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SOME BEST PROXIMITY POINT THEOREMS
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The purpose of this paper is to present some new results on the exis-
tence and convergence of best proximity points as well as fixed points for cyclic
contractive mappings in a partially ordered metric spaces.
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1. Introduction and Preliminaries

The Banach contraction principle is a basic result in fixed point theory. Several
extensions of this principle have been presented by many authors (see for instance
[7]). An interesting extension of the Banach contraction principle was studied by
Kirk, Srinivasan and Veeramani as follows.

Theorem 1.1. ([8]). Let A and B be two nonempty closed subsets of a complete
metric space X = (X, d). Suppose that T : A ∪ B → A ∪ B is a cyclic mapping i.e.
T (A) ⊆ B, T (B) ⊆ A, such that

d(Tx, Ty) ≤ αd(x, y) (1.1)

for some α ∈]0, 1[ and for all x ∈ A, y ∈ B. Then A ∩ B ̸= ∅ and T has a unique
fixed point in A ∩B.

If in the above theorem A ∩ B = ∅, then we get the notion of best proximity
point. A point p ∈ A ∪B is called a best proximity point for the cyclic mapping T
if d(p, Tp) = dist(A,B) where

dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Existence and approximation of best proximity points is an interesting topic for
which one can see [2, 3, 4, 6, 5] for more information.

Another extension of Banach contraction principle was given by Nieto and
Rodriguez-Lopez in partially ordered metric spaces [9]. They proved some fixed
point theorems in partially ordered sets in order to show the existence and unique-
ness for a first-order ordinary differential equation with periodic boundary conditions

1 Department of Mathematics, Imam Khomeini International University, Qazvin 34149, Iran;
email: abkar@ikiu.ac.ir

2 Corresponding author, Department of Mathematics, Ayatollah Boroujerdi University, Borou-
jerd, Iran, e-mail: gab.moo@gmail.com, gabelehmoosa@yahoo.com

91



92 Ali Abkar, Moosa Gabeleh

admitting only the existence of a lower solution. In [1], the current authors estab-
lished some theorems on the existence and convergence of fixed points, as well as
best proximity points for cyclic mappings in partially ordered metric spaces. In this
paper we aim to study the existence and convergence of fixed points as well as best
proximity points for cyclic mappings; in this way we generalize the results of [1]. For
this reason, we need to recall some results from [1]. Let us start with the following
definition.

Definition 1.1. Let (X,≼) be a partially ordered set and T : X → X be a self
mapping. We say that T is monotone nondecreasing if

x, y ∈ X,x ≼ y ⇒ T (x) ≼ T (y).

Theorem 1.2. ([1]) Let A,B be two nonempty subsets of a metric space (X, d)
such that A is complete, and let ”≼” be a partially ordered relation on A. Let
T : A ∪ B → A ∪ B be a cyclic mapping such that T is continuous on A and T 2 is
nondecreasing on A and

d(T x́, T 2x) ≤ αd(x́, Tx) (1.2)

for some α ∈ [0, 1[ and for all (x, x́) ∈ A × A with x ≼ x́. If there exists x0 ∈ A
with x0 ≼ T 2x0, then A ∩B ̸= ∅, hence T has a fixed point p ∈ A ∩B. Moreover, if
xn+1 = Txn, then x2n → p.

Note that if in previous theorem A has the property that

if a nondecreasing sequence xn −→ x ∈ A, then xn ≼ x ∀n, (1.3)

we can omit the continuity assumption of T on A (see Theorem 2.3 of [1]). In the
next section we state the generalized version of Theorem 1.3 and obtain new results
on the existence and approximation of fixed points for generalized contractions.

2. Fixed Point Theorems

In this section we prove two extensions of Theorem 1.1.

Theorem 2.1. Let A,B be two nonempty subsets of a metric space (X, d) such
that A is complete, and let ”≼” be a partially ordered relation on A. Assume that
T : A ∪ B → A ∪ B is a cyclic mapping such that T is continuous on A and T 2 is
nondecreasing on A and

d(T x́, T 2x) ≤ ψ(d(x́, Tx)), (2.1)

for all (x, x́) ∈ A×A with x ≼ x́, where ψ : R+ → [0,+∞) is upper semi-continuous
from the right such that 0 ≤ ψ(t) < t, for all t > 0. If there exists x0 ∈ A with
x0 ≼ T 2x0, then A ∩ B ̸= ∅, so that T has a fixed point p ∈ A ∩ B. Moreover if
xn+1 = Txn then x2n → p.

Proof. If T 2x0 = x0, then

d(x0, Tx0) = d(T 2x0, T (T
2x0)) = d(T (T 2x0), T

2x0)

≤ ψ(d(T 2x0, Tx0)) = ψ(d(x0, Tx0)).
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Thus d(x0, Tx0) = 0 and hence Tx0 = x0. Suppose that T
2x0 ̸= x0. Since x0 ≼ T 2x0

and T 2 is nondecreasing on A,

x0 ≼ x2 ≼ ... ≼ x2n ≼ · · · .

We break the argument into two steps.
Step 1. limn→∞ d(x2n, x2n+1) = 0.
proof. The sequence {d(x2n, x2n+1)} is monotone decreasing. Indeed
d(x2n+2, x2n+3) = d(T (x2n+2), T

2(x2n))
≤ ψ(d(x2n+2, x2n+1)) < d(x2n+2, x2n+1) = d(T (x2n), T

2(x2n)))
≤ ψ(d(x2n, x2n+1)) < d(x2n, x2n+1).

Let d(x2n, x2n+1) → r ≥ 0. Assume that r > 0. Then

r = lim
n→∞

d(x2n+2, x2n+3) ≤ lim
n→∞

ψ(d(x2n, x2n+1)) ≤ ψ(r),

a contradiction.
Step 2. {x2n} is a Cauchy sequence.
proof. Since limn→∞ d(x2n, x2n+1) = 0, it follows that for given ε > 0 there

exists N1 ∈ N such that d(x2n, x2n+1) < ε for all n ≥ N1. We claim that there exists
N2 ∈ N such that d(x2m, x2n+1) < ε for all m > n ≥ N2. Suppose the contrary.
Then there exists ε0 > 0 such that for each k ≥ 1, there is mk > nk ≥ k satisfying

d(x2mk
, x2nk+1) ≥ ε0, d(x2mk−2, x2nk+1) < ε0.

Therefore
ε0 ≤ d(x2mk

, x2nk+1)
≤ d(x2mk

, x2mk−1) + d(x2mk−2, x2mk−1) + d(x2mk−2, x2nk+1)
< d(T (x2mk−2), T

2(x2mk−2)) + d(x2mk−2, x2mk−1) + ε0
≤ ψ(d(x2mk−2, x2mk−1)) + d(x2mk−2, x2mk−1) + ε0
< 2d(x2mk−2, x2mk−1) + ε0.

Letting k → ∞ we obtain

lim
k→∞

d(x2mk
, x2nk+1) = ε0. (2.2)

Triangle inequality implies that
d(x2mk

, x2nk+1) ≤ d(x2mk
, x2mk+1) + d(x2nk+2, x2mk+1) + d(x2nk+2, x2nk+1)

= d(x2mk
, x2mk+1) + d(T (x2mk

), T 2(x2nk
)) + d(T (x2nk

), T 2(x2nk
))

≤ d(x2mk
, x2mk+1) + ψ(d(x2mk

, x2nk+1)) + ψ(d(x2nk
, x2nk+1))

< d(x2mk
, x2mk+1) + ψ(d(x2mk

, x2nk+1)) + d(x2nk
, x2nk+1)

≤ 2d(x2k, x2k+1) + ψ(d(x2mk
, x2nk+1)).

Again letting k → ∞ and using (5), we obtain ε0 ≤ ψ(ε0), which is a contradiction.
Now if N := max{N1, N2}, then for all m > n ≥ N we have

d(x2m, x2n) ≤ d(x2m, x2n+1) + d(x2n, x2n+1) < 2ε.

Since A is complete, there exists p ∈ A such that x2n → p. Now by the conti-
nuity of T on A we have x2n+1 = T (x2n) → Tp. This implies that d(p, Tp) =
limn→∞ d(x2n, x2n+1) = 0 or Tp = p. �

The above theorem is still valid if T is not necessarily continuous, instead one
should assume that the condition (3) holds.
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Theorem 2.2. Let A,B be two nonempty subsets of a metric space (X, d) such
that A is complete and satisfies the condition (3), and let ”≼” be a partially ordered
relation on A. Assume that T : A ∪B → A ∪B is a cyclic mapping such that T 2 is
nondecreasing on A and

d(T x́, T 2x) ≤ ψ(d(x́, Tx)),

for all (x, x́) ∈ A×A with x ≼ x́, where ψ : R+ → [0,+∞) is upper semi-continuous
from the right such that 0 ≤ ψ(t) < t, for all t > 0. If there exists x0 ∈ A with
x0 ≼ T 2x0, then A ∩ B ̸= ∅ and so T has a fixed point p ∈ A ∩ B. Moreover if
xn+1 = Txn then x2n → p.

Proof. By Theorem 2.1, {x2n} is a Cauchy sequence, so that there exists p ∈ A such
that x2n → p. Since T 2 is nondecreasing on A, and A satisfies the condition (3), we
have x2n ≼ p for all n ∈ N. Hence

d(p, Tp) ≤ d(p, x2n) + d(Tp, T 2(x2n−2))

≤ d(p, x2n) + ψ(d(p, x2n−1))

≤ d(p, x2n) + d(p, x2n−1)

≤ d(p, x2n) + d(p, x2n−2) + d(x2n−2, x2n−1).

Letting n→ ∞, we obtain d(p, Tp) = 0 or Tp = p. �
Remark 2.1. If in Theorem 2.1, φ(t) = αt for t ≥ 0 and 0 ≤ α < 1, then we obtain
Theorem 1.3.
Example 2.1. Let X = R2 and A = {(x, 1 − x) : 0 ≤ x ≤ 1

7}, B = {(y, 1) : −1 ≤
y ≤ 1}, where the distance d in R2 is defined by d((x, y), (x́, ý)) = max{|x− x́|, |y −
ý|}, for all (x, y), (x́, ý) ∈ R2. Consider the usual order (x, y) ≼ (x́, ý) ⇔ x ≤ x́, y ≤
ý. It is easy to see that A is a partially ordered set with the usual order and for all
(x, y), (x́, ý) ∈ A we have (x, y) ≼ (x́, ý) ⇔ x = x́, y = ý. Define T : A ∪B → A ∪B
by T (x, 1−x) = (−x, 1) for 0 ≤ x ≤ 1

7 , and T (y, 1) = (−y
2 , 1+

y
2 ) for −1/7 ≤ y ≤ 0,

and T (y, 1) = (17 ,
6
7) for y ∈ [−1, 1] − [−1

7 , 0]. It is easy to see that T is cyclic on
A ∪ B. If ψ(t) = ln(1 + t) for t ≥ 0 then the condition (4) holds. Indeed, we must
check the relation

d(T x́, T 2x́) ≤ ψ(d(x́, T x́)) (2.3)

for all x́ := (x, 1− x) ∈ A. But d(T x́, T 2x́) = 3
2 x and d(x́, T x́) = 2x, so that (6) is

equivalent to

3

2
x ≤ ψ(2x) = ln(1 + 2x), 0 ≤ x ≤ 1

7
. (2.4)

Indeed, if h(x) := ln(1 + 2x)− 3
2x, then h(0) = 0 and

h′(x) =
2

1 + 2x
− 3

2
=

1− 6x

2 + 4x
.

This implies that h′(x) > 0, for 0 ≤ x ≤ 1
7 , hence h is a monotone nondecreasing

function. Thus h(x) ≥ 0, for 0 ≤ x ≤ 1
7 . Hence (7) holds. Similarly, we see that the

other conditions of Theorem 2.1 hold. Therefore T has a fixed point in A ∩B, and
this point is p = (0, 1).

The following theorem is another version of Theorem 1.3.
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Theorem 2.3. Let (X,≼) be a partially ordered set and d be a metric on X. Let
A,B be two nonempty subsets of X such that A is complete. Assume that T :
A ∪ B → A ∪ B is a cyclic mapping such that T is continuous on A and T |A, T |B
are nondecreasing and

d(T x́, T 2x) ≤ ψ(d(x́, Tx)), d(T ý, T 2y) ≤ ψ(d(ý, T y) (2.5)

for all (x, x́) ∈ A×A, (y, ý) ∈ B×B with x ≼ x́, y ≼ ý, where ψ : (0,+∞) → (0,+∞)
is a nondecreasing function such that limn→∞ ψn(t) = 0, for all t > 0. If there exists
x0 ∈ A with x0 ≼ T 2x0, then A ∩ B ̸= ∅ and so T has a fixed point p ∈ A ∩ B.
Moreover if xn+1 = Txn then x2n → p.

Proof. By assumption limn→∞ ψn(t) = 0. It follows that ψ(ε) < ε, for all ε > 0. If
T 2x0 = x0, then by a similar argument as in the proof of Theorem 2.1, it can be
seen that x0 is a fixed point of T . Suppose that T 2x0 ̸= x0. Again we break the
proof into two steps.

Step 1. limn→∞ d(x2n, x2n+1) = 0.
proof. We have
d(x2n, x2n+1) = d(T (x2n), T

2(x2n−2)) ≤ ψ(d(x2n, x2n−1))
= ψ(d(T (x2n−2), T

2(x2n−2))) ≤ ψ2(d(x2n−2, x2n−1))
≤ ψ3(d(x2n−2, x2n−3)) ≤ ... ≤ ψ2n(d(x0, x1)).

Thus limn→∞d(x2n, x2n+1) ≤ limn→∞ ψ2n(d(x0, x1)) = 0. It follows that limn→∞ d(x2n, x2n+1) =
0. Since

d(x2n+2, x2n+1) = d(T (x2n), T
2(x2n))

≤ ψ(d(x2n, x2n+1)) < d(x2n, x2n+1). It follows that d(x2n+2, x2n+1) → 0.
Hence d(x2n, x2n+2 → 0. Thus for all ε > 0, there exists N ∈ N such that
max{d(x2N , x2N+1), d(x2N , x2N+2)} < ε− ψ(ε).

Step 2. {x2n} is a Cauchy sequence.
proof. Since T |A, T |B are nondecreasing and x0 ≼ T 2x0, we see that {x2n}

and {x2n+1} are nondecreasing sequences in A and B respectively. Put

G(x2N , ε) = {x ∈ A : x2N ≼ x, d(x, x2N+1) < ε},

H(x2N+1, ε) = {y ∈ B : x2N+1 ≼ y, d(y, x2N ) < ε}.
We show that T is cyclic on G(x2N , ε) ∪ H(x2N+1, ε). Let z ∈ G(x2N , ε). Then
z ∈ A and d(z, x2N+1) < ε. It follows that Tz ∈ B and x2N+1 ≼ Tz. Thus

d(x2N , T z) ≤ d(x2N , x2N+2) + d(Tz, T 2(x2N ))
≤ d(x2N , x2N+2) + ψ(d(z, x2N+1))
< ψ(ε)− ε+ ψ(ε) = ε.
Hence z ∈ H(x2N+1, ε). Also if w ∈ H(x2N+1, ε), then w ∈ B, x2N+1 ≼ w and

d(w, x2N ) < ε. This implies that Tw ∈ A and x2N ≼ x2N+2 ≼ Tw. We now have
d(Tw, x2N+1) = d(Tw, T 2(x2N−1))
≤ ψ(d(w, x2N )) ≤ ψ(ε) < ε.
Therefore w ∈ G(x2N , ε) and we conclude that T is cyclic on G(x2N , ε) ∪

H(x2N+1, ε). On the other hand since x2N ∈ G(x2N , ε), it follows that x2N+1 =
T (x2N ) ∈ H(x2N+1, ε) and x2N+2 = T (x2N+1) ∈ G(x2N , ε). Now an appeal to
induction reveals that x2N+2n ∈ G(x2N , ε) or d(x2N+2n, x2N+1) < ε, for all n ∈ N.
Therefore

d(x2N+2n, x2N ) ≤ d(x2N+2n, x2N+1) + d(x2N , x2N+1) < ε+ ε = 2ε,
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for all n ∈ N, from which it follows that {x2n} is a Cauchy sequence in A. The rest
of proof is similar to that of Theorem 2.1. �

In the following theorem we replace the continuity of T on A by the condition
(3).

Theorem 2.4. Let (X,≼) be a partially ordered set and d be a metric on X. Let
A,B be two nonempty subsets of X such that A is complete and satisfies the condition
(3). Assume that T : A ∪ B → A ∪ B is a cyclic mapping such that T |A, T |B are
nondecreasing and

d(T x́, T 2x) ≤ ψ(d(x́, Tx)), d(T ý, T 2y) ≤ ψ(d(ý, T y)

for all (x, x́) ∈ A×A, (y, ý) ∈ B×B with x ≼ x́, y ≼ ý, where ψ : (0,+∞) → (0,+∞)
is a nondecreasing function such that limn→∞ ψn(t) = 0, for all t > 0. If there exists
x0 ∈ A with x0 ≼ T 2x0, then A ∩ B ̸= ∅ and so T has a fixed point p ∈ A ∩ B.
Moreover if xn+1 = Txn then x2n → p.

Proof. By Theorem 2.3, {x2n} is a nondecreasing sequence and x2n → p ∈ A. By
the condition (3), we have x2n ≼ p for all n ∈ N. Thus

d(p, Tp) ≤ d(p, x2n) + d(x2n, Tp)
≤ d(p, x2n) + ψ(d(p, x2n−1))
< d(p, x2n) + d(p, x2n−1) ≤ 2d(p, x2n) + d(x2n, x2n−1) → 0.
Hence p = Tp. �

Remark 2.2. If in Theorems 2.3, 2.4 the partial ordering relation ”≼” on X has
the property that

”every pair of elements of X has a lower bound or an upper bound” (9)
then the fixed point of T in A is unique.

Proof. Let p, q be two fixed points of T in A. If p is comparable to q, and p ≼ q then

d(p, q) = d(Tq, T 2p) ≤ ψ(d(q, Tp)) < d(p, q).

Thus in this case we must have p = q. If p is not comparable to q, then there is
either an upper or a lower bound for p and q, that is, there exists r ∈ A such that
p, q are comparable to r. Let p ≼ r and q ≼ r. Therefore

d(p, q) ≤ d(T 2np, T 2n+1r) + d(T 2n+1r, T 2nq)
= d(T (T 2nr), T 2(T 2n−2p) + d(T (T 2nr), T 2(T 2n−2q))
≤ ψ(d(T 2nr, T 2n−1p)) + ψ(d(T 2nr, T 2n−1q))
= ψ(d(T (T 2n−1r), T 2(T 2n−3p))) + ψ(d(T (T 2n−1r), T 2(T 2n−3q)))
≤ ψ2(d(T 2n−1r, T 2n−2p)) + ψ2(d(T 2n−1r, T 2n−2q))
≤ ... ≤ ψ2n(d(p, Tr)) + ψ2n(d(q, T r)) → 0.

This implies that p = q. �

Remark 2.3. If in Theorems 2.3, 2.4 the partial ordering relation ”≼” on X has
the property (9), then T 2nx→ p for all x ∈ A where p is a fixed point of T in A.

Proof. If p is comparable to x and p ≼ x, then it is easy to see that

d(T 2nx, p) ≤ ψ2n(d(x, p)) → 0,
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which implies that x2n → p. If p is not comparable to x, then by property (9), there
exists z ∈ A such that p ≼ z, x ≼ z. By a similar argument as in Remark 2.2, we
see that

d(T 2nx, p) ≤ ψ2n−1(d(z, Tx)) + ψ2n−1(d(z, Tp)) → 0,

from which it follows that x2n → p. �

Example 2.2. Let X = R2 and A = {(x, 0) : 0 ≤ x ≤ 1}, B = {(0, y) : 0 ≤ y ≤ 1},
where the distance d in R2 is defined by d((x, y), (x́, ý)) = max{|x−x́|, |y−ý|}, for all
(x, y), (x́, ý) ∈ R2. Consider the usual order (x, y) ≼ (x́, ý) ⇔ x ≤ x́, y ≤ ý. Define
T : A ∪B → A ∪B by T (x, 0) = (0, x

x+1) for 0 ≤ x ≤ 1, and T (0, y) = ( y
y+1 , 0). We

note that T is cyclic on A ∪ B. If ψ(t) = t
t+1 for t > 0 then the condition (8) and

the other conditions of Theorem 2.3 hold. Hence T has a fixed point and this point
is p = (0, 0).

3. Best Proximity Points

In this section we study existence and convergence of best proximity points
for cyclic mappings and eventually obtain a new fixed point theorem for these map-
pings. The following theorem shows the existence of best proximity point for cyclic
mappings under suitable conditions in a partially ordered metric space.

Theorem 3.1. Let (X,≼) be a partially ordered set and d be a metric on X. Let
A, B be two nonempty subsets of X such that A is compact. Let T : A∪B → A∪B
be a cyclic mapping such that T |A and T 2|A are continuous and T 2 is nondecreasing
on A. Moreover,{

d(T x́, T 2x) < d(x́, Tx) for x ≼ x́, d(x́, Tx) > dist(A,B),

d(T x́, T 2x) ≤ d(x́, Tx) for x ≼ x́,

for all (x, x́) ∈ A×A. If there exists x0 ∈ A such that x0 ≼ T 2x0 then T has a best
proximity point in A.

Proof. Since T, T 2 are nondecreasing on A, then {x2n} and {x2n+1} are nondecreas-
ing sequences in A,B, respectively. We show that r2n := d(x2n, x2n+1) → dist(A,B).
We note that

r2n = d(x2n, x2n+1) = d(T (x2n), T
2(x2n−2))

≤ d(x2n, x2n−1) = d(T (x2n−2), T
2(x2n−2))

≤ d(x2n−2, x2n−1) = r2n−2.
Therefore {r2n} is a decreasing sequence. Let r2n → r∗ ≥ dist(A,B). Assume that
r∗ > dist(A,B). Since A is compact, there exists a subsequence {x2nk

} of {x2n}
such that x2nk

→ p ∈ A. By the continuity of T on A,

d(p, Tp) = lim
k→∞

d(x2nk
, x2nk+1) = r∗.

Thus
r∗ = limk→∞ d(x2nk+2, x2nk+3) ≤ limk→∞ d(x2nk+2, x2nk+1)
= limk→∞ d(T (x2nk

), T 2(x2nk
)) = d(Tp, T 2p) < d(p, Tp) = r∗,

which is a contradiction. Hence d(p, Tp) = dist(A,B) and the proof is complete. �
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Now it is interesting to ask whether the approximation of best proximity points
in the above theorem by an iterate sequence is possible or not. For this reason we
need to recall a geometric property on a pair of subsets of a metric space.

Definition 3.1. ([10]) Let A, B be two nonempty subsets of a metric space (X, d).
A pair (A,B) is said to satisfy property UC iff the following holds: If {xn} and {zn}
are sequences in A, and {yn} is a sequence in B such that

lim
n−→∞

d(xn, yn) = lim
n−→∞

d(zn, yn) = dist(A,B),

then limn−→∞ d(xn, zn) = 0.

For example if A,B are two nonempty subsets of a uniformly convex Banach
space X such that A is closed and convex and B is closed, then (A,B) has the
property UC (see Lemma 3.8 of [5]). Other examples can be found in [10].

In the following theorem we approximate the best proximity point which was
found in Theorem 3.1.

Theorem 3.2. Let (X,≼) be a partially ordered set and d be a metric on X. Let
A, B be two nonempty subsets of X such that A is compact and (A,B) satisfies the
property UC. Let the condition (3) hold on A, and let T : A∪B → A∪B be a cyclic
mapping such that T |A and T 2|A are nondecreasing and continuous. Moreover,{

d(T x́, T 2x) < d(x́, Tx) for x ≼ x́, d(x́, Tx) > dist(A,B),

d(T x́, T 2x) ≤ d(x́, Tx) for x ≼ x́,

for all (x, x́) ∈ A×A and (x, x́) ∈ B×B. If there exists x0 ∈ A such that x0 ≤ T 2x0
and xn+1 = Txn, then T has a best proximity point p ∈ A and x2n → p.

Proof. By Theorem 3.1 the existence of best proximity point p ∈ A is guaranteed
and there exists a subsequence {x2nk

} of the sequence {x2n} such that x2nk
→ p.

We must prove that x2n → p. Since the condition (3) holds on A and {x2n}, {x2n+1}
are nondecreasing sequences in A and B, respectively, it follows that x2nk

≼ p and
hence x2nk+1 ≼ Tp for all k ∈ N. This implies that x2n ≼ p and x2n+1 ≼ Tp for all
n ∈ N. On the other hand since (A,B) has the property UC and{

d(Tx, T 2x) < d(x, Tx) for all x ∈ A ∪B with d(x, Tx) > dist(A,B),

d(Tx, T 2x) ≤ d(x, Tx) for all x ∈ A ∪B,

it follows from Lemma 3 of [10] that z is a best proximity point of T if and only if
z is a fixed point of T 2. Therefore p is a fixed point of T 2. We now have

d(p, x2n+1) = d(T (Tp), T 2(x2n−1))
≤ d(Tp, x2n) = d(Tp, T 2(x2n−2)) ≤ d(p, x2n−1).

Thus {d(p, x2n+1)} is a descending sequence. Let d(p, x2n+1) → s∗. Then

s∗ = lim
n→∞

d(p, x2n+1) = lim
k→∞

d(p, x2nk+1) = d(p, Tp) = dist(A,B).

We now have d(x2n, x2n+1) → dist(A,B) and d(T 2np, x2n+1) → dist(A,B). Again
since (A,B) has the property UC, we obtain d(x2n, p) → 0 or x2n → p. �
Corollary 3.1. Let X be a strictly convex Banach space and ”≼” be a partially
ordered relation on X. Let (A,B) be a nonempty pair of subsets of X such that A is
convex, compact, and the closure of B is weakly compact. Assume that T : A∪B →
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A∪B is a cyclic mapping such that T |A and T 2|A are nondecreasing and continuous
and {

d(T x́, T 2x) < d(x́, Tx) for x ≼ x́, d(x́, Tx) > dist(A,B),

d(T x́, T 2x) ≤ d(x́, Tx) for x ≼ x́,

for all (x, x́) ∈ A×A and (x, x́) ∈ B×B. If there exists x0 ∈ A such that x0 ≼ T 2x0
and xn+1 = Txn, then T has a best proximity point p ∈ A and x2n → p.

Proof. By Proposition 5 of [10], (A,B) has the property UC. Now by Theorem 3.2
the result follows. �

As a result of Theorem 3.2 we obtain a new fixed point theorem in a partially
ordered metric space.

Corollary 3.2. Let (X,≼) be a partially ordered set and d be a metric on X such
that X is compact and satisfies the condition (3). Assume that T : X → X is a self
mapping such that T is nondecreasing and continuous. Moreover,{

d(T x́, T 2x) < d(x́, Tx) for x ≼ x́, x́ ̸= Tx,

d(T x́, T 2x) ≤ d(x́, Tx) for x ≼ x́,

for all x, x́ ∈ X. If there exists x0 ∈ X such that x0 ≼ Tx0 and xn+1 = Txn, then
T has a fixed point p ∈ X and xn → p.

Proof. It is sufficient to note that if in Theorem 3.2, A = B = X then the conditions
of Theorem 3.2 hold. Thus there exists p ∈ X such that d(p, Tp) = 0 or p = Tp and
xn → p. �

Example 3.1. LetX = R2 and let the distance d in R2 is defined by d((x, y), (x́, ý)) =
max{|x − x́|, |y − ý|}, for all (x, y), (x́, ý) ∈ R2. Consider the usual order (x, y) ≼
(x́, ý) ⇔ x ≤ x́, y ≤ ý on R2. Assume thatA = {(1, 0), (0, 1)} andB = {(−1, 0), (0,−1)}.
Define T : A ∪ B → A ∪ B by T (1, 0) = (0,−1), T (0, 1) = (−1, 0), T (0,−1) = (1, 0)
and T (−1, 0) = (0, 1). It is easy to check that T satisfies the conditions of Theorem
3.1, and for x0 = (1, 0), we have x0 ≼ T 2x0. Hence T has a best proximity point.
Example 3.2. Consider the space C[0, π] with the supremum norm. For each
α ∈ [0, π], let fα : [0, π] → [0, π] be defined by fα(x) = α sinx. Assume that
X = {fα : 0 ≤ α ≤ π}. By the Arzela-Ascoli Theorem X is compact in C[0, π]. Let
the relation ”≼” be defined as follows:

fα ≼ fβ ⇔ fα(x) ≤ fβ(x),

for all x, α, β ∈ [0, π]. It is clear that fα ≼ fβ ⇔ α ≤ β and that ”≼” is a partially
ordered relation on X. Also d(fα, fβ) = |α − β|, for all α, β ∈ [0, π]. Suppose that
the self mapping T : X → X is given by T (fα) = f α

α+1
. T is nondecreasing on

X. Indeed if fα ≼ fβ then α ≤ β and therefore α
α+1 ≤ β

β+1 . This implies that

f α
α+1

≼ f
β

β+1

or T (fα) ≼ T (fβ). Moreover, T is continuous on X. We show that T

satisfies the conditions of the theorem. Let α ≤ β and β > 0. Therefore T (fα) ̸= fβ.
We have to show that

d(T (fβ), T
2(fα)) < d(fβ, T (fα))
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or equivalently

| β

β + 1
− α

2α+ 1
| < |β − α

α+ 1
|.

But since the function g(t) := t
t+1 is monotone nondecreasing on [0,+∞) and α ≤ β,

it is easy to see that this latter inequality holds. On the other hand f0 ≼ T (f0).
Hence by Corollary 3.5 T has a fixed point and this point is f0.
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