
U.P.B. Sci. Bull., Series C, Vol. 70, No. 2, 2008 ISSN 1454-234x

EXTENSIONS TO THE MLS METHOD FOR IMAGE
DEFORMATION

Cosmin ATANASOAEI1, Florica MOLDOVEANU2

Articolul prezinta mai multe extensii ale metodei MLS de deformare a
imaginilor. Propunem o metoda eficienta de constructie a imaginii rezultate si
argumentam pentru utilizarea unor functii diverse de ponderare dupa distanta in
calculul deformarii. Extensiile sunt integrate intr-un sistem original (IDS), special
construit pentru a permite evaluarea obiectiva a diferitelor variatii MLS, utilizand
metodele numerice de estimare a erorii de deformare prezentate in finalul lucrarii.

This paper describes some useful extensions to the MLS image deformation
method. We propose different weighting functions that can improve the deformation
results and an efficient deformed image reconstruction method. Also, a new modular
and configurable system (IDS) specially designed for evaluating different MLS
variations is presented. It uses our proposed numerical evaluation methods of the
deformation results.

Keywords: image deformation, Moving Least Squares, affine transformation,
rigid transformation, interpolation, numerical analysis, error field.

1. Introduction

Image deformation is a widely used technique for animation, morphing,
medical imaging or advanced user interfaces. All the deformation methods use a
set of user defined geometrical handles to manipulate the image by modifying the
pixel positions. A detailed description of the most used methods can be found in
[1], [2] or [3] and a very interesting application is presented in [4].

The deformation can be defined by a deformation function f, computed at
pixel level, that gives the expected deformed image when applied to the original
image; the f function does not change the pixel colors, but move them using the
original position of the handles and the user modified positions; as described in
[1], the handles can be control points, user specified lines or curves, some coarse
grid or even a triangulation. This paper focuses only on using control points, but
the results can be applied successfully to other forms of handles.

This paper defines extensions of the Moving Least Squares (MLS) method
as described in [1], using ideas from spatial data interpolation methods. Chapter 2

1 MSc, Dept. of Computers, University POLITEHNCA of Bucharest, Romania, E-mail:
accosmin@gmail.com
2 Prof., Dept. of Computers, University POLITEHNCA of Bucharest, Romania

Cosmin Atanasoaei, Florica Moldoveanu

4

presents the basic MLS method and the next ones describe our proposed
extensions. Chapter 3 argues for the importance of using different weighting
functions in computing the f function and presents a detailed method for the
construction of the deformed image. Chapter 4 describes our modular system for
image deformation; the system has configurable components for weighting
functions, deformation types and the deformed image construction. Chapter 5
presents our methods for numerical evaluation of the system, which can be
successfully used in choosing the best configuration for a given image, image set
or specific handles: real-time property, reference triangulation error and MLS
error field.

2. The MLS method

This chapter introduces the main ideas of MLS method, using the same
notations as in [1]. Let’s consider the set of control points having the original
positions as p and the current positions (modified by moving or dragging the
handles) as q. The deformation function f should transform the set p into q, such
that the deformation should be as “natural” as possible. The properties of this
function are borrowed from the spatial data interpolation theory (they find the best
values in new positions, by considering a restricted set of known values in some
original positions):

• Interpolation: ii qpf =)(;
• Smoothness: f should be chosen to produce smooth deformations;
• Identity: if the handles positions are not modified, the deformed

image should be identical with the original.
Accordingly with the interpolation theory, the pixels closer to the p should

be deformed more than those farther away; the logical consequence of this
statement is that the deformation function should be different from pixel to pixel
and some weighting (generally based on distance) should be used when
computing it.

As described in [1], f should minimize the square error of transforming p
into q; additional constraints are added as to use only some transformations
(affine, similarity or rigid) and to respect the properties above. For real time
results, the deformation function of each pixel v in the image should be as simple
as possible; in this case, the best candidate is a linear transform as in (1).

TvMvlvf v +==)()((1)
The linear transformation matrix M is considered constant, for simplicity;

T is the translation vector. The square error to minimize can be expressed in the
form of)(vlv linear transform, as in (2).

Extensions to the MLS method for image deformation

5

∑ −
i

iivi qplw 2)((2)

The weights iw are computed in most cases using the inverse of the
distance between the pixel v and some handle; in chapter 3, more details and
alternatives for computing weights will be discussed. Merging equations (1) and
(2), a single error function to minimize is obtained, but with two independent
parameters: M and T. Given the convex form of the error function (square form),
the minimum value is situated on the gradient descend path; equalizing with zero
the partial derivate of the error function with respect to T parameter – (3), the
error function can be reduced to just one parameter: M matrix – (4).

MpqT ∗∗ −= (3)

∑ −
i

iii qMpw 2ˆ*ˆ (4)

The auxiliary values used in equations (3) and (4) have the meaning of
weighted centroids (∗p and ∗q) and difference to centroids (∗−= ppp iiˆ
and ∗−= qqq iiˆ).

Finding M using equation (4) is done by equalizing with zero the partial
derivate with respect to M and having the solution in one simple equation. In [1],
there are presented three different types of transformation with additional
restrictions:

• Simple affine: M is a general affine transformation;
• Similarity: only uniform scaling, rotation and translation are

allowed; the restriction is:
 2

2* IMM T λ= (5)
• Rigid transformation: the most restrictive; scaling is not allowed,

only rotation and translation; the restriction is:
 2* IMM T = (6)

Every transformation type has a simple straightforward solution and major
parts in this formula can be pre-computed when handles are defined; more details
can be found in [1]. That makes the f computation and the deformed image
construction a real time process.

3. MLS method extensions

This chapter presents two extensions to the MLS method: the first covers
different weighting functions to use for the f computation and argues for their
importance in the deformation results, often ignored in similar papers; the second
presents an efficient method for constructing the deformed image with no gaps
between pixels.

Cosmin Atanasoaei, Florica Moldoveanu

6

Considering the close relation with spatial data interpolation methods (f
properties, distance based weighting, transformation matrix computing method),
computing the deformed image should use the best techniques from these
methods, that already have proven their value. The first and likely to mostly
influence the deformation results is the way weights used in (2) are computed; in
[1] only an inverse distance is presented; in [5] and [6] there is a detailed
description of the most widely used methods for spatial interpolation. A very nice
presentation of B-Spline interpolation results using different parameters is
presented in [7] and shown in Fig. 1.

Fig. 1. Interpolation results using different parameters for B-Spline method; from [7].

Scattered points presented in top-left image, interpolation results in the other ones.

If the interpolation results are so different just by using different

parameters or methods, there is no doubt that also the deformed image will
greatly be influenced by the weights (see equation (2) for details). Having
alternatives to choose from, the best one can be identified as to have the best
results for a given image and set of handles or even for large sets of images. For
example, artists that build animated characters with a smart deformation system
could use different weighting variants and choose the configuration that best suits
their needs.

Let id be the distance between the pixel v and the handle point ip
as ii pvd ,= . The weight for ip is a function of id , as ()ii dww = , with large
values for smaller distances: the influence of the handle point is limited locally.

Table 1 presents the most common weighting functions; their number is of
course much larger and their mathematical properties are beyond the scope of this
paper, further details can be found in [5], [6] and [7]. The influence of weights in
interpolation results is given mainly by the form of their definition function: there
are exponential variations, linear, quadric or more complicated forms. Test have
been done for the functions that use an influence radius parameter to get the

Extensions to the MLS method for image deformation

7

optimum value of this parameter; the best choice for influence radius is around
the image’s diagonal and can be decreased if the number of handles is increased.

Table 1

Examples of the most used weighting functions in interpolation field
Name Weight function Parameter Meaning

Inverse
distance

weighting
α2)(

1

i
i ds

w
+

=
0>s Adjusting factor for cases where

id is very small or zero.

0>α Power factor, controls the
variations of weight with distance.

Typical values: 1, 2.
Cressman

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

= 22

22

,0max
i

i
i dR

dR
w

0>R Influence radius, above R the
influence is zero.

Shepard
modified ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∗
−

=
i

i
i dR

dR
w ,0max

0>R Influence radius, above R the
influence is zero.

Gaussian
⎟
⎠
⎞

⎜
⎝
⎛−= 2

2

R
dew i

i
0>R Influence radius, above R the

influence is very small.

Distance
Linear

),0max(dRwi −= 0>R Influence radius, above R the
influence is zero.

An example of the influence which the weighting function has on the

deformation results is given in Fig. 2; the nose and mouth area are the easiest to
recognize as different. It’s easy to see that the chose of weighting function can
influence greatly the deformation results; the weight selection should be done
using a system as described in section 4 which integrates numerical error
evaluation methods like the ones we propose in section 5.

Fig. 2. Deformation results using the affine transformation and varying the weight method;

Left to right: initial image with handles,
IDW with s = 0.00001 and 1=α , Shepard with R = 600, Distance Linear with R = 300.

Our proposed second extension is the method for building the deformed

image, given the f function computed at pixel level. The forward methods move

Cosmin Atanasoaei, Florica Moldoveanu

8

pixels from the original image to the deformed image – from v to f (v), and
applying interpolation techniques to fill gaps, if they appear. The backward
methods move pixels the other way around and are more complex in this case,
needing additional processing steps to compute the inverse of deformation
function f or to approximate it using interpolation techniques. This paper is
focusing only on forward methods.

The easiest forward method is to copy color from pixel v in the initial
image to pixel f(v) in the deformed one – simple forward; the problem is that gaps
appear where stretching is above 1 pixel limit and, because of approximations in
pixel coordinates for the position f(v), pixels remain uncovered.

An example is given in Fig. 3, the right image; because of distortions
generated by different deformation functions f (computed locally!) pixels remain
uncovered. One possible solution is to interpolate the remaining uncovered pixels
to their covered neighbors, but additional problems can arise in trying to delimit
those pixels from the background – e.g. the bottom of the same image.

Fig. 3. Deformation results using the similarity transformation;

Left to right: initial image with handles, forward with polygon interpolation, simple forward.

Our proposed forward method is called forward with polygon
interpolation and its results are shown in Fig. 3, the center image; the deformed
image is much better than the simple forward image and the background is left
uncovered as it should be.

The main idea of forward with polygon interpolation is to fill
quadrilaterals generated by deforming squares of adjacent pixels using nearest
neighbor interpolation; it can be extended to use more complex interpolation
methods. Fig. 4 presents a square of adjacent pixels (left side) that is deformed,
using f functions computed in its vertices, into a quadrilateral marked with dashed
lines; generally the quadrilateral has its vertices in between pixels and the method
uses its vertices coordinates in floating point precision. The next step is to
compute the pixels that are inside – marked with light gray. In [8] there are details
of the most common solution: checking if a point P is inside some polygon PG is
the same as counting the intersections of ray from P parallel with Ox axes with
PG edges and checking if the count is odd. If some candidate pixels is found

Extensions to the MLS method for image deformation

9

inside the quadrilateral then its color is computed based on its distances to the
vertices and their colors, using an interpolation method; in our tests, the nearest
neighbor was used.

Fig. 4. Details of forward with polygon interpolation method.

Our method can be described in pseudo-code as:

For each square S of adjacent pixels in the initial image
 Compute quadrilateral Q as applying f for S vertices (floating point

coordinates)
 Compute the bounding rectangle box R for Q (pixel coordinates)
 For each candidate pixel P in R
 If P was not marked and P inside Q, then
 Interpolate P’s color using Q vertices’ colors and mark P.

Nearest neighbor method was chosen for the last part because it’s a very

fast method that can improve the speed of the overall deformation algorithm and
because it uses only the colors in the initial image, no new colors are computed
and therefore no error is added.

The way deformation function f is computed guarantees that quadrilateral
Q doesn’t intersect with its neighbors, therefore pixels colors are computed only
once; the simple forward method can compute some pixel’s color multiple times,
because of approximating f(v) floating point coordinates to pixel coordinates. But,
the bounding rectangle R can intersects with its neighbors and performance
problem can appear if the same pixel is checked for intersection with multiple
quadrilaterals; the simplest way to solve this problem is to mark pixels already
checked and for each candidate pixel in R first must be checked if already
assigned to some quadrilateral.

By using the pixel marking strategy described as above, we enforce that
each pixel is only once considered for the intersection with the quadrilateral Q and

Cosmin Atanasoaei, Florica Moldoveanu

10

therefore the computing time is decreased. Also, speedup is achieved by using the
fast intersection algorithm as described in [8] and the nearest neighbor
interpolation method; this has also the benefit of keeping the deformation error –
described in chapter 5, as low as possible.

4. The Image deformation system (IDS)

Image deformation using MLS can be extended, as proved in the previous
chapters, with many alternatives for: transformation types (others can be provided,
besides the three described in [1]), weighting functions and the deformed image
construction algorithms. By incorporating all these variations into a modular
system and having a numerical analysis method for the evaluation of the results,
experiments can be made to choose the configuration that provides the best
deformed image.

Fig. 5. Image deformation system (IDS) – modules.

Our proposed system is presented in Fig. 5. The numerical analysis

module will be discussed in the next chapter; using this module, choosing the best
configuration is a matter of running tests and comparing results with respect to
error criteria given in the next chapter. Every MLS module can be further
extended with methods tuned for speed and quality results that meet better
specific application requirements. Being an interactive system, IDS must provide
results in real time and to achieve that, every composing module was optimized
for speed.

Extensions to the MLS method for image deformation

11

5. Numerical analysis

Usually the evaluation of the image deformation results is done in terms of
speed and visual inspection for artifacts; for details see [1], [2] and [3]. In this
paper, we argue for numerical and unambiguous analysis methods that should
take into account subtle changes in results that can be missed by visual inspection
or interpreted differently by different persons. We propose two numerical
methods for comparing the results of different IDS configurations and an intuitive
graphical representation of the error field.

The first method uses relation (2) that MLS is minimizing and gives a
statistical approach of how well that error was decreased. Attention must be taken,
because in (2) weights are part of the equation and trying to compare different
IDS configuration with different weight functions and different domains would
lead to erroneous results; therefore the MLS error at pixel level is computed as:

∑ −=
i

iivMLS qplvE 2)()(. (7)

The next step is to provide statistical information at image level, by
considering the average – (8), minimum or maximum error, its standard deviation
– (9), per cent of pixels that are within 1x, 2x or 3x of standard deviation from
average.

I

vE
IE Iv

MLS

MLS

∑
∈=

)(
)((8)

()

I

IEvE
I Iv

MLSMLS

MLS

∑
∈

−
=Γ

2)()(
)((9)

The graphical representation for the MLS error field is straightforward:
after choosing two colors for maximum and minimum possible values, the color
for a given pixel level error is linearly interpolated between the extreme colors;
the error map obtained with IDS and built this way is very intuitive as shown in
Fig. 6 - the right image. The regions where error is greater (marked with intense
gray value) correspond with the four handles that have been dragged; the larger
the distance between ip and iq the greater the error in the area around them and
the error map will be more red intense there too.

Cosmin Atanasoaei, Florica Moldoveanu

12

Fig. 6. Left to right: initial image with handles,

Deformed image using similarity transform and IDW, MLS error field.

The second method uses reference points given by the user and builds a

Delaunay triangulation; for every triangle the angles and edge lengths are
compared in the initial image and in the deformed one. Details for Delaunay
triangulation can be found in [9].

Let jT be a triangle with vertices between the reference points-

),,()3()2()1(jjjj rrrT = ; the deformed triangle is))(),(),(()3()2()1(jjj
d
j rfrfrfT = . For

every pair (jT , d
jT) the lengths and angles variations are computed using (10) and

(11) equations; next, the error statistics are computed for the whole triangulation.

∑
−

=Δ

),()()(

)()()()(

),(

))(),((),(

3
1

lk ljkj

ljkjljkj
j rr

rfrfrr
E (10)

∑
=

∠

+

+−
=

3,1)(

)()(

))(cos(

))))((cos()(cos(

3
1

k kj

kjkj
j r

rfr
E

ε

ε

≺

≺≺
 (11)

The graphical representation for triangle errors is done in the same way as
in the MLS case. In Fig. 7, the right image is an angular error graphical
representation for the same settings used in Fig. 6; the center image depicts the
Delaunay triangulation for the user given reference points. The triangles with the
greatest errors are not situated as for MLS error field, near dragged handles.

The triangulation is very useful to check how much an object in the image
is deformed, primarily how much its shape is distorted and not how the scaling
factors vary; this makes the angular error much more useful than the distance
error. In simple case of scaling the initial image with 50%, the triangles would not
change angles, but only edge distances; in this case the angular error would be
zero – which is a good indicator that the algorithm gives the correct results, and
the distance error would be very high – not a very useful indicator. The results
evaluation should be done, therefore, using only the angular error and its
statistical coefficients as in MLS error method.

Extensions to the MLS method for image deformation

13

Fig. 7. Left to right: initial image with handles,

Initial image with Delaunay triangulation, angular error graphical representation.

The two proposed methods represent a very useful tool for numerical
evaluation of different IDS configurations, but they have limitations.

The most important is that computing errors in real time needs the explicit
computation of transformation matrix M and translation vector T which is quite
expensive; in the original MLS method, the transformation function f was not
computed explicitly, but only the final position for pixel v in the initial image,
which allowed speeding up the algorithm - details can be found in [1]. By
including the numerical analysis module, the IDS system becomes slower, but we
used a coarser grid and an optimized forward polygon interpolation method to
reduce this problem; this way we obtained results in real time.

Another limitation is that the two proposed methods do not cover the final
step of constructing the deformed image – simple forward and forward with
polygon interpolation methods. Further studies should try to find a way of
building a new metric for evaluating the error at this step too; one idea would be
to use the user reference points (the same as in computing angular errors) as
indicators of how much the color field has changed around them.

6. Conclusions

We have proposed several extensions to the MLS image deformation

method – weighting functions and forward deformation image reconstruction
methods, a system to test and evaluate all the possible configurations, two
numerical analysis methods and graphical representations of the deformation
error. The IDS system gives the user the flexibility to choose from a wide range of
possible configurations the one that best suits its needs. Being built with real-time
performance as a priority, the deformed image and the error fields are generated
any time the user drags the handles. The system can be further extended by
improving existing methods or adding new ones; for example, an algorithm for
backward computing the deformed image should be included, to test against the
forward variants. Also other methods for computing weights and transformations
should be considered in further studies.

Cosmin Atanasoaei, Florica Moldoveanu

14

The numerical analysis methods presented in this paper helps evaluating
and choosing the best configuration for a set o images and handles; fine tuning
can be achieved using an image, a set of handles, reference points and IDS
configurations as input and random generating deformations and evaluating the
results. In this way the best configuration can be determined automatically.

Further studies should focus on extensive evaluation of different MLS
variations with our system on different image sets and try to prove that no IDS
configuration can perform best in terms of our error estimation methods on every
image set. Chapter 3 presents some results that point to this idea, but additional
experiments should be done.

The proposed system can be extended to the 3D deformation case; the
MLS, Transformation and Weights module should require only small
modifications, but the Deformed image construction and Numerical Analysis are
much more difficult to extend. Deformation in 3D case can be used in numerous
applications such as animation or simulation of complex systems.

Speeding up the IDS system (needed if extended to 3D case) can be done
using the GPU unit and memorizing pixel level information in textures; the main
problem to be solved is that the information to memorize at pixel level varies
linearly with the number of handles and cannot be all stored in textures, because
the number of textures that can be used is limited.

R E F E R E N C ES

[1] Scott Schaefer, Travis McPhail, Joe Warren, Image deformation using Moving Least Squares,
in ACM Transactions on Graphics, vol. 25, Issue 3, July 2006, pages 533-540.

[2] Takeo Igarashi, Tomer Moscovich, John F. Hughes, As-Rigid-As-Possible Shape
Manipulation, in ACM Transactions on Graphics, vol. 24, Issue 3, July 2005, pages 1134-
1141.

[3] Marc Alexa, Daniel Cohen-Or, David Levin, As-Rigid-As-Possible Shape Interpolation, in
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, 2000, pages 157-164.

[4] ***, http://www-ui.is.s.u-tokyo.ac.jp/~takeo/research/rigid/index.html.
[5] Isac Amidror, Scattered data interpolation methods for electronic imaging systems: a survey,

in Journal of Electronic Imaging, vol. 11, Issue 2, April 2002, pages 157-176.
[6] ***, http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATION.
[7] Seungyong Lee, George Wolberg, Sung Yong Shin, Scattered Data Interpolation with

Multilevel B-Splines, in IEEE Transactions on Visualization and Computer Graphics, vol.
3, Issue 3, July 1997, pages 228-244.

[8] ***, http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/.
[9] ***, http://en.wikipedia.org/wiki/Delaunay_triangulation.

