

where

(21)

4. Initial and boundary conditions

Both the initial and boundary conditions of the problem should be
considered. The initial conditions are assumed to be in the form

u(r,0) =272 =0, yr0 =222 =o. (22)

The following boundary conditions hold since the boundargl of the cylinder is
constrained and subjected to a to harmonically varying heat
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e The surface of the cylinder » = R is subjected to a harmonically varying
heat
O(R,t) = Oycos(wt), w>0, (23)
where w is the angular frequency of the thermal vibration and @, is a constant.
Using Eq. (9), then one gets
PY(R,t) = 0y cos(wt) + k[0, cos(wt)]?. (24)
It is to be noted that w = 0 for the thermal shock problem.
e The mechanical boundary condition is due to the displacement of the
surface is constrained. That is
u(R,t) = 0. (25)

5. Solution of the problem in the Laplace transform domain
Using the Laplace transform of Egs. (18)-(20) and taking into account the

initial conditions given in Eq. (21) and assuming that 5, = S, (i.e., &, = &5 =
g)and 13 = ¢y, (i€, c; = 1), we obtain the following equations:

Ca 108 T ap_, 90

dﬁ+mtr25u_ﬁm, (26)

d*p | 1dp _ b RS-

St = s(1+ 1ps) [IIJ te (dr + r)]' 7
61' 1 Cl d_l_l 81
| d b

{O_'g} _ [CI 1] 1,_Lr — {El}lp. (28)
0z)  les el 7 &

Here, any variable with an over bar denotes the Laplace transform of this variable
and s denotes the transform parameter. Equations (26) and (27) can be written in
the forms

(DD, - 51 = ,D¥, (29)
eqDiu = (D;D — q)y, (30)
where
d d 1
D=—, Di=_+-, q = s(1+ 145). (31)

Now, let us define the radial displacement # in terms of the thermoelastic
potential function ¢ by the relation

1= (32)
then, one can rewrite Egs. (29) and (30) as
(D1D = s*)p = &7, _ (33)
_&qD1Dp = (D1D — ). (34)
Eliminating y from Egs. (33) and (34), one gets
(V% —[s?2 +q(1 + £5))]V? + qs?}@ = 0. (35)

The above equation leads to the modified Bessel equation for ¢ of zero order
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((;‘_:2+li_m%)(d—:2+-——m§)<ﬁ=0, (36)

rdr rdr
where m? and m3 are the roots

m? = (24 +VA? —4B), m3=1(24—-VA?-4B), 37)
in which

A=s?+q(1+eg), B=qsi (38)
The solution of Eq. (36) under the regularity conditions that u, ©, ¥ - 0 as r -
oo can be written as

¢ = Ni1 AiKo(myr), (39)
where K,(+) is the modified Bessel’s function of the first kind of order zero and
A;, i = 1,2 are two parameters depending on s of the Laplace transform. Using
Egs. (33) and (39), we obtain

P = - SEa(mf = s)AKo(myr). (40)
Substituting from Eqg. (41) into the Laplace transform of Eq. (32), we obtain
u=- 21'2=1 AiKy (myr). (41)

where K, (+) is the modified Bessel function of the first kind of order one. So, the
stresses can be written as

g, = [s Ko(m;r) + ———= m‘(l &) Ki(m lr)]Al, (42)
Gg = {[s +m#(c, — 1)]K0(m r) + ——— ml(cl DK, (m r)}Al,(43)
5, = B [P - 2 (mf - 59)] Ko Gmr) — T2 K, (myr)

4 mics K, (mir)}Ai. (44)

where K,(+) is the modified Bessel function of the first kind of order two. In
addition, the boundary conditions given in Egs. (24) and (25), after using Laplace
transform, take the forms

kl(s +2w

l[)(R S) = 0o [ 2+w2 25(52+4w2)] G(S) (45)
u(R,s) = 0. (46)
Substituting Egs. (40) and (41) into the above boundary conditions, one obtains
two equations in the unknown parameters A4;, as
iz (mf — s)AiKo(m;R) = &,G(s), (47)
f-1mA;K; (mR) = 0. (48)
The solution of the problem will be completed in the Laplace transform domain
after obtaining the two constants A, and A,. Solving the above two equations, one
gets

A — £1G_(s)m2K1(m2R)

17 m, (m2-s2)Ko(m1R)K1 (myR)—my (Mm% —s2)Ko(m,R)K; (m4R)’ (49)
A, = £1G(s)myK,(myR)

, =

my (m3—-s2)Ko(myR)Kq (myR)—my(m2—s2)Ko(m1R)K1 (MaR) |
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Hence, one can easily obtain the displacement and stresses as well as other
physical quantities of the medium. The temperature @ can be obtained by solving
Eq. (9) after applying the Laplace transform as

O(r,s) = =irzay V1+2ksp, (50)

kq
6. Numerical results and discussion

In this section, the temperature @, radial displacement u, and stresses o,.,
og and a,, distributions will be obtained inside the medium in their inverted forms.
To invert the Laplace transform in Egs. (39)-(44), a numerical inversion method
based on a Fourier series expansion [24] shouuld be adopted. Any function in
Laplace domain can be inverted in this method to the time domain as

ct — — i
f(&) = {1 F(©) +Re|[EN (-1 F (c +=5)] }. (53)
In most numerical experiments, the reliable value of ¢ should satisfies the relation
ct = 4.7 [25]. So, the numerical calculations are faster convergence for the same
value of c.
Numerical evaluations are made by choosing an orthotropic material such
as the cobalt. The properties of such material are thus given in Sl units [26] as
€11 = Cy = 3.071x10%! (N/m),
c1p = 1.650x10! (N/m),
P11 = Baz = 7.04 X10° (N/m?2K),
P33 = 6.90 x10° (N/m?K),
Cr =427 (J/kgK), K, =69 (W/mKs),
p = 8836 (kg/m?).

The cylindrical cavity of radius R = 1 with its center at the origin is
considered. The results are illustrated graphically in Figures 1-5 for different
values of R, (R = 1). It is assumed in all cases studied, except otherwise stated,
that T, = 298K, k; = —0.5, w =5, and t = 0.07. The variations of the field
guantities along the radial direction are plotted in Figures 1-5 for various
parameters: (a) thermal conductivity k;, (b) angular frequency w, and (c) time t.
Figures la, 2a, 3a, 4a and 5a represent the first case in which three different
values the thermal conductivity parameter k, are considered to discuss the effect
of thermal conductivity. It is assumed that k; = —1 and —0.5 for temperature-
dependent thermal conductivity while k; = 0 otherwise. The second case of
results is illustrated in Figures 1b, 2b, 3b, 4b and 5b for different values of the
angular frequency parameter of thermal vibration w. For thermal shock problem,
we put w = 0 and for harmonically heat w is set to be either 5 or 10. In the last
case of results, Figures 1c, 2c, 3c, 4c and 5c display the values of the considered

(54)
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physical variables in the direction of wave propagation for different values of
dimensionless time ¢t which is taken to be 0.05, 0.07, and 0.1.

Fig. 1 shows that the temperature O is increasing as k; increases and as
both w and t decrease. The distribution of temperature may be found as a wave
type of heat propagation in the medium. The heat wave front moves forward with

a finite speed in the medium with the passage of time. The temperature & maybe
have a local maximum values at the position r = 1.19.

ol (b)

Fig. 1. Variation of temperature @ along the radial direction for various parameters: (a) thermal
conductivity k4, (b) angular frequency w, and (c) time t.

Fig. 2. Variation of radial displacement u along the radial direction for various parameters: (a)
thermal conductivity k,, (b) angular frequency w, and (c) time t.
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Fig. 2 shows that the radial displacement u is increasing as k; and t
increase and as w decreases. In Figure 2, u is no longer increasing along the radial
direction and has its maximum value at the location » = 1.11 and this irrespective
to the values of k,, w and t.

Fig. 3 shows that the radial stress o, is increasing as k, decreases and as w
and t increase. The radial stress is increasing through the radial direction
according to all cases. It starts with negative values at » = 1 and it is continuously

increasing to diminish to zero value.
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Fig. 3. Variation of radial stress o,. along the radial direction for various parameters: (a) thermal
conductivity k4, (b) angular frequency w, and (c) time t.
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Fig. 5. Variation of axial stress o, along the radial direction for various parameters: (a) thermal
conductivity k,, (b) angular frequency w, and (c) time t.

Fig. 4 shows that the hoop stress oy is increasing as k; decreases, and as w
and t increase. The hoop stress is increasing through the radial direction. Also, it
starts with negative values at » = 1 and it is increasing to diminish to zero value.
It maybe have a local maximum value at r = 1.125 for some values of k;, w and
t.

Finally, Figs. 5a and 5b show that the axial stress o, is increasing as k;
decreases w increases. The axial stress a, is no longer decreasing along the radial
direction and has its minimum value at the location » = 1.11 and this irrespective
to the values of k; and w. In Figure 5c, the minimum values the axial stress o, are
occurring at different positions in the neighborhoods of r = 1.1 and this
depending on the value of t.

In general, it is to be noted that the variability thermal conductivity
parameter k; has a significant effect on all the fields which add an importance to
our consideration about the thermal conductivity to be variable. The behavior of
the three cases of the angular frequency parameter w is generally quite similar and
w has a significant effect on all fields. The influence of time parameter is very
pronounced on all the studied field variables. It is to be noticed that all the
variables behave the same manner due to the change in the values of time
parameter with some difference in their magnitudes.

7. Conclusions

In this work, we construct the equations of generalized thermoelasticity for
a homogeneous orthotropic infinite unbounded body containing a cylindrical
cavity with a variable thermal conductivity based on the Lord-Shulman’s model.
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The outer surface is taken to be fixed and subjected to a time-dependent
temperature. The problem has been solved numerically using the Laplace
transform technique. Numerical results for radial displacement, temperature, and
thermal stresses are illustrated graphically. Comparisons are made between the
results predicted by the theory of generalized thermoelasticity with one relaxation
time. It is concluded, from the numerical results, that the variability thermal
conductivity parameter has significant effects on the speed of the wave
propagation of all the studied fields. The thermoelastic temperature, displacement,
and stresses have strong dependencies on the angular frequency parameter. The
heat propagates as a wave with finite velocity instead of infinite velocity in
medium since the generalized thermoelasticity theory with one relaxation time is
used. The theory of coupled thermoelasticity can extracted from our model as
special case. Finally, the results presented here should prove useful for researchers
in scientific and engineering, as well as for those working on the development of
mechanics of solids.
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