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PROPER PROJECTIVE SYMMETRY IN SOME WELL 
KNOWN CONFORMALLY FLAT SPACE-TIMES  

Ghulam Shabbir, Tauseef Ahmed Khan1 
A study of conformally flat- but non flat Bianchi type I and cylindrically 

symmetric static space-times according to proper projective symmetry is given by 
using some algebraic and direct integration techniques. It is shown that the special 
class of the above space-times admit proper projective vector fields.  
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1. Introduction  

Through out the paper M  is representing the four dimensional, connected, 
Hausdorff space-time manifold with Lorentz metric g  of signature (-, +, +, +). 
The curvature tensor associated with ,abg  of the Levi-Civita connection, is 
denoted in component form by ,bcd

aR  the Weyl tensor components are ,bcd
aC  

and the Ricci tensor components are .acb
c

ab RR =  The usual covariant, partial and 
Lie derivatives are denoted by a semicolon, a comma and the symbol ,L  
respectively. Round and square brackets denote the usual symmetrization and 
skew-symmetrization, respectively. A Space-Time is said to be conformally flat if 

0=bcd
aC  everywhere on .M  Finally, M  is assumed to be non-flat in the sense 

that the curvature tensor does not vanish over a non-empty open subset of M , and 
is not of constant curvature.  

Any vector field X  on M  can be decomposed as  

  ,
2
1

; ababba FhX +=      (1) 

where abXbaab gLhh == )(  and )( baab FF −=  are symmetric and skew symmetric 
tensors on ,M  respectively. Such a vector field X  is called projective if the local 
diffeomorphisms tψ  (for appropriate t ) associated with X  maps geodesics into 
geodesics. This is equivalent to the condition that abh  satisfies  

  abcbaccabcab gggh φφφ ++= 2;    (2) 
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for some smooth closed 1-form on M  with local components .aφ  Thus aφ  is 
locally gradient and will, where appropriate, be written as aa ,φφ =  for some 
function φ  on some open subset of .M  If X  is a projective vector field and 

0; =baφ , then X  is called a special projective vector field on .M  If 0; =cabh  on 
M  is, from (2), equivalent to aφ  being zero on M  and is, in turn equivalent to 
X  being an affine vector field on M  (so that the local diffeomorphisms tψ  
preserve not only geodesics but also their affine parameters). If X  is projective 
but not affine, then it is called proper projective [1]. Further, if X  is affine and 

Rccgh abab ∈= ,2  then X is homothetic (otherwise proper affine). If X  is 
homothetic, and 0≠c  it is proper homothetic while if 0=c  it is Killing.  

2. Projective symmetry 

Let X  be a projective vector field on .M  Then from (1) and (2) [2]  
  .3, ;;; baabXba

a
ccb

a
dbcd

a
X RLRL φφδφδ −=−=  

Also the Ricci identity on h  gives  
  

 .;;;; cabddabccbaddbacacd
e

bebcd
e

ae ggggRhRh φφφφ −+−=+   
Let X  be a projective vector field on M  such that (1) and (2) holds and 

let F  be a real curvature eigenbivector at Mp∈  with eigenvalue R∈λ  (such 
that cd

cd
ab FR  abFλ=  at p ); then at p  one has [1] 

 )2(0 ;baababa
c

bcb
c

ac hPFPFP φλ +==+    (3)  

Equation (3) gives a relation between b
aF  and abP  (which is a second 

order symmetric tensor) at p  and reflects the close connection between baabh ;, φ  
and the algebraic structure of the curvature at .p  If F  is simple, then the blade of 
F  (a two dimensional subspace of MTp ) consists of eigenvectors of P  with 
same eigenvalue. Similarly, if F  is non-simple then it has two well defined 
orthogonal timelike and spacelike blades at p  each of which consists of 
eigenvectors of P  with same eigenvalue but with the possibly different 
eigenvalue for the two blades [3].  
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2.1 Existence of Projective vector field in non flat conformally flat 
cylindrically symmetric static space-times  

 Consider a cylindrically symmetric static space-time in the usual 
coordinate system ),,,( φθrt  (labeled by ),,,,( 3210 xxxx  respectively) with first 
fundamental form [4]  

  .de  dr  dte-  ds 2)(2(r)22v(r)2 φθ de rwu +++=   (4) 
Since we are interested in those cases when the above space-time (4) 

becomes conformally flat but non flat, I follows from [5,6] there exists only one 
possibility namely:  

(P1) )()()( rwrurv == . 
 
Case P1  
In this case the above Space-Times becomes  

  ).(de  dr  dte-  ds 22(r)22v(r)2 φθ dv +++=   (5) 
The above Space-Times (5) admits six independent Killing vector fields, 

which are  

,
t∂
∂  ,

θ∂
∂  ,

φ∂
∂  ,

θ
φ

φ
θ

∂
∂

−
∂
∂  ,

θ
θ

∂
∂

+
∂
∂ t
t

 .
φ

φ
∂
∂

+
∂
∂ t
t

  

These six Killing vector fields are clearly tangent to the family of three 
dimensional timelike hypersurfaces of constant .r  Consequently, these 
hypersurfaces are of constant (zero) curvature. The Ricci tensor Segre of the 
above Space-Times is }1)11,1{(  or )}.111,1{(  If the Segre is )}111,1{(  then the 
space-time is of constant curvature and the projective vector fields are given in 
[2]. Here it is assumed that the Space-Times is not of constant curvature. The non-
zero independent components of the Riemann tensor are  

 
.

4
1

,)2(
4
1

1
2

32
32

20
20

30
30

2
2

10
10

31
31

21
21

β

β

≡′−===

≡′+′′−===

vRRR

vvRRR
   (6)  

One can write the curvature tensor with the components cd
abR  at p  as a 

66×  matrix in a well known way [7]  
),,,,,( 122112 ββββββdiagR cd

ab =  
where 21 and ββ  are real functions of r  only, and where the 6-dimensional 
labelling is in the order 23,13,12,03,02,01  with .0 tx =  Here, at Mp∈  one may 
choose a tetrad ),,,( φθrt  satisfying ===− a

a
a

a
a

a rrtt θθ  1=a
aφφ  (with all 

others inner products zero) such that the eigenbivector of the curvature tensor at 
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p  are all simple with blades spanned by the vector pairs ),(),,(),,( φθ rrrt  each 
with eigenvalue )(2 pβ , and ),(),,(),,( φθφθ tt  each with eigenvalue ).(1 pβ  Here 
we are considering the open subregion where 2β  and 1β  are nowhere equal (if 

21 ββ =  then it follws from (6) that the above Space-Times (5) becomes of 
constant curvature, which our assumtion; hence 21 ββ ≠ ) and .02 ≠β  If 02 =β , 
then the rank of the 66×  Riemann matrix becomes three and it follows from [8] 
that no proper projective vector fieldwill exist. So .02 ≠β  Thus, at p , the tensor 

baabab hP ;2 2ψβ +=  has eigenvectors φθ ,,, rt  with same eigenvalue, say, 1δ  and 

baabab hP ;1 2ψβ +=  has eigenvectors φθ ,,t  with same eigenvalue, say, .2δ  Hence 
on M  one has after using the completeness relation  

 ,2 1;2 abbaab gh δψβ =+  baabbaab rrgh 42;1 2 δδψβ +=+ ,  (7)  
where ,1δ  2δ  and 4δ  are some real functions on .M  Since 12 ββ ≠ , then it 
follows from (7) that  

 ,baabab rrDgCh +=  baabba rrFgF +=;ψ     (8) 
for some real functions FandEDC ,,  on .M  Next one substitutes the 

first equation of (8) in (2) and contracts the resulting expression first with bat θ  
and then with bat φ , to get 0=== a

a
a

a
a

a x φψθψψ  and hence aa rηψ =  for 
some function .η  The same expression transvected with batt  gives 

).(2 rCCC cc =⇒= ψ  Now again the same expression transvected with barr  
and using the above information gives cc rD η2=  and hence ).(rDD =  Consider 
the equation aa rηψ =  and after taking the covariant derivative we get 

.;; abbaba rr ηηψ +=  Next consider the second equation of (8) and use 

abbaba rr ηηψ += ;;  and then contract with ar  to get aa r∝η  so that ).(rηη =  
Consider the first equation of (8) and use (5) one has the following non-zero 
components of abh   

 .,)(, 33221100
vvv CehandCehDChCeh ==+=−=   (9) 

Now we are interested in finding projective vector fields by using the 
following relation  

  .ababX hgL =        (10) 
Using equation (9) and (5) in (10) and writing out explicitly we get  

   CXXv =+′ 0
0,

1 2     (11) 

   00
1,

1
0, =− XeX v     (12) 

   00
2,

2
0, =− XX      (13) 
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   00
3,

3
0, =− XX      (14) 

   )(
2
11

1, DCX +=     (15) 

   01
2,

2
1, =+ XXev     (16) 

   01
3,

3
1, =+ XXev     (17) 

   CXXv =+′ 2
2,

1 2     (18) 

   02
3,

3
2, =+ XX      (19) 

   .2 3
3,

1 CXXv =+′     (20) 
Equations (15), (16), (17) and (12) give  
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),,(),,(

),,(),,(
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v

∫
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∫

∫
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++=
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−

   (21) 

where ),,(1 φθtA , ),,(2 φθtA , ),,(3 φθtA  and ),,(4 φθtA  are functions of 
integration. In order to determine ),,(1 φθtA , ),,(2 φθtA , ),,(3 φθtA  and 

),,(4 φθtA  we need to integrate the remaining six equations. To avoid details, 
here we will present only the result. The solution of the equations (11) – (20) is 

 

642
3

541
2

1
321

0

,

,)(
2
1,

cctcaXcctcaX

bdrDCXcccatX

+++=+−+=

++=+++= ∫
θφφθ

φθ
 (22) 

provided that  

  ,0)2(1)( ≠′−
′

=++∫ vaC
v

bdxDC  

where .,,,,,,, 654321 Rccccccba ∈  After subtracting Killing vector fields from 
(22) one has  

 aXaXbdrDCXatX φθ ==++== ∫ 3210 ,,)(
2
1,   

provided that  

  .0)2(1)( ≠′−
′

=++∫ vaC
v

bdxDC   
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Suppose ),,),(,( aartaX φθρ=  where ∫ ++= bdrDCr )(
2
1)(ρ  and 

).2(1)( aC
v

r −
′

=ρ  The vector field X  is then projective if it satisfies (2). So, 

using the above information in (2) gives  

 ρρρρρρρ ′′+′′=′′′′+′′=′+′−′′ vvvvvavv ),(
2
1)

2
1(  (23) 

and also .aa rρψ ′′=  A particular solution of (23) is  
  21 ,2 arvaea r +=−=ρ     (24) 

where )0(, 121 ≠∈ aRaa  and .1
reaDC ==  Thus the space-time (5) admits a 

proper projective vector field, for the special choice of v  as given in (24).  

2.2 Existence of Projective vector field in non flat conformally flat 
Bianchi type I space-times 

Consider a Bianchi type-1 space-time in the usual coordinate system 
),,,( zyxt  (labeled by ),,,,( 3210 xxxx  respectively) with metric [9]  

.2)(2)(2)(22 dztfdythdxtkdtds +++−=    (25) 
The above space-time admits three linearly independent killing vector 

fields, which are 
x∂
∂ , 

y∂
∂ , .

z∂
∂  Since we are interested in those cases when the 

above Space-Times (25) becomes conformally flat but non flat, It follows from 
[5,9] there exists only one possibility, which is:  

(P2) )()()( tfthtk == . 
 
Case P2  
 In this case the above Space-Times becomes  

( )22222 )( dzdydxtkdtds +++−=      (26) 
and it admits six independent Killing vector fields, which are  

  
y

x
x
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∂
∂
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∂ , 
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z

∂
∂

−
∂
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y
z

z
y

∂
∂

−
∂
∂ , 

x∂
∂ , 

y∂
∂ , .

z∂
∂  

These six Killing vector fields are clearly tangent to the family of three 
dimensional timelike hypersurfaces of constant .t  Consequently, these 
hypersurfaces are constant (zero) curvature. The Segre type of the above space-
time is {1, (111)} or {(1,111)}. If the Segre is )}111,1{(  then the Space-Times is 
of constant curvature and the projective vector fields are given in [2]. Here it is 
assumed that the space-times is not of constant curvature. The proper projective 
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vector fields for the above space-time (26) are also available in [10]. The non-zero 
independent components of the Riemann curvature tensors are  

.
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   (27) 

One can write the curvature tensor with the components cd
abR  at p  as a 

66×  matrix in a well known way [7]  
),,,,,( BBBAAAdiagR cd

ab = , 
where BAand  are real functions of t  only and where the 6-dimensional labelling 
is in the order 23,13,12,03,02,01  with .0 tx =  Here, at Mp∈  one may choose a 
tetrad ( )zyxt ,,,  satisfying 1====− a

a
a

a
a

a
a

a zzyyxxtt  (with all other inner 
products zero) such that the eigenbivectors of the curvature tensor at p are all 
simple with blades spanned by the vector pairs ( ) ( ) ( )ztytxt ,,,,,  each with eigen 
value ( )pA , and - ( ) ( ) ( )zyzxyx ,,,,, - each with eigenvalue ( )pB . Here we are 
considering the open subregion where A and B are nowhere equal (if BA =  then 
it follws from (27) that the above Space-Times (26) becomes of constant 
curvature, which contradicts to our assumtion; hence BA ≠ ) and .0≠A  If 0=A  
than the rank of the 66×  Riemann matrix becomes three and it follows from [8] 
no proper projective vector field will exist. Hence .0≠A  Thus, at p the tensor 

baabab AhP ;2ψ+=  has eigenvectors t, x, y and z with same eigenvalue, say, 1γ  
and baabab BhP ;2ψ+=  has eigenvectors x, y and z with same eigenvalue, say, 2γ . 
First consider the equation baabab AhP ;2ψ+= , where abP  is a second order 
symmetric tensor with eigenvectors t, x, y and z with same eigenvalue 1γ . The 
Segre type of abP  is )}111,1{( , and abab gP 1γ= . Substituting back, we get 

abbaab gAh 1;2 γψ =+ . Now consider baabab BhP ;2ψ+= , where abP  is a second 
order symmetric tensor with eigenvectors x, y and z with same eigenvalue, say, 

2γ . The Segre type of abP  is ( ){ }111,1  and baabab ttgP 32 γγ += . Substituting back, 
we get baabbaab ttgBh 32;2 γγψ +=+ . Hence on M one has  

abbaab gAh 1;2 γψ =+ ,  baabbaab ttgBh 32;2 γγψ +=+ ,               (28) 
where 21,γγ and 3γ  are some real functions on M. Since BA ≠  then it 

follows from equation (28) that  
,baabab ttgh αβ +=    baabba ttFgE +=;ψ    (29) 
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for some real functions FandE,, βα  on .M  Now one substitutes the first 
equation of (29) in (2) and contracts the resulting expression with ba yx  and then 
with ba zx  to get 0=== a

a
a

a
a

a zyx ψψψ  and one has aa tξψ =  for some 
function .ξ  The same expression contracted with batt  then infers 

aa tξβα 4)( , −=−  and hence )( βα −  is a function of t  only. Now again contract 

the same expression with ba xx . One finds cc tξβ 2= , which implies 
).(0 tzyx a

a
a

a
a

a βββββ =⇒===  Substituting back we get cc tξα 2−= , and 
hence ).(tαα =  Now consider the second equation of (29) and use 

baabba tt ;; ξξψ +=  and contract this with .at  One can easily find that ).(tξξ =  
Consider the first equation of (29) and using (26) one obtains the following non 
zero components of abh   

,and,,)( 33221100 khkhkhh ββββα ===−=    (30)  
where )(),( tt ββαα ==  and ).()( tβαβα −=−  Now we are interested 

in finding projective vector fields by using the relation (10). Writing out equation 
(10) explicitly and using (26) and (30), we get 

( )αβ −=
2
1

0,
0X       (31) 

01,
0

0,
1 =− XkX       (32) 

02,
0

0,
2 =− XkX       (33) 
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0
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3 =− XkX       (34) 

kkXXk β
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1

2
1

1,
10 =+      (35) 
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1
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2 =+ XX       (36) 
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1
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3 =+ XX       (37) 

kkXXk β
2
1

2
1
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20 =+      (38) 

03,
2
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3 =+ XX       (39) 

.
2
1

2
1

3,
30 kkXXk β=+      (40) 

Equations (31), (32), (33) and (34), give 
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where ( ) ( ) ( )zyxAzyxAzyxA ,,,,,,,, 321  and ),,(4 zyxA  are functions of 
integration. In order to determine ( ) ( ) ( )zyxAzyxAzyxA ,,,,,,,, 321  and ),,(4 zyxA  
we need to integrate the remaining six equations. To avoid lengthy calculations, 
here we will present only the result. The solution of the equations (31) – (40) is  
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    (42) 

provided that  

 ( ) ( ) ,02
2
1

18 ≠−=+−∫ kc
k
kcdt βαβ   

where .,,,,,,, 1098765
81 Rcccccccc ∈  After subtracting Killing vector fields from 

(42) one has  

( ) 1
3

1
2

1
1

8
0 ,,,

2
1 zcXycXxcXcdtX ===+−= ∫ αβ   

provided that  

 ( ) ( ) ,02
2
1

18 ≠−=+−∫ kc
k
kcdt βαβ   

Suppose ( ),,,),( 111 zcycxctX η=  where ( ) 82
1)( cdtt +−= ∫ αβη  and 

( ) ( ).2 1 tc
k
k ηβ =−  The vector field X  is said to be projective if it satisfies (2). 

Hence using the above information in (2) we infer  
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    (43) 

and .aa tηψ =  Particular solutions of (43) are  

  
F

Ic
e

F
Ik FGtF 12

−== +η ;    (44) 

  tLek = , ,DNet −=η     (45) 
where ).0(,,,,, ≠∈ FRRNLIGF  Thus the space-time (25) admits a proper 
projective vector field, for the special choice of k  as given in (44) and (45).  
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