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MULTIPLIERS AND SAMPLING THEORY FOR CONTINUOUS

FRAMES IN HILBERT SPACES

Bahram Dastourian1

In this paper, we discuss a norm of continuous Bessel multipliers Mm,F,G,
m ∈ Lp(Ω), 1 ≤ p ≤ ∞. In particular, we show that there exists a unique continuous

Bessel multiplier operator Mm,F,G, for m ∈ Lp(Ω), 1 < p < ∞, and it is bounded linear

after defining continuous Bessel multipliers Mm,F,G for m ∈ L1(Ω) ∪ L∞(Ω). Finally,
sampling theory for continuous frames is discussed and each signal in the range of the
analysis operator can be reconstructed in terms of its sampled values.
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1. Introduction and Preliminaries

Frames were first introduced in 1952 by Duffin and Schaeffer [9]. Frames have very
important and interesting properties that make them very useful in sampling theory [10] and
many other fields. A discrete frame is a countable family of elements in a separable Hilbert
spaces, which allows a stable not necessarily unique decomposition of arbitrary elements
into expansions of frame elements [8]. Let H be a separable Hilbert space. A sequence
{fj}j∈N ⊆ H is called a frame for H if there exist constants A,B > 0 such that

A||f ||2 ≤
∑
j∈N

|⟨f, fj⟩|2 ≤ B||f ||2, (f ∈ H).

Later, the theory of frames has been generalized in different ways by many authors.
The concept of a generalization of frames to a family indexed by some locally compact space
endowed with a Radon measure was proposed by G. Kaiser [12] and independently by Ali,
Antoine and Gazeau [1]. These frames are known as continuous frames. The continuous
wavelet transformation and short time Fourier transformation are examples of continuous
frames. Let H be a separable Hilbert space and (Ω, µ) be a measure space. A mapping
F : Ω → H is called a continuous frame if the mapping ω 7→ ⟨F (ω), f⟩ is measurable for all
f ∈ H and there exist constants 0 < A ≤ B < ∞ such that

A∥f∥2 ≤
∫
Ω

|⟨f, F (ω)⟩|2 dµ(ω) ≤ B∥f∥2, (f ∈ H). (1)

The constants A and B are called continuous frame bounds. F is called a tight continuous
frame if A = B and it is called a Parseval continuous frame if A = B = 1. The mapping F
is called Bessel mapping or shorter Bessel if only the righthand inequality in (1) holds.

Let F be a Bessel mapping for H with respect to (Ω, µ). Then the operator TF : H →
L2(Ω) defined by

(TF f)(ω) = ⟨f, F (ω)⟩, (f ∈ H, ω ∈ Ω),
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is well defined, linear and bounded. It is called an analysis operator of F and its adjoint is
given by

⟨T ∗
Fϕ, f⟩ =

∫
Ω

ϕ(ω)⟨F (ω), f⟩ dµ(ω), (ϕ ∈ L2(Ω), f ∈ H).

Now, suppose that F is a continuous frame with frame bounds A and B, respectively. We
can define the operator SF = T ∗

FTF . Since ⟨SF f, f⟩ = ⟨T ∗
FTF f, f⟩ =

∫
Ω
|⟨f, F (ω)⟩|2 dµ(ω),

we see that SF is positive and AI ≤ SF ≤ BI. Hence, SF is invertible. We call SF a
continuous frame operator of F and use the notation SF f =

∫
Ω
⟨f, F (ω)⟩F (ω) dµ(ω). Thus,

every f ∈ H has the representations

f = S−1
F SF f = S−1

F

∫
Ω

⟨f, F (ω)⟩F (ω) dµ(ω) =

∫
Ω

⟨f, F (ω)⟩S−1
F F (ω) dµ(ω),

f = SFS
−1
F f =

∫
Ω

⟨S−1
F f, F (ω)⟩F (ω) dµ(ω) =

∫
Ω

⟨f, S−1
F F (ω)⟩F (ω) dµ(ω).

For more details one can see [8].
It is well-known that discrete Bessel sequences in a Hilbert space are norm bounded

above but this is not true for any continuous Bessel mappings (see [6]).
The following is a well known example in wavelet frame that is a continuous frame.

Example 1.1. Let g ∈ L2(R) be an admissible function, i.e., Cg :=
∫ +∞
−∞

|ĝ(ξ)|2
|ξ| dξ < +∞,

and for a, b ∈ R, a ̸= 0,

ga,b(x) =
1√
|a|

g(
x− b

a
), (x ∈ R),

then {ga,b}a̸=0,b∈R is a continuous frame for L2(R) with respect to R\{0} ×R equipped with

the measure db da
a2 and, for all f ∈ L2(R),

f =

∫ +∞

−∞

∫ +∞

−∞
Wg(f)(a, b)ga,b

db da

a2
,

where Wg is the continuous wavelet transform defined by

Wg(f)(a, b) :=

∫ +∞

−∞
f(x)

1√
|a|

g(
x− b

a
)dx.

For details, see the Proposition 11.1.1 and Corollary 11.1.2 in [8].

Next, Bessel multipliers are investigated by Peter Balazs [3, 4, 5] for Hilbert spaces.
For Bessel sequences, the investigation of the operator M =

∑
mj⟨f, fj⟩gj , where the anal-

ysis coefficients ⟨f, fj⟩ are multiplied by a fix symbol {mj} before synthesis (with {gj}), is
very natural, useful and there are numerous applications of this kind of operators.

The paper is organized as follows. In Section 2, we will define the concept of contin-
uous Bessel multipliers Mm,F,G for m ∈ L1(Ω) ∪ L∞(Ω), and we discuss the upper bound
of multiplier operators for continuous frames. Besides, for m ∈ Lp(Ω), 1 < p < ∞, we show
that there exists a unique bounded linear operator Mm,F,G. In Section 3, sampling theory
for continuous frames is discussed.

Throughout this paper, H will be separable Hilbert spaces.

2. Multipliers for Continuous Frames

Gabor multipliers [11] led to the introduction of Bessel and frame multipliers for
Hilbert spaces. These operators are defined by a fixed multiplication pattern (the symbol)
which is inserted between the analysis and synthesis operators [3, 4, 5].
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In this section, we discuss a norm of continuous Bessel multipliers Mm,F,G for m ∈
L1(Ω) ∪ L∞(Ω). Next, for m ∈ Lp(Ω), 1 < p < ∞, we show that there exists a unique
bounded linear operator Mm,F,G. First, we give the following definition [6].

Throughout this section, let B(K) be the set of all bounded linear operators from the
Hilbert space K to K.

Definition 2.1. Let F and G be Bessel mappings for H with respect to (Ω, µ) and m ∈
L1(Ω)∪L∞(Ω) be a measurable function. The operator Mm,F,G : H → H weakly defined by

⟨Mm,F,Gf, g⟩ =
∫
Ω

m(ω)⟨f, F (ω)⟩⟨G(ω), g⟩dµ(ω), (2)

for all f, g ∈ H, is called continuous Bessel multiplier of F and G with respect to the mapping
m.

Proposition 2.1. [6, Theorem 3.10] Let F and G be Bessel mappings for H with respect to
(Ω, µ) and norm bounded with norm bounds LF and LG, respectively, i.e. ∥F (ω)∥ ≤ LF and
∥G(ω)∥ ≤ LG for almost every ω ∈ Ω. Let m ∈ L1(Ω). Then the continuous Bessel multi-
plier Mm,F,G is a well defined bounded linear operator and ∥Mm,F,G∥ ≤ LFLG∥m∥L1(Ω).

Proposition 2.2. [6, Lemma 3.3] Let F and G be Bessel mappings for H with respect to
(Ω, µ) with bounds BF and BG. Let m ∈ L∞(Ω). Then the continuous Bessel multiplier
Mm,F,G is a well defined bounded linear operator and

∥Mm,F,G∥ ≤
√
BFBG∥m∥L∞(Ω).

We can now associate a continuous Bessel multiplier Mm,F,G : H → H to every
function m ∈ Lp(Ω), 1 < p < ∞, and prove that Mm,F,G is a bounded linear operator. To
prove this result we need a recall of the Riesz-Thorin interpolation theorem [7].

Theorem 2.1. Let (Ω, µ) be a measurable space and (Ψ, ν) a σ-finite measure space. Let
T be a linear transformation with the domain D consisting of all simple functions H on Ω
such that µ{ω ∈ Ω : H(ω) ̸= 0} < ∞, and such that the range of T is contained in the set
of all measurable functions on Ψ. Suppose that α1, α2, β1 and β2 are numbers in [0, 1] and
there exist positive constants γ1 and γ2 such that

∥TH∥
L

1
βj (Ψ)

≤ γj∥f∥
L

1
αj (Ω)

, j = 1, 2, (f ∈ D).

Then for 0 < θ < 1, α = (1− θ)α1 + θα2 and β = (1− θ)β1 + θβ2, we have

∥TH∥
L

1
β (Ψ)

≤ γ1−θ
1 γθ

2∥f∥L 1
α (Ω)

, (f ∈ D).

Now, we show that there exists a unique bounded linear operator Mm,F,G for m ∈
Lp(Ω), 1 < p < ∞.

Theorem 2.2. Let F and G be Bessel mappings for H with respect to (Ω, µ) with bounds
BF and BG and norm bounded with norm bounds LF and LG, respectively. Let m ∈ Lp(Ω),
1 < p < ∞. Then there exists a unique bounded linear operator Mm,F,G : H → H such that

∥Mm,F,G∥ ≤ (LFLG)
1
p (BFBG)

1
2q ∥m∥Lp(Ω),

where 1
p + 1

q = 1 and Mm,F,G is given by (2) for all f and g in H and all simple functions

m on Ω for which

µ{ω ∈ Ω : m(ω) ̸= 0} < ∞.

Proof. Let L : H → L2(Rn) be a unitary operator between H and L2(Rn). Let m ∈ L1(Ω).

Then, by Proposition 2.1, the linear operator M̃m,F,G : L2(Rn) → L2(Rn), defined by

M̃m,F,G = LMm,F,GL
−1, is bounded and ∥M̃m,F,G∥ ≤ LFLG∥m∥L1(Ω).
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Now, let m ∈ L∞(Ω), then by Proposition 2.2, the linear operator M̃m,F,G is also
bounded and

∥M̃m,F,G∥ ≤
√
BFBG∥m∥L∞(Ω).

Let D be the set of all simple functions m on Ω such that

µ{ω ∈ Ω : m(ω) ̸= 0} < ∞.

Let f ∈ L2(Rn) and T be the linear transformation from D into the set of all Lebesgue
functions on Rn defined by

Tm = M̃m,F,Gf, (m ∈ D).

Then we have

∥Tm∥L2(Rn) ≤ LFLG∥m∥L1(Ω)∥f∥L2(Rn),

and

∥Tm∥L2(Rn) ≤
√

BFBG∥m∥L∞(Ω)∥f∥L2(Rn),

for all functions m in D. Thus, by Theorem 2.1, if we set θ = 1
q , then we get

∥Tm∥L2(Rn) ≤ (LFLG)
1
p (BFBG)

1
2q ∥m∥Lp(Ω)∥f∥L2(Rn), (m ∈ D).

Note that β1 = β2 = 1
2 , β = 1

2 , α1 = 1, α2 = 0, α = 1
p , γ1 = LFLG∥f∥L2(Rn) and γ2 =√

BFBG∥f∥L2(Rn). Hence

∥M̃m,F,Gf∥L2(Rn) ≤ (LFLG)
1
p (BFBG)

1
2q ∥m∥Lp(Ω)∥f∥2, (m ∈ D).

Therefore

∥M̃m,F,G∥ ≤ (LFLG)
1
p (BFBG)

1
2q ∥m∥Lp(Ω), (m ∈ D).

Let m ∈ Lp(Ω), 1 < p < ∞. Then there exists a sequence {mj}∞j=1 of functions in D such
that mj → m in Lp(Ω) as j → ∞. Then

∥M̃mi,F,G − M̃mj ,F,G∥ ≤ (LFLG)
1
p (BFBG)

1
2q ∥mi −mj∥p → 0,

as i, j → ∞. Therefore, {M̃mj ,F,G}∞j=1 is a Cauchy sequence in B(L2(Rn)). Using the

completeness of B(L2(Rn)), we can find a bounded linear operator M̃m,F,G : L2(Rn) →
L2(Rn) such that M̃mj ,F,G → Mm,F,G as j → ∞. So

∥Mm,F,G∥ ≤ (LFLG)
1
p (BFBG)

1
2q ∥m∥Lp(Ω), (m ∈ D),

and the operator Mm,F,G = L−1M̃m,F,GL ∈ B(H) is bounded linear and satisfying the
conclusions of the theorem if m ∈ Lp(Ω), 1 < p < ∞.

To prove uniqueness, let m ∈ Lp(Ω), 1 < p < ∞, and suppose that Pm : H → H is
another bounded linear operator satisfying the conclusions of the theorem. Let Q : Lp(Ω) →
B(H) be the linear operator defined by

Qm = Mm,F,G − Pm, (m ∈ Lp(Ω)).

Then ∥Qm∥ ≤ 2 (LFLG)
1
p (BFBG)

1
2q ∥m∥Lp(Ω), (m ∈ Lp(Ω)). Since Mm,F,G and Pm are

bounded linear operators satisfying the conclusions of the theorem, in particular, they are
given by (2) for all f and g in H and all simple functions m on Ω for which µ{ω ∈ Ω :
m(ω) ̸= 0} < ∞, so Qm = Mm,F,G − Pm is equal to the zero operator on H for all m ∈ D.
Thus, Q : Lp(Ω) → B(H) is a bounded linear operator that is equal to zero on the dense
subspace D of Lp(Ω). Therefore Pm = Mm,F,G for all functions m in Lp(Ω). �
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3. Sampling Theory for Continuous Frames

In this section, we show that the range of the analysis operator of a continuous frame
is a reproducing kernel Hilbert space and in particular it is closed. Recall that a Hilbert
space H of complex-valued functions on a set Ω is called a reproducing kernel Hilbert space
if the evaluation functionals Ez(f) = f(z), z ∈ Ω, f ∈ H, are bounded linear functionals
(see [2] for more details). Moreover, each signal in the range of the analysis operator can be
reconstructed in terms of its sampled values.

Throughout this section, by R(TF ) we always denote the range of the analysis operator
TF .

Theorem 3.1. Let F be a continuous frame for H with respect to (Ω, µ). Then the range
R(TF ) of TF is a reproducing kernel Hilbert space.

Proof. First we show that R(TF ) is a Hilbert space. It is enough to show that R(TF ) is
a closed subspace of L2(Ω). Closeness of the range R(TF ) of the analysis operator follows
immediately from the fact that TF is bounded from below.
Now let m ∈ R(TF ). Then there exists f ∈ H such that m = TF f . For ω ∈ Ω we get

(TF f)(ω) = ⟨f, F (ω)⟩ =
∫
Ω

⟨f, F (ξ)⟩⟨S−1
F F (ξ), F (ω)⟩dµ(ξ)

=

∫
Ω

(TF f)(ξ)⟨S−1
F F (ξ), F (ω)⟩dµ(ξ) =

∫
Ω

m(ξ)⟨S−1
F F (ξ), F (ω)⟩dµ(ξ),

that is, m(ω) =
∫
Ω
m(ξ)⟨S−1

F F (ξ), F (ω)⟩dµ(ξ), which implies that R(TF ) is a reproducing
kernel Hilbert space with reproducing kernel

Pω
S−1
F F

(ξ) := ⟨S−1
F F (ξ), F (ω)⟩.

�
Remark 3.1. In Theorem 3.1, suppose that F is a Parseval continuous frame. Then R(TF )
is the reproducing kernel Hilbert space with the reproducing kernel Pω

F (ξ) := ⟨F (ξ), F (ω)⟩.
Theorem 3.2. Suppose that F is a Parseval continuous frame for H with respect to (Ω, µ).
Let {ωj}∞j=1 be a countable family in Ω such that {F (ωj)}∞j=1 is an orthonormal basis for

H. Then for m ∈ R(TF ) we get m(ω) =
∑∞

j=1 m(ωj)K
ωj

F (ω), (ω ∈ Ω), where K
ωj

F :=

TFF (ωj).

Proof. Since TF is an isometry operator, {Kωj

F }∞j=1 = {TFF (ωj)}∞j=1 is an orthonormal basis

for the range R(TF ) of TF . So, if m ∈ R(TF ), then m =
∑∞

j=1⟨m,K
ωj

F ⟩Kωj

F , the series being

absolutely convergent in L2(Ω). In fact, for every ω ∈ Ω we get

∞∑
j=1

|⟨m,K
ωj

F ⟩||Kωj

F (ω)|≤

 ∞∑
j=1

|⟨m,K
ωj

F ⟩|2
 1

2
 ∞∑

j=1

|Kωj

F (ω)|2
 1

2

=∥m∥L2(Ω)

 ∞∑
j=1

|Kωj

F (ω)|2
 1

2

.

By Theorem 3.1, R(TF ) is a reproducing kernel Hilbert space. Since K
ωj

F ∈ R(TF ), j =

1, 2, · · · , it follows that K
ωj

F (ω) =
∫
Ω
K

ωj

F (ξ)Pω
F (ξ)dµ(ξ) = ⟨Kωj

F ,Pω
F ⟩L2(Ω), (ω ∈ Ω), for

j = 1, 2, · · · . So we have

∞∑
j=1

|⟨m,K
ωj

F ⟩||Kωj

F (ω)| ≤ ∥m∥L2(Ω)

 ∞∑
j=1

|Kωj

F (ω)|2
 1

2

= ∥m∥L2(Ω)

 ∞∑
j=1

|⟨Kωj

F ,Pω
F ⟩|

2

 1
2

= ∥m∥L2(Ω)∥Pω
F ∥L2(Ω).
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Thus the absolute convergence says that

m(ω) =
∞∑
j=1

⟨m,K
ωj

F ⟩Kωj

F (ω) =
∞∑
j=1

(∫
Ω

m(ξ)K
ωj

F (ξ)dµ(ξ)

)
K

ωj

F (ω), (3)

for all ω in Ω. Also, for all ξ in Ω we get

K
ωj

F (ξ) = (TFF (ωj))(ξ) = ⟨F (ωj), F (ξ)⟩ = ⟨F (ξ), F (ωj)⟩ = P
ωj

F (ξ), (4)

for j = 1, 2, · · · . So we have

m(ω) =
∞∑
j=1

(∫
Ω

m(ξ)K
ωj

F (ξ)dµ(ξ)

)
K

ωj

F (ω) (by Eq. 3)

=

∞∑
j=1

(∫
Ω

m(ξ)P
ωj

F (ξ)dµ(ξ)

)
K

ωj

F (ω) (by Eq. 4)

=
∞∑
j=1

m(ωj)K
ωj

F (ω), (by Remark 3.1)

for all ω in Ω. Thus, m(ω) =
∑∞

j=1 m(ωj)K
ωj

F (ω). �
Remark 3.2. In Theorem 3.2, each signal m processed by means of the analysis operator
TF : H → L2(Ω) can be reconstructed in terms of its sampled values {m(ωj}∞j=1 on Ω.
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