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HOMOTOPY ANALYSIS METHOD AND COMBINATORIAL

APPROACH TO STUDY OF BUCKET RECURSIVE TREES

Ramin KAZEMI1, Elyas SHIVANIAN2

In this paper, we give a result related to m-decomposable trees in bucket

recursive trees of size n with variable bucket capacities using the well-known powerful ho-
motopy analysis method (HAM). We prove that m-decomposable become more numerous
as m grows to infinity. Also, we study the quantities out-degree and descendants of label
j and give closed formulas for the probability distributions and all factorial moments.

Keywords: Bucket recursive tree with variable bucket capacities, homotopy analysis
method, out-degree, descendants, decomposable tree.

1. Introduction

A graph is a collection of points and lines connecting a subset of them [1]. Trees are
defined as connected graphs without cycles, and their properties are basics of graph theory.
Recursive trees are rooted labelled trees, where the root is labelled by 1 and the labels of
all successors of any node v are larger than the label of v. They are one of the most natural
combinatorial tree models with applications in several fields, e.g., it has been introduced as
a model for the spread of epidemics, for pyramid schemes, for the family trees of preserved
copies of ancient texts and furthermore it is related to the Bolthausen-Sznitman coalescence
model. There are (n− 1)! different recursive trees with n nodes. It is of particular interest
in applications to assume the random recursive tree model and to speak about a random
recursive tree with n nodes, which means that one of the (n − 1)! possible recursive trees
with n nodes is chosen with equal probability, i.e., the probability that a particular tree
with n nodes is chosen is always 1/(n−1)! [9]. Kazemi [4] introduced a new version of these
trees where the nodes are buckets with variable capacities labelled with integers 1, 2, ..., n.
In this model, the capacity of buckets is a random variable. The motivation for studying
such models is multifold. For example, if n atoms in a branching molecular structure (such
as dendrimer) are stochastically labelled with integers 1, 2, ..., n, then atoms in different
functional groups can be considered as the labels of different buckets of a bucket recursive
tree with variable capacities of buckets. Also, this model of tree structures is appeared in
some computer science applications. We define the tree below for the reader’s convenience.

Definition 1.1. A size-n bucket recursive tree Tn with variable bucket capacities and max-
imal bucket size b starts with the root labelled by 1. The tree grows by progressive attraction
of increasing integer labels: when inserting label j + 1 into an existing bucket recursive tree
Tj, except the labels in the non-leaf nodes with capacity < b all labels in the tree (containing
label 1) compete to attract the label j + 1. For the root node and nodes with capacity b, we
always produce a new node j + 1. But for a leaf with capacity c < b, either the label j + 1 is
attached to this leaf as a new bucket containing only the label j + 1 or is added to that leaf

1Department of Statistics, Imam Khomeini International University, Qazvin, Iran., e-mail:

r.kazemi@SCI.ikiu.ac.ir
2Department of Mathematics, Imam Khomeini International University, Qazvin, Iran.

67



68 Ramin KAZEMI, Elyas SHIVANIAN

and make a node with capacity c+ 1. This process ends with inserting the label n (i.e., the
largest label) in the tree.

By definition, a node v with capacity c(v) < b has the out-degree 0 or 1. In Figure
1, we diagrammatically show the step-by-step growth of a tree of size 11 with b = 2. The
probability p, which gives the probability that label n+1 is attracted by node v in the model

is c(v)
n−|γ| , where

γ = {v ∈ T ; c(v) = k < b, and v is a non-leaf}.
A sequence of non-negative numbers (αk)k≥0 with α0 > 0 and a sequence of non-negative

Figure 1. The step-by-step growth of a tree of size n = 11 with maximal
bucket size b = 2 [5].

numbers β1, β2, ..., βb−1 is used to define the weight w(T ) of any ordered tree T by w(T ) :=
Πvw(v), where v ranges over all nodes of T . The weight w(v) of a node v is given as follows:

w(v) :=

{
αd(v), v is root or complete (c(v) = b)
βc(v), v is incomplete (c(v) < b),

(1)

where d(v) denotes the out-degree of node v. Furthermore, L(T ) denotes the set of different
increasing labelings of the tree T with distinct integers {1, 2, ..., |T |}, where L(T ) := |L(T )|
denotes its cardinality. Then the family T consists of all trees T together with their weights
w(T ) and the set of increasing labelings L(T ). For a given degree-weight sequence (αk)k≥0

with a degree-weight generating function φ(t) :=
∑

k≥0 αkt
k and a bucket-weight sequence

β1, β2, ..., βb−1, we define the exponential generating function

Tn,b(z) :=

∞∑
n=1

Tn,b
zn

n!
, (2)
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where Tn,b :=
∑

|T |=n w(T ) · L(T ) is the total weights. For this model,

T
′

n,b(t) = b!−
∑r

i=1 |Pki
| (b− 1)!

1− b!1−
∑r

i=1 |Pki
|t
,

Tn,b =
(n− 1)!(b!)n(1−

∑r
i=1 |Pki

|)

b
, n ≥ 1, (3)

where |Pki | denotes the size of the set of all trees of size ki(i = 1, 2, ..., r) [4]. In the equation
(3), if ith subtree starts with a bucket with capacity c(v) = 1, then we set |Pki | = 0. Kazemi
studied the following random variables in this model: the depth of the largest label [4], the
first Zagreb index [3], the subtree size profile [5] and the branches [6].

The paper is organized as follows. First, we give a result related to m-decomposable
trees in Section 3 using the well-known powerful homotopy analysis method (HAM). Let
On,j be the random variable which counts the out-degree of the bucket containing label
j in bucket recursive tree of size n with variable capacities of buckets. In Section 4, we
first evaluate separately for probabilities P(On,j = m) the case j = 1 and m = r via a
bivariate generating function (Lemma 4.1). Second we introduce a trivariate generating
function T (z, u, v) for studying of P(On,j = m) if bucket v is complete. Third we compute
all factorial moments for our model. In Section 5, with the same approach we obtain a closed
formula for the probability distribution and all factorial moments of Yn,j , which counts the
number of descendants of label j (i.e., the size of the subtree rooted at bucket containing
label j).

2. Preliminaries

In the discourse we shall use the following notations:

Xℓ := X(X − 1)(X − 2) · · · (X − ℓ+ 1),[
n

k

]
: the Stirling numbers of the first kind,

Hn =

n∑
k=1

1

k
: the nth harmonic number,

H(a)
n =

n∑
k=1

1

ka
: the nth harmonic number of order a.

Let [zn]f(z) denote the operation of extracting the coefficient of zn in the formal power
series f(z) =

∑
fnz

n. Also, we will use the following equalities:

[zn] log
( 1

1− z

)
(1− z)−1 = Hn, (4)

[zn] log2
( 1

1− z

)
(1− z)−1 = H2

n −H(2)
n , (5)

[zn]f(qz) = qn[zn]f(z), (6)∑
n≥0

n∑
m=0

[
n

m

]
zn

n!
vm =

1

(1− z)v
, (7)

[zn]
1

(1− z)α
=

(
n+ α− 1

n

)
. (8)
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3. Homotopy Analysis Method: The Number of m-decomposable Trees

Let us illustrate first the basic concept of homotopy analysis method (HAM) (see
[2, 7, 11] for more details and applications) which we will employ it to discover the number
of m-decomposable trees.

3.1. Homotopy Analysis Method (HAM)

Consider the following general nonlinear system

N[u(r, t)] = 0,

where N is a nonlinear operator, u(r, t) is an unknown function, and r and t denote spatial
and temporal independent variables, respectively. For simplicity, we ignore all boundary or
initial conditions, which can be treated in the similar way. By means of generalizing the
traditional homotopy method, we have the so-called zero-order deformation equation

(1− p)I[ϕ(r, t; p)− u0(r, t)] = p~H(r, t)N[ϕ(r, t; p)], (9)

where p ∈ [0, 1] is the embedding parameter, ~ ̸= 0 is a nonzero auxiliary parameter,
H(r, t) ̸= 0 is an auxiliary function, I is an auxiliary linear operator, u0(r, t) is an initial
guess of u(r, t), ϕ(r, t; p) is an unknown function, respectively. It is important that one has
great freedom to choose auxiliary things in HAM. Obviously, when p = 0 and p = 1, it holds

ϕ(r, t; 0) = u0(r, t), ϕ(r, t; 1) = u(r, t),

respectively. Thus as p increases from 0 to 1, the solution ϕ(r, t; p) varies from the initial
guess u0(r, t) to the solution u(r, t). Expanding ϕ(r, t; p) in Taylor series with respect to p,
one has

ϕ(r, t; p) = u0(r, t) +
+∞∑
m=1

um(r, t)pm, (10)

where

um(r, t) =
1

m!

∂mϕ(r, t; p)

∂pm

∣∣∣
p=0

. (11)

If the auxiliary linear operator, the initial guess, the auxiliary parameter ~, and the auxiliary
function are so properly chosen, the series converges at p = 1, so we obtain

u(r, t) = ϕ(r, t; 1) = u0(r, t) +
+∞∑
m=1

um(r, t). (12)

Thus the governing equation for um(r, t) can be deduced as follow:
Define the vector

u⃗n = {u0(r, t), u1(r, t), ..., un(r, t)}.
Differentiating m times with respect to the embedding parameter p and then setting p = 0
and finally dividing them by m!, we have the so-called mth-order deformation equation

I[um(r, t)− χmum−1(r, t)] = ~H(r, t)Rm(u⃗m−1), (13)

where

Rm(u⃗m−1) =
1

(m− 1)!

∂m−1N[ϕ(r, t; p)]

∂pm−1

∣∣∣
p=0

, (14)

and

χm =

{
0, m ≤ 1,
1, m > 1.
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3.2. The Number of m-decomposable Trees

A tree is said to be m-decomposable if it has a spanning forest whose components
are all of size m. Tree decompositions of a very general nature are of interest in the theory
of networks. The special case m = 2 corresponds to the question whether a tree has a
perfect matching or not. Let m be a fixed natural number and A(x) denote the exponential
generating function for the total weights of m-decomposable our models from a variety
determined by the degree function φ(t); the set of these trees is denoted by T. Furthermore,
let Tl denote the set of models from our variety with a spanning forest whose components
are of size m, except for the component containing the root, which is of size l, and let Al(x)
be its generating function. Note at this point that A(x) = Am(x) by definition.

We define the bivariate generating function N(x, y) =
∑

l≥1 Al(x)y
l for the union∪

l Tl, where the exponent of x gives the size of a tree and the exponent of y the size of the
component containing the root in the associated spanning forest whose other components
have size m.

In passing, we think of a tree T in the class Tl as being decomposed into the root,
followed by several subtrees T1, T2, . . . attached to it. Now note that the associated spanning
forest F whose components (with exception of the distinguished component that contains
the root) all have size m induces spanning forests of the same kind in T1, T2, . . .: those Ti

whose roots belong to the component of F that contains the root of T belong to some Tri ,
whereas the others have to belong to T. Conversely, a collection of rooted trees from T∪

∪
l Tl

whose roots are joined to a new common root yields a rooted tree from
∪

l Tl (similar to [8]).
This decomposition translates directly to differential equation

∂

∂x
N(x, y) = yφ(A(x) +N(x, y))

= y(b− 1)! exp
(
b(A(x) +N(x, y))

)
, (15)

with initial condition N(0, y) = 0, since

d

dx
Al(x) =

∑
r1+···=l−1

A1(x)
r1A2(x)

r2 · · ·
r1!r2! · · ·

φ(r1+r2+··· )(A(x)).

Now, using the homotopy analysis method (HAM) described in previous subsection (by
setting ~ = −1 and H(x, y) = 1), the differential equation (15) has been led to the following
closed-form solution

N(x, y) =
+∞∑
m=1

Nm(x, y) =
1

b
log

(
1

1− yb!
∫ x

0
ebA(t)dt

)
.

Thus

Al(x) =
b!l

bl

(∫ x

0

exp(bA(t))dt

)l

,

since [xl]f(qx) = ql[xl]f(x). Then we arrive at the equation

Am(x) = A(x) =
b!l

bm

(∫ x

0

exp(bA(t))dt

)m

.

Simplification and differentiation with respect to x gives

b
1
mm

1
m−1A′(x)A(x)

1
m−1 = ebA(x),

which leads to the implicit solution

x = b
1
m

∫ A

0

(mt)
1
m−1e−bt dt. (16)
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Note that A has nonzero coefficients only for those powers xn for which n is a multiple of
m. We see that A(x) = B(xm), where B has a dominant singularity at ρm and ρ is given by

ρ = b
1
m

∫ ∞

0

(mt)
1
m−1e−bt dt = m

1
m−1Γ

(
1
m

)
.

A simple singularity analysis gives:

[xmn]A(x) ∼ f(b)

n

(
m1− 1

m

Γ
(

1
m

) )mn

,

where f(b) is a function of b. Since the total weights of our models with n vertices is

Tn,b = b−1(n− 1)!(b!)n(1−
∑r

i=1 |Pki
|),

we see that the ratio of m-decomposable among all trees is asymptotically

m

(
m1− 1

m

Γ
(

1
m

) )mn

f(b).

Also m1−1/mΓ(1/m)−1f(b) tends to f(b) as m → ∞. Thus m-decomposable become more
numerous as m grows to infinity.

4. Out-degree

In this section, we consider the random variable On,j , which counts the out-degree of
bucket containing label j in a random bucket recursive tree with variable capacities of buckets
of size n. As our first result we have the following lemma that is immediate consequence of
the stochastic growth rule of the model (similar to [9]).

Lemma 4.1. The bivariate generating function

K(z, v) =
∑
n≥1

∑
r≥0

P(On,1 = r)Tn,b
zn

n!
vr

of the root-degree is given by

K(z, u) = b!−
∑r

i=1 |Pki
|
∫ z

0

φ(vTn,b(t))dt.

Proof. By using the fact the total weights of the r subtrees and the root node is

αrb!
−

∑r
i=1 |Pki

|Tk1,b · · ·Tkr,b,

proof is completed (see [4] for details). �

For our model of size n with root-degree r and subtrees with sizes k1, ..., kr, enumer-
ated from left to right, where the bucket containing label j lies in the leftmost subtree and is
the i-th smallest bucket in this subtree, we can reduce the computation of the probabilities
P(On,j = m) to the probabilities P(Ok1,i = m). We get as factor the total weight of the

r subtrees and the root node αrb!
−

∑r
i=1 |Pni

|Tk1,b · · ·Tkr,b, divided by the total weight Tn,b

of trees of size n and multiplied by the number of order preserving relabellings of the r
subtrees, which are given here by(

j − 2

i− 1

)(
n− j

k1 − i

)(
n− 1− k1
k2, k3, ..., kr

)
.

Due to symmetry arguments we obtain a factor r, if the bucket containing label j is the i-th
bucket in the second, third, ..., r-th subtree. Summing up over all choices for the rank i of
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bucket containing label j in its subtree, the subtree sizes k1, ..., kr, and the out-degree r of
the root node gives the following recurrence (2 ≤ j ≤ n):

P(On,j = m) =
∑
r≥1

rαr

∑
k1+···+kr=n−1

T ∗
k1,b

· · ·T ∗
kr,b

Tn,b

×
min{k1,j−1}∑

i=1

P(Ok1,i = m)

(
j − 2

i− 1

)(
n− j

k1 − i

)(
n− 1− k1
k2, k3, ..., kr

)
, (17)

where T ∗
n1,b

· · ·T ∗
kr,b

= b!−
∑r

i=1 |Pki
|Tk1,b · · ·Tkr,b. Let

T (z, u, v) =
∑
k≥0

∑
j≥1

∑
m≥0

P(Ok+j,j = m)Tk+j,b
zj−1

(j − 1)!

uk

k!
vm.

Multiplying (17) with Tk+j,b
zj−2

(j−2)!
uk

k! v
m and summing up over k ≥ 0, j ≥ 2 and m ≥ 0 we

obtain the following differential equation:

∂

∂z
T (z, u, v) = b!−

∑r
i=1 |Pki

|φ′(Tn,b(z + u))T (z, u, v). (18)

Equation (18) has the general solution

T (z, u, v) = C(u, v) exp

{
b!−

∑r
i=1 |Pki

|
∫ z

0

φ′(Tn,b(t+ u))dt

}
with a function C(u, v). From Lemma 4.1 (evaluating at z = 0),

C(u, v) = T (0, u, v) =
∂

∂u
K(u, v) = b!−

∑r
i=1 |Pki

|φ(vTn,b(u)).

Thus

T (z, u, v) = b!−
∑r

i=1 |Pki
|φ(vTn,b(u)) exp

{
b!−

∑r
i=1 |Pki

|
∫ z

0

φ′(Tn,b(t+ u))dt

}
= b!−

∑r
i=1 |Pki

|φ(vTn,b(u))

× exp

{
b!−

∑r
i=1 |Pki

|
∫ z

0

φ′(Tn,b(t+ u))T
′

n,b(t+ u)

b!−
∑r

i=1 |Pki
|φ(Tn,b(t+ u))

dt

}
.

Hence

T (z, u, v) = b!−
∑r

i=1 |Pki
|φ(vTn,b(u))φ(Tn,b(z + u))

φ(Tn,b(u))
. (19)

Theorem 4.1. The probabilities P(On,j = m) are given by the following formula:

P(On,j = m) =
1

b
(
n−1
j−1

) n−j∑
k=m

(
n− k − 2

j − 2

)[ k
m

]
k!

. (20)

Proof. By (3),

T (z, u, v) = b!−
∑r

i=1 |Pki
| (b− 1)!(

1− b!1−
∑r

i=1 |Pki
|u
)v(

1− b!
1−

∑r
i=1

|Pki
|
z

1−b!
1−

∑r
i=1

|Pki
|
u

) . (21)
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Suppose t = b!1−
∑r

i=1 |Pki
|. Then Tn,b =

(n−1)!
b tn. By (6), (7) and (8),

P(On,j = m) =
(j − 1)!(n− j)!

Tn,b
[zj−1un−jvm]T (z, u, v)

=
t
b(

n−1
j−1

)
tn

[un−jvm]
tj−1

(1− tu)v+j−1

=
1

b
(
n−1
j−1

) n−j∑
k=0

[un−j−k]
(1− tu)j−1

[ukvm]
tj−1

(1− tu)v

=
1

b
(
n−1
j−1

) n−j∑
k=m

(
n− k − 2

j − 2

)[ k
m

]
k!

.

�

Theorem 4.2. The ℓ-th factorial moments E(Oℓ
n,j) are for ℓ ≥ 1 given by the following

formula:

E(Oℓ
n,j) =

ℓ!

b
(
n−1
j−1

) n−j∑
k=0

(
n− k − 1

j − 1

)[k
ℓ

]
k!

. (22)

Proof. It is obvious that for ℓ ≥ 1,

E(Oℓ
n,j) =

(j − 1)!(n− j)!

Tn,b
[zj−1un−j ]

∂ℓT (z, u, v)

∂vℓ

∣∣∣
v=1

and thus proof is completed similar to proof of Theorem 4.1. �

Corollary 4.1. From Theorem 4.2, (4) and (5),

E(On,j) =
1

b
(Hn−1 −Hj−1),

E(O2
n,j) =

(Hn−1 −Hj−1)
2 − (H

(2)
n−1 −H

(2)
j−1)

b
.

Thus

Var(On,j) = E(O2
n,j) + E(On,j)− E2(On,j)

=
1

b
(Hn−1 −Hj−1)

2
(
1− 1

b

)
+

1

b

(
(Hn−1 −Hj−1)− (H

(2)
n−1 −H

(2)
j−1)

)
.

5. Descendants

In this section we consider the random variable Yn,j which denotes the number of
descendants of label j in a random bucket recursive tree of size n with variable capacities of
buckets. Let

Y (z, u, v) =
∑
k≥0

∑
j≥1

∑
m≥0

P(Yk+j,j = m)Tk+j,b
zj−1

(j − 1)!

uk

k!
vm.

Similar to the analysis of Section 4,

Y (z, u, v) = C(u, v) exp

{
b!−

∑r
i=1 |Pki

|
∫ z

0

φ′(Tn,b(t+ u))dt

}
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with a function C(u, v). Since P(Yk+1,1 = k + 1) = 1. Thus

C(u, v) = Y (0, u, v)

=
∑
k≥0

∑
m≥0

P(Yk+1,1 = m)Tk+1,b
uk

k!
vm

=
∑
k≥0

Tk+1,b
uk

k!
vk+1

= v
∑
n≥1

Tn,b
(uv)n−1

(n− 1)!

= vT ′
n,b(uv)

= vb!−
∑r

i=1 |Pki
|φ(Tn,b(uv)).

Hence

Y (z, u, v) = vb!−
∑r

i=1 |Pki
|φ(Tn,b(uv))φ(Tn,b(z + u))

φ(Tn,b(u))

= v
b!−

∑r
i=1 |Pki

|(b− 1)!(
1− b!1−

∑r
i=1 |Pki

|uv
)(

1− b!
1−

∑r
i=1

|Pki
|
z

1−b!
1−

∑r
i=1

|Pki
|
u

) . (23)

Theorem 5.1. The probabilities P(Yn,j = m), which give the probability that the bucket
with label j in a randomly chosen size-n tree has exactly m descendants, are for m ≥ 1 given
by the following formula:

P(Yn,j = m) =
1

b

(
n−m−1

j−2

)(
n−1
j−1

) . (24)

Also the ℓ-th factorial moments E(Y ℓ
n,j) are for ℓ ≥ 1 given by the following formula:

E(Y ℓ
n,j) =

1

b
ℓ!

( (
n−j
ℓ

)(
j+ℓ−1

ℓ

) + (
n−j
ℓ−1

)(
j+ℓ−2
ℓ−1

)) . (25)

Proof. By (6) and (8),

P(Yk+j,j = m) =
(j − 1)!k!

Tk+j,b
[zj−1ukvm]Y (z, u, v)

=
1

tk−1
(
k+j−1
j−1

) [ukvm−1]
1

(1− tuv)(1− tu)j−1

=
1

tk−m+2
(
k+j−1
j−1

) [uk]
um−1

(1− tu)j−1

=

(
k+j−m−1

j−2

)
b
(
k+j−1
j−1

) .

Also

E(Y ℓ
k+j,j) =

(j − 1)!k!

Tk+j,b
[zj−1uk]

∂ℓY (z, u, v)

∂vℓ

∣∣∣
v=1

.

With the same method we can obtain (25) (similar to [10]). �
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Corollary 5.1. For ℓ = 1, 2,

E(Yn,j) =
n

bj
,

E(Y 2
n,j) =

2n(n− j)

bj(j + 1)
,

and thus

Var(Yn,j) =
2n(n− j)

bj(j + 1)
+

n

bj

(
1− n

bj

)
.

6. Conclusion

In this paper, we studied three quantities in bucket recursive trees of size n with
variable bucket capacities for investigating the effect of bucketing on recursive trees. The
probabilities and factorial moments of out-degree and descendants of label j are dependent
on maximal bucket size b and they become more numerous as b decrees to 1. These results
are quite reasonable and reduce to the ordinary random recursive trees as b = 1. Also

E(On,j) = Var(On,j) =
1

b
(log n− log j) + O(1),

where the O(1) bound appearing in the above equation holds independently from j. For
j = o(n),

Zn,j,b =
On,j − 1

b (log n− log j)√
1
b (log n− log j)

∼ N(0, 1).
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