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ON THE USE OF THE EM ALGORITHM 
FOR TRAINING A MAP CLASSIFIER 

Ş. OPRIŞESCU, V. BUZULOIU ∗ 

Segmentarea imaginilor satelitare constă în două etape: segmentarea 
propriu-zisă, şi îmbunătăţirea segmentării, numită regularizare. Ambele etape sunt 
realizate utilizând „clasificatori” Bayesieni, care trebuie antrenaţi (parametrii care 
caracterizează respectivele modele statistice trebuie întâi  estimaţi). Algoritmul EM 
este o tehnică de estimare statistică performantă în prelucrarea imaginilor 
satelitare, atât pentru zonele urbane cât şi pentru cele rurale, dacă se utilizează ca 
modele statistice mixturile Gaussiene multidimensionale. Această concluzie este 
susţinută de o analiză experimentală extinsă, folosind imagini satelitare reale. 

 
Satellite image segmentation consists of two steps: the actual segmentation, 

and the improvement of the segmented image, called regularization. Both steps are 
performed by Bayesian "classifiers", which must be trained (that is, the parameters 
which characterize the corresponding statistical models must be estimated in 
advance). The EM algorithm is a powerful statistical estimation technique in 
satellite image analysis both for urban and rural areas, if the multivariate Gaussian 
mixtures are used as statistical models. This conclusion is supported by an extended 
experimental analysis using actual satellite images.  

Keywords: EM algorithm, Gaussian mixtures, Bayesian segmentation. 

Introduction 

In image processing, the starting point is an actual image whose accuracy 
can be affected by several random or deterministic factors. The goal of processing 
is reaching a better fitting image with respect to its real origin. The satellite Earth 
observation supplies hyper-spectral images, which can be used for map drawings, 
landscape analysis, or crop supervision and, in most of the cases, the images arise 
from mixed zones, including rural and urban areas. For such urban & rural zones, 
the correct "reading" of the original landscape has the highest importance. Image 
processing consists of two stages, the segmentation of the actual image and the 
regularization of the segmented image. Both steps are performed by "classifiers", 
which provide the solutions of some optimization problems. Of course, these 
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classifiers use statistical models, and they must be trained (that is, the parameters 
which characterize the models must be estimated in advance). 

Traditionally, rural zones are modelled through 4-dimensional Gaussian 
distributions, when working with hyper-spectral images (4 band records) in the 
state space. Modelling the urban areas is much more difficult, as they consist of 
several materials representing a large source of variability of the reflectance ([1],  
[5], [11]). In a previous study ([9]) we have established the fact that, when an 
urban zone will be treated as a single object, modelling it through a 4-dimensional 
Gaussian mixture is well justified by the texture analysis. That is, the global 
texture parameters (homogeneity, contrast, uniformity, entropy, correlation, the 
Gauss-Markov entropy) are similar for the "urban spots" and the corresponding 
Gaussian mixtures. 

Let us denote by E = RN the space of states corresponding to N frequency 
bands. A hyper-spectral image S consisting of M pixels s can be represented as a 
point in the space EM. Let us denote by Y = (Ys1,…,YsM) the random field 
associated with an image S and by y = (ys1,…,ysM) ∈EM a realization of Y. Let Λ 
be the set of the K classes which are used as labels for the pixels in S. We denote 
by X = (Xs1,…,XsM) the random field which expresses the classification process 
and by x = (xs1,…,xsM) ∈ΛM a configuration (realization of the classification 
process) of the image S. The probability distribution of Y conditioned by a 
specified configuration, denoted P(Y|X=x), is given through the conditional 
density f(y|X=x). 

The Bayesian segmentation uses the a posteriori probability for the 
configurations x, given a realization of Y in the state space, 
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The MAP segmented image is the solution of the following optimization 
problem 

( ) ( ) ( ){ }xXyxXyYxXx* =|f=P max arg=|=P max arg= ⋅=       (2) 
    

The basic hypothesis of the MAP method is the conditional independence of the 
observed states: 
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In a first approximation (the segmentation process), the configurations x have 
equal probabilities, 
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According to these hypotheses, the MAP configuration x* = (x*
s1,…,x*

sM) is the 
solution of a local optimization problem. For each pixel s, one has to solve the 
optimization problem 
 

( ) ( ){ }Kss1ss
*
s x=X|yf,…,x=X|yfmax arg=x        (3) 

   
The MAP-Markov regularization is performed under the hypothesis that X 

is a Markov field on S with the neighbourhood system N(S). That is, we assume 
that the following conditions are satisfied: 
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where x(-i) is the (M-1)- dimensional configuration obtained after removing si. 
According to the Hamersley – Clifford theorem, the random field X is a Markov 
field on S with the neighbourhood system N(S) if and only if it is a Gibbs field on 
S with respect to N(S). This means that, under the Markov assumption, the 
distribution P(X=x) must be a Gibbs distribution. 
 Let us denote by C the family of cliques corresponding to a neighbourhood 
system N(S), by Uc(x) the energy of the clique c∈C, and by U(x) the total energy 
of a configuration x, 

∑
∈
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Cc

c )(U)U( xx       

The Gibbs field associated with a neighbourhood system N(S) is the random field 
X characterized by the Gibbs distribution 

( ) ))U( exp(Z==P 1 xxX −⋅−     
where Z is the normalization constant. 
 The MAP-Markov regularized image is the solution of the following 
optimization problem 

( ){ }xXyxx =|))·fU(exp(  max arg=** −    (4) 
    

Like in the segmentation stage, the solution x**=(x**s1,…, x**sM) is obtained by 
solving the corresponding local optimization problems, 

( ) ( ){ }KssKss
**

s x=X|y))fU(xexp(,…,x=X|y))fU(xexp(max arg=x −− 11  (5) 
 

A rural zone consists of a rather small number of rural categories, such as 
grain, forest, grassland, water etc. Each spot corresponding to a rural category is a 
homogenous one, and it can be represented by one class (color). Therefore, a rural 
area will be looked upon as a composed zone, consisting of several rural 
categories. Traditionally, rural categories are modelled through 4-dimensional 
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Gaussian distributions, when working with hyper-spectral images in the state 
space. 

The urban zones consist of several materials representing a large source of 
variability of the reflectance. These materials could be typical for certain natural 
landscape, which means that some urban pixels could have the same reflectance 
value as the natural ones. Because of that, urban areas cannot be characterized 
through only grey level information, but they should be treated as textures and 
accordingly analyzed in order to discriminate between urban areas and non urban 
ones. In spite of its heterogeneity, an urban zone will be treated as a single object 
belonging to one and the same category, the urban category. There exist several 
texture parameters, either global or local, either empirical or based on statistical 
models, which allow differentiating between urban and rural. Any statistical 
model for urban area (when treated as a single object) should agree with the 
texture description offered by these parameters. 
 In [9] we have examined the possibility of modelling an urban category 
through a mixture of 4-dimensional Gaussian distributions. The positive answer to 
this issue has been obtained by studying the concordances of the texture 
parameters for an urban category and the associated Gaussian mixture. 
 A texture can be defined as "an attribute representing the spatial 
arrangement of gray levels of the pixels in a region" ([2]). A texture feature (or 
parameter) is a value, computed from the image of an object, that quantifies some 
characteristic of the gray-level variation within the object. 
 One of the most known texture analysis methods, gray level co-occurrence 
matrix (GLCM), estimates image properties related to second-order statistics. 
Based on GLCM, one calculates the following texture parameters: homogeneity, 
contrast, uniformity, entropy, correlation. 
 The Gauss-Markov model represents another well known approach for the 
characterization of textures. When considering V4 neighborhoods, the probability 
distribution of the 5-dimensional vector (one pixel and its neighbors) in the state 
space is a Gaussian one. The conditional distribution of the grey level of a pixel, 
given the values for its neighbors is Gaussian, one dimensional. The 
corresponding conditional variance is used as a texture parameter and it is called 
"temperature" ([5]). Another texture parameter, based on the Gauss-Markov 
model is the G-M entropy, which is the continuous entropy of the 5-dimensional 
Gaussian model. 
 In [9] we have established that the global texture parameters 
(homogeneity, contrast, uniformity, entropy, correlation, G-M entropy) are similar 
for the urban categories and the identified mixtures. This fact strongly supports 
our approach of modeling an urban area through a Gaussian mixture, when it is 
treated as a single object. While the variance for each pixel is the same for the real 
texture and the corresponding mixture, the parameter "temperature" is smaller for 
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urban textures than for Gaussian mixtures. Since the "temperature" is a local 
parameter, this mismatch doesn't encroach upon our model. 
 
 For a rural & urban satellite image, we assume that (K-1) classes 
correspond to some rural categories (grain, forest, grassland, water etc.), while the 
last class corresponds to an urban category. Then, for any pixel s, f(y|X=xi) are 
some Gaussian probability densities N(4; θi, Φi) for i=1,…,(K-1), while f(y|X=xK) 
is the probability density of a Gaussian mixture with m components, 
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In order to process the actual image (through segmentation and regularization), 
one has to estimate the parameters {θi, Φi, i=1,…,(K-1)} and {αi, μi, Σi, i=1,…,m} 
in advance. That is, one has to train the classifier. Best training is reached when a 
ground truth is available but, most often, this is not the case. Therefore, one has to 
choose some "training windows" and implement some appropriate estimation 
techniques. The method we discuss is the EM algorithm, which proved itself a 
very reliable method, leading to accurate MAP-Markov regularized images. 

1. The EM Algorithm 

The formulation of the EM Algorithm in its present generality is due to 
Dempster A.P., Laird N.M., Rubin D.B. ([3], [7]). The EM Algorithm is a broadly 
applicable method that provides an iterative procedure for computing the 
Maximum Likelihood Estimation (MLE). The observed value of the random 
vector Y, denoted y, is viewed as being a vector of incomplete-data. Also, it is 
regarded as an observable function of the so called complete data. The notion of 
incomplete data includes the conventional sense of missing data, but it also 
applies to situations where the complete data represent what would be available 
from some hypothetical experiment. In the latter case, the complete data may 
contain some variables that are never observable in a data sense. 

On each iteration, there are two steps: The E-step consists in 
manufacturing data for the complete-data problem, using the observed data set of 
the incomplete-data problem and the current value of the parameter. The M-step 
consists in the maximization of the log-likelihood of the complete-data problem. 
In fact, the log-likelihood is replaced by its conditional expectation given the 
observed data. Starting from suitable initial parameter values, the E and M steps 
are repeated until convergence. 
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 Notation: 
For the presentation of the algorithm we use the following notations: 

• The unknown parameter ψ = (ψ1, ..., ψd)t ∈ Ω ⊆ Rd; 
• The incomplete-data random vector Y, with the probability density 

function g(y;ψ); 
• For the observed y, the likelihood function L(ψ)=g(y;ψ); 

• The score statistic for the incomplete-data 
Ψ
ΨΨy

∂
∂

=
)lnL(  );S(  ; 

• The complete-data random vector (Yt,Zt)t, with the probability 
density function gc(y, z; ψ); 

• For specified (y,z), the likelihood function Lc(ψ)=gc(y, z; ψ); 

• The score statistic for the complete-data 
Ψ
ΨΨzy

∂
∂

=
)(lnL  );,(S c

c ; 

• The current value of the parameter ψ(k), k = 0, 1, .… 
• The conditional expectation of the complete-data log-likelihood 

( ) ( )yΨΨΨ Ψ  |  )(lnLE=,Q c
(k)

(k)    (7) 
  

The EM Algorithm 
 

- Let ψ(0) be some initial value for ψ 
- The (k+1)-th iteration ( k=1,2,.... ) consists of the following steps: 

• The E step 
Estimate the non-observed data by taking 

( )yZz Ψ  | E= (k)
(k)       

Calculate 
( ) ( )yΨΨΨ Ψ  |  )(lnLE=,Q c

(k)
(k)      

   

• The M step 
Choose ψ(k+1) so that 

( ) ( ) ΩΨΨΨΨΨ ∈∀≥+  ,,Q,Q (k)(k)1)(k     
    

Dempster, Laird and Rubin ([3]) have proved that the incomplete-data likelihood 
function L(ψ) is not decreased after an EM iteration, as well as the convergence 
towards a stationary point. 
 
Proposition The incomplete-data likelihood function L(ψ) is not decreased after 
an EM iteration, 

,... , ,k ),L()L( (k)1)(k 210=≥+ ΨΨ      
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Hence, the convergence must be obtained with a sequence of likelihood 
values that are bounded above. 

The E and M steps are alternated repeatedly until the difference L(ψ(k+1)) -
L(ψ(k)) changes by an arbitrarily small amount. 

The nature of the limit is described in the following propositions. 
 
Proposition Suppose that Q(ψ,φ) is continuous in both ψ and φ. Then all the limit 
points of any sequence of EM iterates (ψ(k))k (for any initial value ψ(0)) are 
stationary points of L(ψ), and the sequence (L(ψ(k)))k converges monotonically to 
some value L*=L(ψ*), for some stationary point ψ*. 
     

Proposition Suppose that the likelihood function for the incomplete data, L(ψ), is 
unimodal, with ψ* being the only stationary point and that ∂Q(ψ,φ)/∂ψ is 
continuous in both ψ and φ. Then, any sequence of EM iterates (ψ(k))k (for any 
initial value ψ(0)) converges to the unique maximizer ψ* of L(ψ); that is, it 
converges to the unique MLE of ψ. 
    

  The proofs of these propositions can be found in Mc Lachlan and Krishnan ([7]). 
 

The case of multivariate Gaussian mixtures 
 
Let Y be a random vector with the probability density given by a mixture of m 
Gaussian, N-dimensional distributions N(N; μi, Σi). For each component i of the 
mixture, the mean vector is μi ∈ RN, and Σi is a symmetrical, positive defined 
matrix, of dimension N×N. 
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The parameter, written in a vector form, is 
.),...,,,...,,α,...,(α= t

mmm ΣΣ111 µµΨ     
We consider n independent, identical distributed random vectors, Y1,...,Yn, denote 
Y=(Y1

t,...,Yn
t)t, and denote by y = (y1

t,...,yn
t)t the observed data. Then 

∏
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n
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and, for the observed y, the likelihood function is L(ψ)=g(y;ψ). 
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The missing-data are the indicator variables 

⎩
⎨
⎧

=
otherwise  ,

),f(y; from arouse y if  ,
Z iij

ij 0

1 Σµ
   (8) 

We consider the random vectors Zj =(Z1j ,..., Zmj)t,  j = 1,...,n,  Z =(Z1
t,...,Zn

t )t. 
The complete-data, denoted (yt,zt)t, are the values of the random vector (Yt,Zt)t. 
 
 The EM Algorithm 
   

• The initial value: ψ(0)=(μ1
(0)t,...,μm

(0)t, Σ1
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(0), α1
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(0))t 
• The (k+1)-th iteration, the E-step: 
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  for i =1, ..., m,  j = 1, ..., n. 
    

• The (k+1)-th iteration, the M-step: 
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The iterative process stops when 

   threshold  )L()L( (k))(k <−+ ΨΨ 1      
or when 

threshold  (k))(k <−+ 21 ΨΨ     

Remark In the studied case, the probability density f(y;ψ) is a finite linear 
combination of Gaussian densities, hence it is a bounded function. It follows that 
the sequence (L(ψ(k)))k is bounded, hence its convergence is ensured. 
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Remark The complete-data log-likelihood function has the expression 
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where C = (1/2)nN·ln(2π). We notice that Q(ψ,ψ(k)) is a continuous function with 
respect to both variables, ψ and ψ(k). This fact implies the convergence of 
(L(ψ(k)))k towards L*=L(ψ*), for some stationary point ψ*. 
 

Training a MAP Classifier 
 

Training the classification system consists in the estimation of the 
parameters of the involved statistical models. The estimators of the parameters for 
urban areas (modelled through Gaussian mixtures) are obtained by the EM 
algorithm. The estimators of the parameters for rural areas should be constructed 
by direct statistical estimation, using an appropriate ground truth. When such a 
ground truth is not available, an appropriate EM algorithm will be used for 
estimation, on the basis of a rural composed zone. 

We have considered several mixed, urban & rural hyper-spectral images, 
with 4 bands, of free Internet access [12]. The parameters which characterize the 
statistical models must be estimated by using some appropriate learning windows 
in order to train the classification system. We have developed an algorithm for 
training the classification system, by means of the EM Algorithm. 
 

EML algorithm (Estimation-Maximization-Learning) 
 It estimates (learns) the parameters of an urban or rural zone, by means of 
an appropriate EM algorithm 

• The input image is a portion of a real, 4 bands SPOT 4 satellite image. It 
consists of n pixels; 

• Choose the maximal number of classes of the Gaussian mixture; 
• Initialize the parameter ψ; 
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• Iteratively compute Z(k),ψ(k+1) on using formulae (9), (10), (11) and (12) 
for equal covariance matrices, Σi=Σ, until 

∑
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i

(k)1)(k

1

212
0.001μμαα  

• Output: ψ(k+1). 
 

We exemplify the above algorithms on the image Fig. 1, which involves both 
rural and urban areas. 
    

 
Fig. 1. Real satellite image (3rd band) 

   

                                      
Fig. 2.    (a) Urban learning window   (b) Rural learning window 

   

Learning the parameters for the urban area has been achieved by the EML 
algorithm and eight components have been retained. The corresponding learning 
window is presented in Fig. 2. (a). The Table 1 contains some of the estimated 
parameters (the values αi, where i is the index of the identified component, and the 
mean vectors μ(Bk), where k is the index of the spectral band). 

Table 1 
EML-Estimated Parameters for Urban Area 

Comp. αi μ(B1) μ(B2) Μ(B3) μ(B4) 
1 0.62 75.3 157.56 145.45 113.46 
2 0.1035 104.87 124.23 125.5 112.52 
3 0.1026 81.73 192.47 178.66 120 
4 0.0411 91.7 181.48 176.38 143.98 
5 0.0359 68.63 151.64 138.13 125.28 
6 0.0262 83.65 190.23 161.57 121.72 
7 0.0216 95.31 221.78 214.43 137.24 
8 0.0075 122.34 236.97 240.93 183.95 

 
Learning the parameters for the rural area has been achieved by the EML 

algorithm applied to a composed rural image, and seven different classes have 
been retained. But, as we mentioned, we don’t have a ground truth, so we cannot 
make the correspondence between these classes and different crop types. The 
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corresponding learning window is presented in Fig. 2. (b). The table 2 contains 
the mean vectors θ(Bk), where k is the index of the spectral band. 
    

Table 2 
EML-Estimated Parameters for Rural Area 

Classes θ(B1) θ(B2) θ(B3) θ(B4) 
1 105.63 231.22 177.79 161.61 
2 183.35 87.69 117.21 88.56 
3 81.51 174.31 147.68 129.15 
4 131.77 250.19 210.26 193.52 
5 150.94 114.59 127.09 115.62 
6 190.95 77.08 107.42 118.98 
7 123.27 157.22 145.21 131.83 

    
Remark In the EML algorithm, the initial value of the parameter, ψ(0), was 
chosen in the most likely region of the parameter space (αi

(0)=1/m for i=1,...,m, 
μi

(0) were chosen such that they cover the interval of grey levels (0,255), and Σ(0) 
was taken equal to the covariance matrix calculated for the whole actual image). 
 
Remark The convergence of the EM algorithm was obtained in a rather small 
number of steps (minimum 7 steps, maximum 100 steps). 
 

The quality of the trained classifier was validated through the MAP 
segmentation (by solving the optimization problem (3)) and the MAP-Markov 
regularization (by solving the optimization problem (5)). The final image is 
presented in Fig. 3. 

 

 
Fig. 3. Final segmented & regularized image. 

   

The experiments have been performed using either the Matlab 
programming environment or C++. 

Conclusions 

We have detailed in this paper the construction of the steps of an EM 
algorithm for training the classification of both rural and urban areas in satellite 
images. 

In [9] we’ve established that, when an urban zone will be treated as a 
single object, modeling it through Gaussian mixtures is well justified by the 
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texture analysis. According to this model, the EM algorithm for a Gaussian 
mixture is the natural approach for learning the parameters of an urban zone.  

For a rural zone, the traditional training process requires a ground truth, 
which is not available in most of the cases. We use an adapted EM algorithm for 
learning the parameters of a rural zone and apply it to a representative, composed, 
rural training window. 

The performances of the trained classifier are fully confirmed by the MAP 
segmentation and the MAP-Markov regularization of the image. On the basis of 
our study, we can conclude that the EM algorithm is suitable for the training 
stage. It is a powerful statistical estimation technique in image analysis, which can 
be successfully used in training the classification system both for urban and rural 
areas. 

As a final conclusion, we consider that the use of the Gaussian mixtures in 
the modeling process, the use of the EM algorithm in the training stage, and the 
implementation of MAP segmentation and MAP-Markov regularization offer very 
good results in the processing of mixed, rural & urban satellite images.         
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