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EXTENSIONS TO THE MLS METHOD FOR IMAGE 
DEFORMATION 

Cosmin ATANASOAEI1, Florica MOLDOVEANU2 

Articolul prezinta mai multe extensii ale metodei MLS de deformare a 
imaginilor. Propunem o metoda eficienta de constructie a imaginii rezultate si 
argumentam pentru utilizarea unor functii diverse de ponderare dupa distanta in 
calculul deformarii. Extensiile sunt integrate intr-un sistem original (IDS), special 
construit pentru a permite evaluarea obiectiva a diferitelor variatii MLS, utilizand 
metodele numerice de estimare a erorii de deformare prezentate in finalul lucrarii.   

This paper describes some useful extensions to the MLS image deformation 
method. We propose different weighting functions that can improve the deformation 
results and an efficient deformed image reconstruction method. Also, a new modular 
and configurable system (IDS) specially designed for evaluating different MLS 
variations is presented. It uses our proposed numerical evaluation methods of the 
deformation results.  

Keywords: image deformation, Moving Least Squares, affine transformation, 
rigid transformation, interpolation, numerical analysis, error field. 

1. Introduction 

Image deformation is a widely used technique for animation, morphing, 
medical imaging or advanced user interfaces. All the deformation methods use a 
set of user defined geometrical handles to manipulate the image by modifying the 
pixel positions. A detailed description of the most used methods can be found in 
[1], [2] or [3] and a very interesting application is presented in [4].  

The deformation can be defined by a deformation function f, computed at 
pixel level, that gives the expected deformed image when applied to the original 
image; the f function does not change the pixel colors, but move them using the 
original position of the handles and the user modified positions; as described in 
[1], the handles can be control points, user specified lines or curves, some coarse 
grid or even a triangulation. This paper focuses only on using control points, but 
the results can be applied successfully to other forms of handles. 

This paper defines extensions of the Moving Least Squares (MLS) method 
as described in [1], using ideas from spatial data interpolation methods. Chapter 2 
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presents the basic MLS method and the next ones describe our proposed 
extensions. Chapter 3 argues for the importance of using different weighting 
functions in computing the f function and presents a detailed method for the 
construction of the deformed image. Chapter 4 describes our modular system for 
image deformation; the system has configurable components for weighting 
functions, deformation types and the deformed image construction. Chapter 5 
presents our methods for numerical evaluation of the system, which can be 
successfully used in choosing the best configuration for a given image, image set 
or specific handles: real-time property, reference triangulation error and MLS 
error field.  

2. The MLS method 

This chapter introduces the main ideas of MLS method, using the same 
notations as in [1]. Let’s consider the set of control points having the original 
positions as p and the current positions (modified by moving or dragging the 
handles) as q. The deformation function f should transform the set p into q, such 
that the deformation should be as “natural” as possible. The properties of this 
function are borrowed from the spatial data interpolation theory (they find the best 
values in new positions, by considering a restricted set of known values in some 
original positions): 

• Interpolation: ii qpf =)( ; 
• Smoothness: f should be chosen to produce smooth deformations; 
• Identity: if the handles positions are not modified, the deformed 

image should be identical with the original. 
Accordingly with the interpolation theory, the pixels closer to the p should 

be deformed more than those farther away; the logical consequence of this 
statement is that the deformation function should be different from pixel to pixel 
and some weighting (generally based on distance) should be used when 
computing it. 

As described in [1], f should minimize the square error of transforming p 
into q; additional constraints are added as to use only some transformations 
(affine, similarity or rigid) and to respect the properties above. For real time 
results, the deformation function of each pixel v in the image should be as simple 
as possible; in this case, the best candidate is a linear transform as in (1). 

TvMvlvf v +== )()(       (1) 
The linear transformation matrix M is considered constant, for simplicity; 

T is the translation vector. The square error to minimize can be expressed in the 
form of )(vlv linear transform, as in (2). 
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i

iivi qplw 2)(        (2) 

The weights iw  are computed in most cases using the inverse of the 
distance between the pixel v and some handle; in chapter 3, more details and 
alternatives for computing weights will be discussed. Merging equations (1) and 
(2), a single error function to minimize is obtained, but with two independent 
parameters: M and T. Given the convex form of the error function (square form), 
the minimum value is situated on the gradient descend path; equalizing with zero 
the partial derivate of the error function with respect to T parameter – (3), the 
error function can be reduced to just one parameter: M matrix – (4). 

MpqT ∗∗ −=         (3) 

∑ −
i

iii qMpw 2ˆ*ˆ        (4) 

The auxiliary values used in equations (3) and (4) have the meaning of 
weighted centroids ( ∗p  and ∗q ) and difference to centroids ( ∗−= ppp iiˆ  
and ∗−= qqq iiˆ ).   

Finding M using equation (4) is done by equalizing with zero the partial 
derivate with respect to M and having the solution in one simple equation. In [1], 
there are presented three different types of transformation with additional 
restrictions: 

• Simple affine: M is a general affine transformation;  
• Similarity: only uniform scaling, rotation and translation are 

allowed; the restriction is: 
 2

2* IMM T λ=       (5)  
• Rigid transformation: the most restrictive; scaling is not allowed, 

only rotation and translation; the restriction is: 
 2* IMM T =        (6) 

Every transformation type has a simple straightforward solution and major 
parts in this formula can be pre-computed when handles are defined; more details 
can be found in [1]. That makes the f computation and the deformed image 
construction a real time process.  

3. MLS method extensions 

This chapter presents two extensions to the MLS method: the first covers 
different weighting functions to use for the f computation and argues for their 
importance in the deformation results, often ignored in similar papers; the second 
presents an efficient method for constructing the deformed image with no gaps 
between pixels.  
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Considering the close relation with spatial data interpolation methods (f 
properties, distance based weighting, transformation matrix computing method), 
computing the deformed image should use the best techniques from these 
methods, that already have proven their value. The first and likely to mostly 
influence the deformation results is the way weights used in (2) are computed; in 
[1] only an inverse distance is presented; in [5] and [6] there is a detailed 
description of the most widely used methods for spatial interpolation. A very nice 
presentation of B-Spline interpolation results using different parameters is 
presented in [7] and shown in Fig. 1. 

 
Fig. 1. Interpolation results using different parameters for B-Spline method; from [7].  

Scattered points presented in top-left image, interpolation results in the other ones. 
 
If the interpolation results are so different just by using different 

parameters or methods, there is no doubt that also the deformed image will 
greatly be influenced by the weights (see equation (2) for details). Having 
alternatives to choose from, the best one can be identified as to have the best 
results for a given image and set of handles or even for large sets of images. For 
example, artists that build animated characters with a smart deformation system 
could use different weighting variants and choose the configuration that best suits 
their needs. 

Let id be the distance between the pixel v and the handle point ip  
as ii pvd ,= . The weight for ip is a function of id , as ( )ii dww = , with large 
values for smaller distances: the influence of the handle point is limited locally. 

Table 1 presents the most common weighting functions; their number is of 
course much larger and their mathematical properties are beyond the scope of this 
paper, further details can be found in [5], [6] and [7]. The influence of weights in 
interpolation results is given mainly by the form of their definition function: there 
are exponential variations, linear, quadric or more complicated forms. Test have 
been done for the functions that use an influence radius parameter to get the 
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optimum value of this parameter;  the best choice for influence radius is around 
the image’s diagonal and can be decreased if the number of handles is increased. 

 
Table 1 

Examples of the most used weighting functions in interpolation field 
Name Weight function Parameter Meaning 

Inverse 
distance 

weighting 
α2)(

1

i
i ds

w
+

=  
0>s  Adjusting factor for cases where 

id  is very small or zero. 

0>α  Power factor, controls the 
variations of weight with distance. 

Typical values: 1, 2. 
Cressman 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

= 22

22

,0max
i

i
i dR

dR
w  

0>R  Influence radius, above R the 
influence is zero.  

Shepard 
modified ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∗
−

=
i

i
i dR

dR
w ,0max  

0>R  Influence radius, above R the 
influence is zero. 

Gaussian 
⎟
⎠
⎞

⎜
⎝
⎛−= 2

2

R
dew i

i  
0>R  Influence radius, above R the 

influence is very small. 

Distance 
Linear 

),0max( dRwi −=  0>R  Influence radius, above R the 
influence is zero. 

 
An example of the influence which the weighting function has on the 

deformation results is given in Fig. 2; the nose and mouth area are the easiest to 
recognize as different. It’s easy to see that the chose of weighting function can 
influence greatly the deformation results; the weight selection should be done 
using a system as described in section 4 which integrates numerical error 
evaluation methods like the ones we propose in section 5.  

 

 
Fig. 2. Deformation results using the affine transformation and varying the weight method; 

Left to right: initial image with handles,  
IDW with s = 0.00001 and 1=α , Shepard with R = 600, Distance Linear with R = 300. 

 
Our proposed second extension is the method for building the deformed 

image, given the f function computed at pixel level. The forward methods move 
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pixels from the original image to the deformed image – from v to f (v), and 
applying interpolation techniques to fill gaps, if they appear. The backward 
methods move pixels the other way around and are more complex in this case, 
needing additional processing steps to compute the inverse of deformation 
function f or to approximate it using interpolation techniques. This paper is 
focusing only on forward methods. 

The easiest forward method is to copy color from pixel v in the initial 
image to pixel f(v) in the deformed one – simple forward; the problem is that gaps 
appear where stretching is above 1 pixel limit and, because of approximations in 
pixel coordinates for the position f(v), pixels remain uncovered. 

An example is given in Fig. 3, the right image; because of distortions 
generated by different deformation functions f (computed locally!) pixels remain 
uncovered. One possible solution is to interpolate the remaining uncovered pixels 
to their covered neighbors, but additional problems can arise in trying to delimit 
those pixels from the background – e.g. the bottom of the same image. 
 

 
Fig. 3. Deformation results using the similarity transformation; 

Left to right: initial image with handles, forward with polygon interpolation, simple forward. 
 

Our proposed forward method is called forward with polygon 
interpolation and its results are shown in Fig. 3, the center image; the deformed 
image is much better than the simple forward image and the background is left 
uncovered as it should be.  

The main idea of forward with polygon interpolation is to fill 
quadrilaterals generated by deforming squares of adjacent pixels using nearest 
neighbor interpolation; it can be extended to use more complex interpolation 
methods. Fig. 4 presents a square of adjacent pixels (left side) that is deformed, 
using f functions computed in its vertices, into a quadrilateral marked with dashed 
lines; generally the quadrilateral has its vertices in between pixels and the method 
uses its vertices coordinates in floating point precision. The next step is to 
compute the pixels that are inside – marked with light gray. In [8] there are details 
of the most common solution: checking if a point P is inside some polygon PG is 
the same as counting the intersections of ray from P parallel with Ox axes with 
PG edges and checking if the count is odd. If some candidate pixels is found 
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inside the quadrilateral then its color is computed based on its distances to the 
vertices and their colors, using an interpolation method; in our tests, the nearest 
neighbor was used.   

 
Fig. 4. Details of forward with polygon interpolation method. 

 
Our method can be described in pseudo-code as: 
 
For each square S of adjacent pixels in the initial image 
 Compute quadrilateral Q as applying f for S vertices (floating point 

coordinates)  
 Compute the bounding rectangle box R for Q (pixel coordinates) 
 For each candidate pixel P in R 
  If P was not marked and P inside Q, then 
   Interpolate P’s color using Q vertices’ colors and mark P. 
 
Nearest neighbor method was chosen for the last part because it’s a very 

fast method that can improve the speed of the overall deformation algorithm and 
because it uses only the colors in the initial image, no new colors are computed 
and therefore no error is added.  

The way deformation function f is computed guarantees that quadrilateral 
Q doesn’t intersect with its neighbors, therefore pixels colors are computed only 
once; the simple forward method can compute some pixel’s color multiple times, 
because of approximating f(v) floating point coordinates to pixel coordinates. But, 
the bounding rectangle R can intersects with its neighbors and performance 
problem can appear if the same pixel is checked for intersection with multiple 
quadrilaterals; the simplest way to solve this problem is to mark pixels already 
checked and for each candidate pixel in R first must be checked if already 
assigned to some quadrilateral.   

By using the pixel marking strategy described as above, we enforce that 
each pixel is only once considered for the intersection with the quadrilateral Q and 
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therefore the computing time is decreased. Also, speedup is achieved by using the 
fast intersection algorithm as described in [8] and the nearest neighbor 
interpolation method; this has also the benefit of keeping the deformation error – 
described in chapter 5, as low as possible.  

4. The Image deformation system (IDS) 

Image deformation using MLS can be extended, as proved in the previous 
chapters, with many alternatives for: transformation types (others can be provided, 
besides the three described in [1]), weighting functions and the deformed image 
construction algorithms. By incorporating all these variations into a modular 
system and having a numerical analysis method for the evaluation of the results, 
experiments can be made to choose the configuration that provides the best 
deformed image. 

 

 
Fig. 5. Image deformation system (IDS) – modules. 

 
Our proposed system is presented in Fig. 5. The numerical analysis 

module will be discussed in the next chapter; using this module, choosing the best 
configuration is a matter of running tests and comparing results with respect to 
error criteria given in the next chapter. Every MLS module can be further 
extended with methods tuned for speed and quality results that meet better 
specific application requirements. Being an interactive system, IDS must provide 
results in real time and to achieve that, every composing module was optimized 
for speed.  
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5. Numerical analysis 

Usually the evaluation of the image deformation results is done in terms of 
speed and visual inspection for artifacts; for details see [1], [2] and [3]. In this 
paper, we argue for numerical and unambiguous analysis methods that should 
take into account subtle changes in results that can be missed by visual inspection 
or interpreted differently by different persons. We propose two numerical 
methods for comparing the results of different IDS configurations and an intuitive 
graphical representation of the error field. 

The first method uses relation (2) that MLS is minimizing and gives a 
statistical approach of how well that error was decreased. Attention must be taken, 
because in (2) weights are part of the equation and trying to compare different 
IDS configuration with different weight functions and different domains would 
lead to erroneous results; therefore the MLS error at pixel level is computed as: 

∑ −=
i

iivMLS qplvE 2)()( .      (7) 

The next step is to provide statistical information at image level, by 
considering the average – (8), minimum or maximum error, its standard deviation 
– (9), per cent of pixels that are within 1x, 2x or 3x of standard deviation from 
average. 
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The graphical representation for the MLS error field is straightforward: 
after choosing two colors for maximum and minimum possible values, the color 
for a given pixel level error is linearly interpolated between the extreme colors; 
the error map obtained with IDS and built this way is very intuitive as shown in 
Fig. 6 - the right image. The regions where error is greater (marked with intense 
gray value) correspond with the four handles that have been dragged; the larger 
the distance between ip  and iq  the greater the error in the area around them and 
the error map will be more red intense there too. 
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Fig. 6. Left to right: initial image with handles,  

Deformed image using similarity transform and IDW, MLS error field. 
 
The second method uses reference points given by the user and builds a 

Delaunay triangulation; for every triangle the angles and edge lengths are 
compared in the initial image and in the deformed one. Details for Delaunay 
triangulation can be found in [9]. 

Let jT  be a triangle with vertices between the reference points- 

),,( )3()2()1( jjjj rrrT = ; the deformed triangle is ))(),(),(( )3()2()1( jjj
d
j rfrfrfT = . For 

every pair ( jT , d
jT ) the lengths and angles variations are computed using (10) and 

(11) equations; next, the error statistics are computed for the whole triangulation. 
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The graphical representation for triangle errors is done in the same way as 
in the MLS case. In Fig. 7, the right image is an angular error graphical 
representation for the same settings used in Fig. 6; the center image depicts the 
Delaunay triangulation for the user given reference points. The triangles with the 
greatest errors are not situated as for MLS error field, near dragged handles.  

The triangulation is very useful to check how much an object in the image 
is deformed, primarily how much its shape is distorted and not how the scaling 
factors vary; this makes the angular error much more useful than the distance 
error. In simple case of scaling the initial image with 50%, the triangles would not 
change angles, but only edge distances; in this case the angular error would be 
zero – which is a good indicator that the algorithm gives the correct results, and 
the distance error would be very high – not a very useful indicator. The results 
evaluation should be done, therefore, using only the angular error and its 
statistical coefficients as in MLS error method. 
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Fig. 7. Left to right: initial image with handles,  

Initial image with Delaunay triangulation, angular error graphical representation. 
 

The two proposed methods represent a very useful tool for numerical 
evaluation of different IDS configurations, but they have limitations.  

The most important is that computing errors in real time needs the explicit 
computation of transformation matrix M and translation vector T which is quite 
expensive; in the original MLS method, the transformation function f was not 
computed explicitly, but only the final position for pixel v in the initial image, 
which allowed speeding up the algorithm - details can be found in [1]. By 
including the numerical analysis module, the IDS system becomes slower, but we 
used a coarser grid and an optimized forward polygon interpolation method to 
reduce this problem; this way we obtained results in real time.  

Another limitation is that the two proposed methods do not cover the final 
step of constructing the deformed image – simple forward and forward with 
polygon interpolation methods. Further studies should try to find a way of 
building a new metric for evaluating the error at this step too; one idea would be 
to use the user reference points (the same as in computing angular errors) as 
indicators of how much the color field has changed around them. 

 
6. Conclusions 
 
We have proposed several extensions to the MLS image deformation 

method – weighting functions and forward deformation image reconstruction 
methods, a system to test and evaluate all the possible configurations, two 
numerical analysis methods and graphical representations of the deformation 
error. The IDS system gives the user the flexibility to choose from a wide range of 
possible configurations the one that best suits its needs. Being built with real-time 
performance as a priority, the deformed image and the error fields are generated 
any time the user drags the handles. The system can be further extended by 
improving existing methods or adding new ones; for example, an algorithm for 
backward computing the deformed image should be included, to test against the 
forward variants. Also other methods for computing weights and transformations 
should be considered in further studies. 
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The numerical analysis methods presented in this paper helps evaluating 
and choosing the best configuration for a set o images and handles; fine tuning 
can be achieved using an image, a set of handles, reference points and IDS 
configurations as input and random generating deformations and evaluating the 
results. In this way the best configuration can be determined automatically.  

Further studies should focus on extensive evaluation of different MLS 
variations with our system on different image sets and try to prove that no IDS 
configuration can perform best in terms of our error estimation methods on every 
image set. Chapter 3 presents some results that point to this idea, but additional 
experiments should be done. 

The proposed system can be extended to the 3D deformation case; the 
MLS, Transformation and Weights module should require only small 
modifications, but the Deformed image construction and Numerical Analysis are 
much more difficult to extend. Deformation in 3D case can be used in numerous 
applications such as animation or simulation of complex systems.  

Speeding up the IDS system (needed if extended to 3D case) can be done 
using the GPU unit and memorizing pixel level information in textures; the main 
problem to be solved is that the information to memorize at pixel level varies 
linearly with the number of handles and cannot be all stored in textures, because 
the number of textures that can be used is limited. 
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