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MULTIPLIERS AND SAMPLING THEORY FOR CONTINUOUS
FRAMES IN HILBERT SPACES

Bahram Dastourian®

In this paper, we discuss a norm of continuous Bessel multipliers My, r q,
m € LP(Q), 1 < p < oco. In particular, we show that there exists a unique continuous
Bessel multiplier operator My, r,c, form € LP(Q), 1 < p < oo, and it is bounded linear
after defining continuous Bessel multipliers M, p.¢ for m € L1(Q) U L (Q). Finally,
sampling theory for continuous frames is discussed and each signal in the range of the
analysis operator can be reconstructed in terms of its sampled values.
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1. Introduction and Preliminaries

Frames were first introduced in 1952 by Duffin and Schaeffer [9]. Frames have very
important and interesting properties that make them very useful in sampling theory [10] and
many other fields. A discrete frame is a countable family of elements in a separable Hilbert
spaces, which allows a stable not necessarily unique decomposition of arbitrary elements
into expansions of frame elements [8]. Let H be a separable Hilbert space. A sequence
{f;j}jen C H is called a frame for J{ if there exist constants A, B > 0 such that

AFIP <D OKE )P < BIIP, (f €30,
JEN

Later, the theory of frames has been generalized in different ways by many authors.
The concept of a generalization of frames to a family indexed by some locally compact space
endowed with a Radon measure was proposed by G. Kaiser [12] and independently by Ali,
Antoine and Gazeau [1]. These frames are known as continuous frames. The continuous
wavelet transformation and short time Fourier transformation are examples of continuous
frames. Let 3 be a separable Hilbert space and (€, u) be a measure space. A mapping
F :Q — H is called a continuous frame if the mapping w — (F(w), f) is measurable for all
f € H and there exist constants 0 < A < B < oo such that

AllIfIIP < /Q [(f. F)? du(w) < BIIfI?, (f € 3). (1)

The constants A and B are called continuous frame bounds. F' is called a tight continuous
frame if A = B and it is called a Parseval continuous frame if A = B = 1. The mapping F’
is called Bessel mapping or shorter Bessel if only the righthand inequality in (1) holds.

Let F be a Bessel mapping for H with respect to (€2, x). Then the operator Tr : H —
L?(Q) defined by

(Trf)(w) = (f, F(w), (feH, weq),
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is well defined, linear and bounded. It is called an analysis operator of F' and its adjoint is
given by

T50.f) = [ 6@V F@).1) dufe). (o€ I2@). € 9)
Now, suppose that F' is a continuous frame with frame bounds A and B, rebpectively We
can define the operator Sp = T3Tr. Since (Spf, f) = (TpTrf, ) = [o {f, F(w))]* du(w),

we see that S is positive and AI < Sp < BI. Hence, S is invertible. We call Sr a
continuous frame operator of I and use the notation Spf = [,(f, F(w))F(w) dpu(w). Thus,
every f € H has the representations

f=Sp'Spf= 551/Q<f,F(w)>F(w) dp(w) = /Q<f,F(W)>SElF(w) dp(w),

f=SpSplf = / (S5 f, F(@) F(w) duw) = / (f. S F(w))F(w) du(w).

For more details one can see [8].

It is well-known that discrete Bessel sequences in a Hilbert space are norm bounded
above but this is not true for any continuous Bessel mappings (see [6]).

The following is a well known example in wavelet frame that is a continuous frame.

Example 1.1. Let g € L*(R) be an admissible function, i.e., Cy := ijo: ‘glil dé < +o0,
and for a,b € R, a # 0,
1 x—b
ap(r) = —=g(——
g b( ) \/mg( a
then {ga.b tazober 8 a continuous frame for L?(R) with respect to R\{0} x R equipped with
the measure 4% and, for all f € L*(R),

), (z€eR),

oo pdoo db da
f= / W,y (f) (@, b)gap .

where Wy is the continuous wavelet transform defined by
Hoo 1 x—b
Woast)i= [ fe)o(* e

For details, see the Proposition 11.1.1 and Corollary 11.1.2 in [8].

Next, Bessel multipliers are investigated by Peter Balazs [3, 4, 5] for Hilbert spaces.
For Bessel sequences, the investigation of the operator M =" m;(f, f;)g;, where the anal-
ysis coefficients (f, f;) are multiplied by a fix symbol {m;} before synthesis (with {g;}), is
very natural, useful and there are numerous applications of this kind of operators.

The paper is organized as follows. In Section 2, we will define the concept of contin-
uous Bessel multipliers M,, g for m € L1(2) U L*°(Q), and we discuss the upper bound
of multiplier operators for continuous frames. Besides, for m € LP(Q), 1 < p < oo, we show
that there exists a unique bounded linear operator M, r . In Section 3, sampling theory
for continuous frames is discussed.

Throughout this paper, H will be separable Hilbert spaces.

2. Multipliers for Continuous Frames

Gabor multipliers [11] led to the introduction of Bessel and frame multipliers for
Hilbert spaces. These operators are defined by a fixed multiplication pattern (the symbol)
which is inserted between the analysis and synthesis operators [3, 4, 5].
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In this section, we discuss a norm of continuous Bessel multipliers M,, r ¢ for m €
LY(Q) U L>®(Q). Next, for m € LP(2), 1 < p < oo, we show that there exists a unique
bounded linear operator M,, r . First, we give the following definition [6].

Throughout this section, let B(X) be the set of all bounded linear operators from the
Hilbert space K to X.

Definition 2.1. Let F and G be Bessel mappings for H with respect to (Q,u) and m €
LY () U L>(Q) be a measurable function. The operator My, p.c : H — H weakly defined by

My pc.f. 9) ‘/7n ), F@)(G(w), g)du(w), (2)

forall f,g € H, is called continuous Bessel multiplier of F' and G with respect to the mapping
m.

Proposition 2.1. [6, Theorem 3.10] Let F' and G be Bessel mappings for H with respect to
(Q, 1) and norm bounded with norm bounds Ly and L¢, respectively, i.e. |F(w)|| < Lp and
|G(w)|| < Lg for almost every w € Q. Let m € L*(2). Then the continuous Bessel multi-
plier My, g is a well defined bounded linear operator and |Mp, r | < LrLg||m| piq)-

Proposition 2.2. [6, Lemma 3.3] Let F and G be Bessel mappings for H with respect to
(Q, 1) with bounds Br and Bg. Let m € L*(Q). Then the continuous Bessel multiplier
My, rc s a well defined bounded linear operator and

| M, rcll </ BrBg|ml| L~ -

We can now associate a continuous Bessel multiplier M,, p.¢ : H — I to every
function m € LP(2), 1 < p < oo, and prove that M,, p ¢ is a bounded linear operator. To
prove this result we need a recall of the Riesz-Thorin interpolation theorem [7].

Theorem 2.1. Let (2, 1) be a measurable space and (V,v) a o-finite measure space. Let
T be a linear transformation with the domain D consisting of all simple functions H on 2
such that p{w € Q : H(w) # 0} < 0o, and such that the range of T is contained in the set
of all measurable functions on V. Suppose that oy, s, 1 and Ba are numbers in [0,1] and
there exist positive constants v, and 2 such that

TH| + <~lfl ~ , =12 (feD).
ITH]|| Fw 'Y;IIfHL;J_(Q) j (f e D)

Then for 0 <0 <1, a =(1—0)ay + Oas and = (1 —0)B1 + 082, we have
ITHN ) <A g (€ D)

LB (W) =
Now, we show that there exists a unique bounded linear operator M, ¢ for m €
*(Q2), 1 <p < .

Theorem 2.2. Let F' and G be Bessel mappings for H with respect to (2, u) with bounds
Br and Bg and norm bounded with norm bounds Lr and L¢, respectively. Let m € LP (),
1 < p < oo. Then there exists a unique bounded linear operator My, . : H — H such that

| M ral < (LrLg)? (BrBg)® ™l zr ),

where % + % =1 and My, r.c is given by (2) for all f and g in H and all simple functions
m on ) for which
p{w € Q:m(w) # 0} < oco.

Proof. Let L : 3 — L*(R") be a unitary operator between 3 and L*(R™). Let m € L'().
Then, by Proposition 2.1, the linear operator MmFG L?(R") — L*(R"), defined by
Mm JF.G = LMm FgL 1 IS bounded and ||Mm FG” < LFLG”mHLl(Q)



116 Bahram Dastourian

Now, let m € L*°(2), then by Proposition 2.2, the linear operator Mmyp’g is also
bounded and

1Mo, p6ll < V/BrBa|m| 1= o).

Let D be the set of all simple functions m on §2 such that
p{w € Q:mw) # 0} < 0.

Let f € L?(R™) and T be the linear transformation from D into the set of all Lebesgue
functions on R" defined by

Tm = Mm7p,cf, (m S D)

Then we have

ITmlp2®ny < LrLelimllLy@ll fllz2@n),

and
ITm| L2 ®ny < v/ BrBalml L@l fllz2@n),
for all functions m in D. Thus, by Theorem 2.1, if we set § = 1, then we get

q
1 1
ITm||2@rny < (LrLa)? (BrBag)? ||mll el fllz2@ey, (m € D).

Note that i = f2 = 3,8 = 5,01 = Laz = 0,0 = 5.m = LpLg||fllr2@n) and 72 =
\/BFBGHfHL?(Rn)- Hence

1Mo, pf 2@y < (LrLe)? (BeBa)® |mllis@lfll2,  (m € D).

Therefore
—~ 1 1
M, pcll < (LrLg)? (BrBa)® [|mle@), (m e D).
Let m € LP(2), 1 < p < oco. Then there exists a sequence {m;}?2; of functions in D such
that m; — m in LP(Q) as j — oco. Then

— —~ 1 1
|Mm, . — Mm,; rcll < (LrLg)? (BrBg)? [[m; —mj|l, — 0,

as i,j — oo. Therefore, {Mmj7p7g};’il is a Cauchy sequence in B(L?(R")). Using the
completeness of B(L?(R™)), we can find a bounded linear operator MWF)G : L2(R") —
L?(R™) such that My, rc — My rG as j — 00. So

1

1
M, el < (LrLa)? (BrBg)® [lml|Lr (o), (m € D),

and the operator M,, po = Lilﬁmﬂpng € B(H) is bounded linear and satisfying the
conclusions of the theorem if m € LP(£2), 1 < p < oo.

To prove uniqueness, let m € LP(f2), 1 < p < oo, and suppose that P, : H — H is
another bounded linear operator satisfying the conclusions of the theorem. Let Q : LP(Q) —
B(H) be the linear operator defined by

Qm = M rc— Ppn, (me LP(Q)).
Then |Qm| < 2(LrLg)?” (BrBa)® |m|ie), (m € LP()). Since M, pg and P, are
bounded linear operators satisfying the conclusions of the theorem, in particular, they are
given by (2) for all f and g in H and all simple functions m on Q for which u{w € Q :
m(w) # 0} < 00, so Qm = M,, r.¢ — Py, is equal to the zero operator on H for all m € D.
Thus, @ : LP(Q) — B(H) is a bounded linear operator that is equal to zero on the dense
subspace D of LP(Q). Therefore P,, = M, r ¢ for all functions m in L?(Q). O
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3. Sampling Theory for Continuous Frames

In this section, we show that the range of the analysis operator of a continuous frame
is a reproducing kernel Hilbert space and in particular it is closed. Recall that a Hilbert
space H of complex-valued functions on a set €2 is called a reproducing kernel Hilbert space
if the evaluation functionals E.(f) = f(z2), z € Q, f € H, are bounded linear functionals
(see [2] for more details). Moreover, each signal in the range of the analysis operator can be
reconstructed in terms of its sampled values.

Throughout this section, by R(Tr) we always denote the range of the analysis operator
TF.

Theorem 3.1. Let F be a continuous frame for H with respect to (0, ). Then the range
R(Tr) of Tr is a reproducing kernel Hilbert space.

Proof. First we show that R(Tr) is a Hilbert space. It is enough to show that R(TF) is
a closed subspace of L?(2). Closeness of the range R(Tr) of the analysis operator follows
immediately from the fact that T is bounded from below.

Now let m € R(Tr). Then there exists f € H such that m = Trf. For w € Q2 we get

(Tr (@) = (. Fw)) = / (f, FO)SF F(E), F(w))du(€)
- / (T F)() (SFAF(€), F(w))dp(€) = / m(E)(S5LF(€), F(w))due),

that is, m(w) = [, m(€)(S'F(€), F(w))du(€), which implies that R(Tr) is a reproducing
kernel Hilbert space with reproducing kernel
P46 = (S5 F (). F(w)).
]

Remark 3.1. In Theorem 3.1, suppose that F is a Parseval continuous frame. Then R(Tr)
is the reproducing kernel Hilbert space with the reproducing kernel P$(€) := (F(£), F(w)).
Theorem 3.2. Suppose that F is a Parseval continuous frame for H with respect to (Q, ).
Let {w;}32, be a countable family in Q0 such that {F(w;)}32, is an orthonormal basis for
H. Then for m € R(Tr) we get m(w) = 272, m(w;)) Ky (w), (w € ), where X3 =
TFF(wj).

Proof. Since Tr is an isometry operator, {X}/ 51 ={TrF(w;)}32; is an orthonormal basis
for the range R(TF) of Tr. So, if m € R(TF), then m = 3772 (m, K3 )K5 , the series being
absolutely convergent in L2(£2). In fact, for every w € £ we get

2

2 o0 o0
[ {m, KK (w)]< ZI (m 3G | DD IKE @) | =lmllze) | D 1KF @)
j=1 j=1

=

I

-
I
-

-+, it follows that K77 = Jo KF (©)PL(O)du(§) = (KF, P12y, (w € Q), for

By Theorem 3.1, R(TF) is a reproducing kernel Hilbert space. Since X3/ € R(Tr), j =
2,
=1,2,---. So we have

Q.)—‘

=

ST Hm, KK @) < Il ey | D 1K (@)
Jj=1

J=1

Nl

= |Imllr2(0 Z| K, PP = lmllzo) P8 2 @)-

BN
—
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Thus the absolute convergence says that

) = S lm 355 @) = 3 [ m@FF@ane) 5,
j=1 j=1 \/8

for all w in Q. Also, for all £ in Q we get

K7 () = (TrF(w))) () = (F(w;), F(§)) = (F(€), Fw;)) = PF (6), (4)
for j=1,2,---. So we have

) =3 ([ meRT @) 52 (by Ea. 3
=5 ([ mierz©iue) 5 0) (by o 4)
= Z m(w;j) Ky (w), (by Remark 3.1)
for all w in Q. Thus, m(w) = 72, m(w;)XF (w). O

Remark 3.2. In Theorem 3.2, each signal m processed by means of the analysis operator
Tr : H — L*(Q) can be reconstructed in terms of its sampled values {m(w;}52, on €.
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