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ON THE RAYLEIGH-RITZ QUOTIENT

Alina PETRESCU-NITA!

In linear algebra, the Rayleigh-Ritz quotient is defined for any operator
of a Hilbert space. In the case of selfadjoint operators, it allows variational char-
acterizations of their eigenvalues. In the present paper, properties are presented
for this relationship in the case of general operators, including the original result
which shows that the Rayleigh-Ritz quotientis give an estimate of the “variation
speed” for the operator.
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1. Introduction

Let us assume (E, (-,-)) as a complex n-dimensional Euclidean space. There-
fore, F is a vector space over C, equipped with a scalar product. A linear operator
f + E — FE is defined as orthogonal when it preserves the scalar product, that is
Vae,y € E, (f(x), f(y)) = (z,y), and selfadjoint (= symmetrical) when Vz,y € E,
(f(z),y) = (x, f(y)). We define, as usual, f* the adjoint of f (its defining property
being Vz,y € E, (f*(x),y) = (z, f(y))), and we show that f is orthogonal if and
only if f is a linear isomorphism and f~! = f*; hence f is selfadjoint if and only if
frF=1r

When we use matrices, take B = {e1,ea,...,e,} an orthonormal basis of E
and consider the square matrix A = M? = (f(e1)|f(e2)]-..|f(en)) of the operator
f in relation to B, then the matrix of f* in relation to B is of AT (denoted as A*).
It should be reminded that a square matrix A € M,,(C) is called orthogonal when
A*. A = I, that is when A is invertible and A~ = A*, and as a Hermitian matrix
when A = A*.

Then, the operator f : E — FE is orthogonal if and only if the matrix associated
to f is orthogonal in any orthonormal basis; similarly, f is selfadjoint if and only
if, the matrix of f is a Hermitian in any orthonormal basis. It is known that the
eigenvalues of Hermitian operators are real.

We recall that for any linear operator f : F — FE of a complex Euclidean space
and for any non-zero vector x € E, the Rayleigh-Ritz quotient of f in x is defined as
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When 3B is an orthonormal basis of F and A = M}S is the matrix associated to

f in relation to B, then for any vector x € E (identified with the column-vector X

of the coordinates of x in the basis B) the relationship f(z) = A- X takes place. We

will define X* = X7 the transposed of the conjugate of the vector X. In addition,

for every x,y € E, we have (z,y) = X*-Y. Hence, ||z||*> = X*- X. Considering these
identifications, the Rayleigh-Ritz quotient may be written equivalently as follows:

R o AN (AX)X XA X
A= epE T xx . XX

for any = # 0. (2)

Example 1.1. 1) Let us assume that £ = R? and py : E — E is the rotation
operator with an angle # around the origin. Then, for every = € R?\ {0}, py(z), is
the rotated of x with an angle 0; relative to the Euclidean scalar product we have
(po(),z) = ||z[| - [|2]| - cos @ and R,,(,) = cos @ is independent of x.

2) Let us assume that v € E is a non-zero vector; since it is linearly indepen-
dent, it may be completed to an orthogonal basis {v,us,...,u,} of E (by means of
the Gram-Schmidt process). Then, the vector f(v) will be written in form of

f(?]) = a-v—l—Zbk-uk (With a,bp € (C),
k=2

hence
n

(f(v),v) = <a-v+Zbk-uk,v> = a(v,v) —|—Zbk-0 —a- v v=a-|v|>
k=2 k=2
(f(v),v)
[[v][?
Ritz quotient is precisely the scalar projection of f(v) along v.

In this case, according to (1), R¢(v) = = a, and it results that the Rayleigh-

One classic result consists in the following

Theorem 1.1. Theorem (Rayleigh-Ritz [2]). When A € M, (C) is a Hermitian
matriz and its eigenvalues are arranged in increasing order: Apmin = A1 < Ao < ... <
An—1 < Ap = Amax, then for any possible vector X € C™, the following take place:

MXF X <X A X< )\X" A-X, (3)
)\min:minm: min X*-A-X;

X#0 X*- X [|X]]=1 (4)
)\maX:maxu— max X*-A-X.

X£0 X*-X  |iX|=t

This theorem happens for every selfadjoint operator f : £ — E and it is
expressed simply through the proposition (1). Namely as follows:
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Proposition 1.1. The function Ry : E\ {0} — C has real values and, moreover,
for the eigenvalues (the lowest and the highest one) of f, we have

Amin = Iilg}g( Rf ((L‘) and  Apax = Igleaé’( Rf (CL’) (5)
z#0 z#0

The result can be refined, considering an orthonormal basis B of F in relation
to which the operator f is diagonal. It is known that the matrix A = M? will
be decomposed as follows: A = U - D - U*, where D = diag(A1,...,\,) and U =
(ug|usg] ... |u,) is a matrix having in its column the orthonormal eigenvectors of A.
Considering an orthogonal vector  on u1, we have the following results:

ot A = MU @)l =) Ml (- )P
k=1 k=2
and so
- Ax> )\22|u,’g'x|2 :)\QZKU*-x)k]z =X-a" -
k=2 k=1

Therefore, Ao = min Ry(x).
z#0

zlpy

Remark 1.1. If A € M, ,(C) is a rank-k matrix, then A* - A is a square, non-
negative, definite matrix, (because X*-(A*-A4)-X = (4-X)*-(4-X) = ||A-X|]? >0
for any X). Then, the eigenvalues of A* - A are non-negative. The non-zero square
roots (as many as k) of these eigenvalues are precisely the singular values of the
matrix A and they form the diagonal of a matrix ¥ with the remaining elements
null; moreover, the singular decomposition of A takes the form A =V -3-W* where
V € M,,(C) and W € M, (C) are unitary matrices. Such decomposition allows the
direct calculation of the pseudo-inverse of A, namely AT = V - X . W* [3]. The
Rayleigh-Ritz quotient for the matrix A* - A is, according to (1.1),

Xt (A A X XA A X (A X)) AX
X*- X o X*- X o X*- X -
:||A~X||2:(||A'X||)2.
[|X[[2 124

Its maximum is the square of the "augmentation” of the input-output linear system
C" — C™ defined by the matrix A [4].

2. The Rayleigh-Ritz quotient for linear operators

Let us assume that E is a complex pre-Hilbert space and f : E — E a linear,
not necessarily selfadjoint operator.

Proposition 2.1. The function
p: EN{0} =R, p(z)=|Rs(z)]

1s bounded and it attains its bounds.
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Proof. Let us define S = {x € E| ||z|| = 1}, the unit sphere. E is a metric
space (isometric with C” = R?") and S is a compact set. Moreover, the function
p is continues on E \ {0}, and therefore on S C E\ {0}, too. Consequently, the
restriction p|g is bounded and it is touching its bounds m, M; m = ;Ielg |p(x)|. When

x € E\ {0} is a vector and u = is the versor of z, then u € S and z = ||z||u,

T
IEdl
and we have

(f(a),z) = ([l f(u), ||z]]-u) = |l2][*-(F (), w) = 2] Ry ()-[Jul? = [|2|* Rp (u).

Therefore, W = Ry(u); hence Rf(x) = Ry(u) and p(x) = p(u). Since u € 5,
x

it results that p(x) > m. Similarly, we can show that for whatever x € E \ {0}, we

have p(z) < M. This means that the function p is bounded over E \ {0}, while its

margins are attain on S. g

Remark 2.1. If f is a selfadjoint operator, then the proposition 2.1. is more precise;
namely, according to the Rayleigh-Ritz theorem, the function R has real values, its
extreme global values being on E '\ {0}, precisely Apin and A\pax (that is the extreme
eigenvalue of the operator f); [5],[6].

Proposition 2.2. When the operator f is orthogonal, then Yz € E \ {0},
Rpw) < 1.

Proof. We have Yo € B, |[f@)|2 = (f(), f(x)) = (x, F*(f(x))) = |[2]%, since

f*of = 1g. Therefore, ||f(z)|| = ||z||, and according to Schwarz’s inequality
[(f (@), 2)| < [If(@)]] - ||z]] = [|2]|*, and hence
[(f(z),2)|
R = ——= <1
R @I= e =
U

3. The variation speed of the Rayleigh-Ritz quotient

Let us assume that E is a real pre-Hilbert space and f : £ — E a linear
operator. If B is an orthonormal basis of £ and A = M;?, then Vz,y € E, we
have f(z) = A- X; (z,y) = XT .Y. Then, also, (z,f(y)) = X7 -A-Y and
(y, f(x)) =YT-A.X = XT. AT .Y (the latter relationship being between real
numbers and for a € R, a’ = a). Then

(@, f(y) + (v, f(a)) = XT - (A+ AT) - Y. (6)

On the other hand, (f(z),z) = (A-X)T-X = XT. AT. X; and so considering

the gradients we have,
grad (f(z),z) = grad (X7 - AT . X) = XT . (A4 AT). (7)
Comparing the relationships (6) and (7), we get the following result

(@, f(y) + {f(@),y) = (grad (f(z), z),y). (8)
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In case that f = 1g, the relationship (8) becomes

(grad (z, ), y) = 2(z,y). (9)
On the other hand, according to (1), and applying the formulas

dy — pgrad
grad £ = PP () and - grad |of? = 2,
we have
o (e~ NelPErad (). 2) = (e, aharad el _
o] |4
1 2x

= Wgrad (f(x),x) — w<f($)a$>'

Therefore, for every xz,y € E; x # 0, we have

(grad Ry(z),y) = 2

L (grad (f(2), 2}, ) - (@) - (2.0)

[|]]

According to (8), we have
(grad (f(z), z),y) = (z, f(y)) + {f(2), ) = ([*(2), 9) + {f(2), y);

So that
(arad Ry(@)y) = (@) + £ @) = ogllalRy(w) - (.9) =
= W@+ @) = 2R )] =
1

= g @)+ 17 @) = 2Ry(a) - a.y)

Since y is a general random vector in E, we have the following result

Proposition 3.1. If f : E — E is a linear operator of a real pre-Hilbert space, then
for any x € E; x # 0, we have

1 ,
grad Ry(r) = W(f(x) + /7 (x) = 2R (x) - ). (10)
When we know the gradient of a scalar field ¢, it is possible to determine the

d
density of ¢ along every direction of a versor s, namely —(p(x) = (grad ¢(x), s); this

enables the determination of the rate of change of ¢ along the direction of s.

Corollary 3.1. When the linear operator f : E — E is selfadjoint and x € E'\ {0},
then

2
grad Ry(x) = W(f(w) — Ry(x) - ). (11)
This is a direct result of (10), since f* = f.
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Corollary 3.2. When the linear operator f : E — FE is selfadjoint and when x €
E\ {0} is an extreme value point for Ry(x), then x is an eigenvector for f.

Proof. If = is an extreme value point on the open set E \ {0}, then it is a critical
point for R¢(x) and hence, grad R¢(x) = 0; according to (11), it results that f(z) =
R¢(x) - x. The corresponding eigenvalue is precisely Ry (z). O

Corollary 3.3. When the linear operator f : E — E is orthogonal and x € E '\ {0}
is an extreme local point for Ry(x), then the subspace G of E generated by x and
f(x) is invariant by f.

Proof. In this case, f is an isomorphism and f* = f~!. According to (10), it follows
that f(z) + f~'(z) — 2Rs(x) - = 0. When z € G, then z = az + Bf(z), with
a,B € R, hence f(2) = af(x) + Bf(f(x)). But f(f(z)) + 2 —2Rs(x) - f(x) = 0.

Consequently,
f(2) = af(x) + B2R;(z) - f(x) — x);
so f(z) € G. O
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