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Lucrarea prezentă analizează dinamica unui robot serial cu trei grade de 
libertate, utilizabil în procese  tehnologice de sudare curbilinie. Mecanismul 
manipulatorului este constituit din trei elemente conectate succesiv prin două 
legături prismatice şi o cuplă cinematică de rotaţie. Introducând trei repere legate 
de cele trei corpuri componente, se analizează mai întâi vitezele şi acceleraţiile 
caracteristice ale sistemului. Aplicând principiul puterilor virtuale, în continuare se 
stabileşte modelul dinamic invers al robotului şi se determină expresii şi grafice 
pentru forţele şi momentele celor trei sisteme active. 

 
L’article présent fait une analyse de la dynamique  du robot sériel à trois 

degrés de liberté, utilisable dans des opérations de soudage curviligne. Le 
mécanisme du manipulateur est constitué de trois éléments mis en connexion 
successivement par deux liaisons prismatiques et une articulation cylindrique. 
Introduisant trois repères liés aux trois corps composant le mécanisme, nous 
analysons d’abord les vitesses et les accélérations caractéristiques du système. Basé 
sur le principe des puissances virtuelles, on établit ensuite le modèle dynamique 
inverse et on détermine des expressions et des graphes pour les forces et les 
moments des trois actionneurs.  

 
Dynamics of a three degrees of freedom serial robot, used in curviline 

welding technological tasks, is analysed in this paper. The manipulator mechanism 
comprise three links successivelly connected by two prismatic joints and a 
kinematical revolute joint. Introducing three frames attached to three bodies, we 
analyze first the characteristic velocities and accelerations of the system. Based on 
the principle of virtual powers, in that follows we establish an inverse dynamic 
model, determining some expressions and graphs for the forces and torques applied 
by the active systems. 
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Introduction 

Les robots sériels sont des chaînes cinématiques ouvertes constituées de 
plusieurs éléments mis en connexion par des liaisons prismatiques ou des couples 
cinématiques de rotation. L’élément fixé constitue la base, tendis que l’élément 
libre, sur lequel est installée la main mécanique, est dénommé effecteur. Le 
mouvement relatif de chacun des éléments du mécanisme peut être contrôlé par un 
actionneur tel que l’effecteur du robot pourra recevoir une position prescrite dans 
son espace de travail. 

Dans le cadre du problème cinématique inverse, la position et le 
mouvement de l’effecteur sont supposés bien connus. Alors, les inconnues 
concernent la détermination des paramètres relatifs donnant la position des 
couples cinématiques. Les solutions bien déterminées des équations sont 
certainement obtenues dans le cas des manipulateurs à géométrie simple, comme 
par exemple dans le cas des robots munis de trois éléments entraînés en 
mouvement de rotation relative autour de trois axes concourants ou parallèles à 
une direction donnée. 

L’établissement du modèle cinématique pour les robots sériels constitua le 
sujet de plusieurs travaux, mais récemment moins d’études ont cherché des 
solutions compactes dans l’aire de la dynamique de ces structures. 

La précision des exécutions des taches de l’outil dans les processus 
technologiques est l’essentiel, puisque le robot doit souvent opérer sur des objets 
assez fragiles où les erreurs pourraient mener aux dommages coûteux. 

En utilisant un set de matrices pour la cinématique et pour le modèle 
dynamique, l’article présent essaye introduire une nouvelle approche, ayant pour 
but la diminution du nombre d’équations et des opérations de calcul. 

 
1. Modèle cinématique du robot 

 
Dans les opérations technologiques de soudage sont particulièrement 

utilisés les robots dont leur bras suit une trajectoire connue et exprimée 
analytiquement. En supposant certaines lois de mouvement de l’effecteur final, 
l’important c’est de déterminer les lois de variation par rapport au temps des 
variables des articulations et des forces et des moments actifs et de corriger en 
permanence la position et l’orientation de l’effecteur à l’aide des corrections 
effectuées dans les liaisons, lors des dérapages de la trajectoire admise. 

Dans ce qui suit nous établissons d’abord le modèle matriciel d’analyse 
cinématique du mécanisme d’un robot utilisé dans des opérations de soudage 
curviligne. 

Soit )( 00000 TzyxO un référentiel fixé par rapport auquel se déplace un 
robot sériel à trois degrés de liberté. Le manipulateur est composé de trois 
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éléments de dimensions connues. Le premier élément (1) est une barre coudée 
homogène de hauteur 1l et de masse 1m . Celle-ci et le référentiel 1111 zyxO lié 
effectuent un mouvement de translation 10λ le long de l’axe 11zO , sous l’action 
d’un système pneumatique demeurant dans le repère de base. L’élément (2) fixé 
sur le repère 2222 zyxO , ayant une longueur 232 lOO = et une masse 2m , est animé 
d’un mouvement relatif de translation donnée par le déplacement 21λ . Le bras 

33 lGO = de l’effecteur de masse 3m et moment d’inertie 3Ĵ et le repère 3333 zyxO  
tournent d’un angle 32ϕ autour de l’axe horizontal 33zO (fig.1). Ce mouvement 
désigne une oscillation permanente )2cos1(3232 tπνϕϕ −= • entretenue par un 
moteur électrique de petite puissance. La loi de variation de la coordonnée 32ϕ est 
fournie par la condition de remplissage uniforme de la soudure curviligne par un 
balancement approprié de l’électrode. Dans le cas d’un soudage automatique, 
nous devons assurer seulement l’avancement de la tête de soudage le long de la 
trajectoire et négligerons le mouvement oscillatoire de l’électrode. 

Dans les conditions d’un problème de cinématique directe, les 
déplacements 2110 , λλ et l’angle 32ϕ sont pris pour paramètres donnant la position 
absolue de chaque élément du manipulateur. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                       Fig. 1 Schéma cinématique du robot sériel 
 
Les trois repères mobiles liés aux trois corps auront les matrices de passage 
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Les vecteurs suivants expriment les coordonnées relatives des trois 
origines 321 ,, OOO : 

                          32323212111213101010 ,, ulruaulruar TT =+−== λλ ;                         (3) 

il résulte les vecteurs de position dans la base fixée 0000 zyxO  
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Dans les relations (5) on retrouve les matrices colonnes associées aux 
verseurs orthogonaux 321 ,, uuu et la matrice antisymétrique 3

~u associée au 
vecteur 3u  : 
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Les positions absolues de l’extrémitéG et du centre de masse C de 
l’effecteur sont données par les vecteurs 

                TGGTTTG lrraaarr ]00[, 333322110100 −=+= ,  GC rr 33 2
1

=                 (6)  

et les matrices carrées suivantes 

                                             10213230102120 , aaaaaaa == .                                     (7) 

À l’intérieur du problème cinématique inverse, nous supposons que la 
trajectoire décrite par le centre de l’articulation 3O au cours d’un soudage 
curviligne est une demi-ellipse de demi-axes rr 2, et d’équations paramétriques 
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                     13023030 ),2cos1(2,2sin lz
T

rlyt
T

rx =−+==
ππ .                      (8) 

À partir des relations matricielles (4) et (6) nous obtenons immédiatement 
les paramètres de commande cinématique 

                                            230213010 , lyx −== λλ                                          (9) 

et les coordonnées de l’extrémité de l’électrode 

                   323102210323100 cos,,sin ϕλϕλ llzlylx GGG −=+=−= .                (10) 

Les vitesses relatives des origines 321 ,, OOO  

                                 0,, 3232121213101010 === ruaruar TT λλ ,                            (11) 

la vitesse angulaire 33232 uϕω = du bras (3) et sa matrice antisymétrique associée 

33232
~~ uϕω =  peuvent caractériser complètement les mouvements relatifs des trois 

éléments du mécanisme. À ce moment nous pouvons calculer la vitesse angulaire 
absolue 33230 uϕω = , l’accélération angulaire absolue 33230 uϕε = , les vitesses 

                            31010 uv λ= , 321102120 uvav λ+= , 203230 vav =                       (12) 

et les accélérations absolues des origines des référentiels mobiles 

                            31010 uλγ = , 321102120 ua λγγ += , 203230 γγ a= .                     (13) 

La vitesse Gv  et l’accélération Gγ  de l’extrémité G  ont pour expressions 
matricielles 

                                          G
G ruvv 333230

~ϕ+=  

                                          G
G ruu 3

2
32

2
3233230 )~~( ϕϕγγ ++= .                               (14) 

Les variations différentielles de la position et de l’orientation finale d’un 
robot sériel sont déterminées par les modifications des variables des couples 
cinématiques. La relation entre le déplacement élémentaire de l’effecteur final du 
robot et les déplacements enregistrés par les variables cinématiques est donnée par 
le modèle cinématique du mécanisme. 

L’expression de ce modèle suppose une détermination préalable de la 
matrice de Jacobi ][J du robot en fonction des paramètres géométriques et des 
variables cinématiques indépendantes. Le Jacobian d’un manipulateur est une 
composante critique à la génération des trajectoires dans l’espace géométrique de 
travail de l’effecteur. 
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Les expressions établies pour la vitesse Gv et la vitesse angulaire 30ω seront 
concentrées sous une forme matricielle réduite  
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La matrice carrée non-singulière  
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représente justement le Jacobian du robot. 
Si l’on exprime les deux vitesses caractéristiques Gv et 30ω de l’effecteur par 

projections sur les axes du repère fixé 0000 zyxO  : 
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la relation précédente (15) prend la forme suivante 
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La matrice 
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désigne un deuxième Jacobian du même mécanisme sériel. 
 

2. Simulation dynamique 
 

En connaissant la position, la vitesse et l’accélération de chaque liaison 
ainsi que les forces et les moments exercées sur chaque élément du robot, il est 
possible calculer les forces requises aux systèmes moteurs, affin d’effectuer un 
mouvement prescrit. Pour obtenir ces forces ou moments, trois différentes 
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méthodes mènent aux même résultats : une première méthode utilise l’approche 
classique de Newton-Euler, une seconde applique le formalisme des équations et 
des multiplicateurs de Lagrange et une troisième est basée sur le principe des 
travaux virtuels. 

Dans le cadre du problème inverse de dynamique, on poursuit dans cet 
article le calcul des forces motrices et des couples moteurs au cours de l’évolution 
du robot par la méthode des puissances virtuelles. Les translations des premiers 
deux éléments du robot sont soumises au contrôle de deux systèmes pneumatiques 
indépendants délivrant les forces 31010 uff = , 32121 uff =  dirigées suivant les 
axes 11zO et 22 zO (fig.1). Le moment 33232 umm = du couple appliqué au bras 
oscillant GO3 agit le long de l’axe horizontal 33zO . 

L’intervention des poids gm1 , gm2 , gm3 des trois corps, appliqués en les 
points 21, OO et en le centre C de l’effecteur, est exprimée en fonction de la 
géométrie du mécanisme et sera évaluée par le torseur de ces actions, calculé 
successivement en 321 ,, OOO . 

Fig. 2 Force 10f du premier actionneur 

Conformément à la méthode des vitesses virtuelles, la condition d’équilibre 
dynamique du mécanisme est celle que la puissance virtuelle, développée au cours 
d’un déplacement virtuel par les forces extérieures, les forces intérieures et les 
forces d’inertie, doit être égale à zéro. En appliquant dans le cas du robot à trois 
degrés de liberté les équations de la dynamique des robots sériels [7], nous aurons 
les relations matricielles suivantes, donnant les forces actives 2110 , ff et le moment 
actif 32m : 
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                                     }{ 303221202110310 FaaFaFuf TTT ++=  

                                     }{ 303220321 FaFuf T+=                                                 (20) 

                                     30332 Mum =  

Fig. 3 Force 21f du second actionneur 

Fig. 4 Moment 32m du troisième actionneur 
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avec les notations 

                  1110110 ugmmF −= γ      

                  2220220 ugmmF += γ  

                  31021323330
2
30330330 )~~( uaagamrmmF C +++= εωγ                           (21) 

                  31021323330330303303330
~ˆ~ˆ~ uaaargmJJrmM CC +++= ωωεγ . 

À titre d’application, nous considérons un robot sériel ayant les 
caractéristiques suivantes : 

                      11 =l m, 1.02 =l m, 15.03 =l m, 1.0=r m  

                      5.31 =m kg, 5.22 =m kg, 5.13 =m kg, 2
333 3

1 lmJ =   

                      32=T s, 5.0=ν s-1, 02.032 =
•ϕ . 

En considérant une opération technologique de soudage le long d’un quart 
d’ellipse d’équations paramétriques (8), les graphes reproduisent les forces 
actives 10f (fig. 2), 21f (fig. 3) et le moment du couple actif 32m (fig. 4) des trois 
actionneurs. 

Conclusions 
 

1º. Dans le cadre de l’analyse cinématique inverse, des relations exactes pour 
les vitesses et les accélérations de chacun des éléments du robot sériel ont été 
obtenues. 

2º. Basée sur le principe des travaux virtuels, l’approche actuelle établit une 
détermination récursive de la variation en temps réel des forces actives et du 
moment du couple actif. Les relations (20) et (21) se constituent en modèle 
théorique de la simulation dynamique et peuvent facilement être transformées en 
modèle pour la commande automatique du robot sériel analysé.  
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