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ON THE CONTROLLABILITY OF THE NEUMANN
PROBLEM FOR THE WAVE EQUATION
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In this paper we prove the controllability of the Neumann prob-
lem for the wave equation at T > 2π, using the ontoness approach.
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1. Introduction

Consider the following wave equation:

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t), x ∈ (0, π), t > 0, (1)

with the initial conditions:

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, (2)

and with the Neumann boundary conditions:

∂u

∂x
(0, t) = f(t),

∂u

∂x
(π, t) = 0, (3)

where the control function f(·) is square integrable for t > 0.
In our problem, u(x, t) denotes the transversal displacement of the point

of abscissa x at time t.
There are some related articles which studied the controllability of the

Neumann problem for the wave equation: in [9] Lions proved the exact con-
trollability of the wave equation with Dirichlet boundary conditions, by intro-
ducing the Hilbert Uniqueness Method, in [5] Lasiecka and Triggiani study the
controllability of the Neumann problem for the wave equation using the on-
toness approach, in [2] Chen proved that the exact controllability of the wave
equation follows from the Russell ”controllability via stabilizability” principle,
in [1] Bui showed the exact controllability of the wave equation in a bounded
domain of Rn, using a combination of the Hilbert Uniqueness Method and the
dynamic programming principle. In [10] we proved the exact controllability
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of the wave equation with mixed boundary conditions (Neumann-Dirichlet) at
T = π, using the moment problem approach.

In this paper we give an alternative demonstration for the controllability
of the Neumann problem for the wave equation, shown in the general case
by Lasiecka and Triggiani in [5]. Our proof uses the surjectivity of a suitable
adjoint operator.

2. Exact controlability in H1
0 (0, π)× L2(0, π)

Consider the wave equation:

∂2φ

∂t2
(x, t) =

∂2φ

∂x2
(x, t), x ∈ (0, π), t > 0, (4)

with the following homogeneous Neumann boundary conditions:

∂φ

∂x
(0, t) = 0,

∂φ

∂x
(π, t) = 0, (5)

and with the initial conditions:

φ(x, 0) = φ0(x),
∂φ

∂t
(x, 0) = φ1(x), (6)

where φ0(x) ∈ H1(0, π) and φ1(x) ∈ L2(0, π).
From [4], Proposition 4.4, we know that every solution of the system

(4)-(6) satisfies, for T > 2π, the following norm inequality:

∥φ0∥2H1(0,π) + ∥φ1∥2L2(0,π) ≤ c∥φ(0, t)∥2H1(0,T ), (7)

with c depending only on T .
For f, g ∈ H1(a, b), an equivalent inner product is given by (see [3]):

⟨f, g⟩H1(a,b) = f(a)g(a) +

∫ b

a

f ′(x)g′(x)dx, (8)

and the induced norm is given by:

∥f∥2H1(a,b) = f 2(a) +

∫ b

a

(f ′(x))
2
dx. (9)

We can also write the inequality (7):

φ2
0(0) +

∫ π

0

[
(φ0

′(x))
2
+ φ1

2(x)
]
dx ≤ c

{
φ2(0, 0) +

∫ T

0

(
∂φ

∂t
(0, t)

)2

dt

}
.

(10)
Define the transformation:

Σ : H1(0, π)× L2(0, π) → H1(0, T ), (11)

with

Σ(φ0, φ1) = φ(0, t). (12)
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Inequality (7) asserts that the transformation Σ is coercive. With this
transformation, the demonstration of the controllability is reduced to proving
the surjectivity of the adjoint operator Σ∗.

Proposition 4.4 from [4] implies that the transformation Σ is continuous,
so the adjoint can be computed using (φ0, φ1) in a subspace which is dense in
H1(0, π) × L2(0, π). We compute the adjoint of the restriction to the closed,
but not dense, subspace H1

0 (0, π)× L2(0, π). Let us denote this restriction by

Σ̃. We know that D(0, π) (C∞ functions with compact support) is dense both
in H1

0 (0, π) and L2(0, π) so, in order to compute the adjoint of the restriction,
we can assume φ0 ∈ D(0, π) and φ1 ∈ D(0, π).

Theorem 2.1. The adjoint operator Σ̃∗ is surjective.

Proof. We need to obtain an expression for the following inner product

⟨Σ̃
(
φ0

φ1

)
, g⟩H1(0,T ), (13)

with g ∈ H1(0, T ), in order to find Σ̃∗g.
Remark on p. 44, from [4], the fact that our data are indefinitely deriv-

able – for φ – and Theorem A, from [6], p. 117 – for u– justifies the following
computations. We know from [6], relation (1.21), that the function u belongs
to H1(0, π) with respect to the variable x. In [6] the authors studied the
regularity of solutions of general, mixed, second-order, time-dependent, hyper-
bolic problems of Neumann type with a functional analytic/operator theoretic
approach.

If φ0 ∈ D(0, π) and φ1 ∈ D(0, π), from (4) we obtain

∂3φ

∂t3
=

∂3φ

∂2x∂t
. (14)

Multiply both sides of the above equation with u(x, T − t), where u is
the solution of the controlled equation and T > 2π, and formally integrate by
parts twice. The left hand side becomes:∫ π

0

[
∂2φ

∂t2
(x, t)u(x, T − t)

∣∣∣∣t=T

t=0

+

∫ T

0

∂2φ

∂t2
(x, t)

∂u

∂t
(x, T − t)dt

]
dx =

=

∫ π

0

[
∂2φ

∂t2
(x, T )u(x, 0)− ∂2φ

∂t2
(x, 0)u(x, T ) +

∂φ

∂t
(x, T )

∂u

∂t
(x, 0)−

−∂φ

∂t
(x, 0)

∂u

∂t
(x, T )

]
dx+

∫ π

0

∫ T

0

∂φ

∂t
(x, t)

∂2u

∂t2
(x, T − t)dtdx, (15)

and the right hand side becomes:∫ T

0

[
∂2φ

∂x∂t
(x, t)u(x, T − t)

∣∣∣∣x=π

x=0

−
∫ π

0

∂2φ

∂x∂t
(x, t)

∂u

∂x
(x, T − t)dx

]
dt =
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=

∫ T

0

[
∂2φ

∂x∂t
(π, t)u(π, T − t)− ∂2φ

∂x∂t
(0, t)u(0, T − t)−

−∂φ

∂t
(π, t)

∂u

∂x
(π, T − t) +

∂φ

∂t
(0, t)

∂u

∂x
(0, T − t)

]
dt+

+

∫ T

0

∫ π

0

∂φ

∂t
(x, t)

∂2u

∂x2
(x, T − t)dxdt. (16)

Considering the conditions (2)-(3) and (5)-(6), we obtain:

−
∫ π

0

∂2φ

∂t2
(x, 0)u(x, T )dx−

∫ π

0

φ1(x)
∂u

∂t
(x, T )dx =

∫ T

0

∂φ

∂t
(0, t)

∂u

∂x
(0, T−t)dt.

(17)
We can choose g ∈ H1(0, T ) such that

∂u

∂x
(0, T − t) = f(T − t) = g′(t). (18)

Since φ(0, 0) = φ0(0) = 0, we infer that the right hand side of (17) is the inner
product, mentioned in (8),

⟨Σ̃
(
φ0

φ1

)
, g⟩H1(0,T ).

On the other hand,

−
∫ π

0

∂2φ

∂t2
(x, 0)u(x, T )dx = −

∫ π

0

∂2φ

∂x2
(x, 0)u(x, T )dx =

= −
∫ π

0

φ′′
0(x)u(x, T )dx =

∫ π

0

φ′
0(x)

∂u

∂x
(x, T )dx, (19)

and we obtain the inner product in H1(0; π).
Relation (1.21), from [6], p. 121, insures that the last integral in (19) is

well defined.
So, (17) can be written in the following way:

⟨(φ0

φ1

)
,

(
u(x, T )

−∂u

∂t
(x, T )

)⟩
H1(0,π)×L2(0,π)

= ⟨Σ̃
(
φ0

φ1

)
, g⟩H1(0,T ). (20)

Due to the fact that Σ̃ is coercive, it follows that the adjoint Σ̃∗ is sur-
jective. �

Furthermore, (20) shows that

Σ̃∗g =

(
u(x, T )

−∂u

∂t
(x, T )

)
, (21)
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where u solves the problem (1)-(2) with the followings Neumann boundary
conditions:

∂u

∂x
(0, t) = −g′(T − t) = f(t),

∂u

∂x
(π, t) = 0, (22)

where f(t) is arbitrary in L2(0, T ).

In the relation (20) one should take the projection of u(x, T ) ontoH1
0 (0, π);

the same for (21). Remark that, when u(x, T ) is in H1(0, π), one can consider
its projection

v(x, T ) = u(x, T )− u(0, T )− x

π
[u(π, T )− u(0, T )] .

We have �1v = �1u and v(0, T ) = v(π, T ) = 0, so v(·, T ) ∈ H1
0 (0, π).

Then one can consider ξ ∈ H1(0, π), η ∈ L2(0, π),

ξ̃(x) = ξ(x)− ξ(0)− x

π
[ξ(π)− ξ(0)]

is in H1
0 (0, π), and, if one has a control f that ensures that v(x, T ) = ξ̃(x),

∂v
∂t
(x, T ) = η(x), it follows that u(x, t) = v(x, t)+ ξ(0)+ x

π
[ξ(π)− ξ(0)] verifies

u(x, T ) = ξ(x) and ∂u
∂t
(x, T ) = η(x).

Thanks to Theorem 2.1, we obtain the main result of this paper:

Theorem 2.2. For every functions ξ ∈ H1
0 (0, π), η ∈ L2(0, π) and T > 2π,

there exists a control f ∈ L2(0, T ) such that for u, the solution of the problem
(1)-(3), we have:

u(x, T ) = ξ(x) and
∂u

∂t
(x, T ) = η(x). (23)

This proves that using L2(0, T ) control it is possible to reach every targets
ξ ∈ H1

0 (0, π) and η ∈ L2(0, π), starting from the zero initial conditions.
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