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A NOTE ON THE STABILITY ANALYSIS OF A CLASS
OF NONLINEAR SYSTEMS - AN LMI APPROACH

Mircea OLTEANU! and Radu STEFAN?

The main goal of the paper is to study the equilibria of a nonlinear sys-
tem, proving the existence and uniqueness of an equilibrium point in the positive
ortant. We also provide numerically tractable conditions (by using Linear Matriz
Inequalities techniques) to check the asymptotic stability of the equilibrium point.

An illustrative numerical example is closing the paper along with some conclusions.
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1. Introduction

Consider the following nonlinear system

dx . S
—_ + y n 1
4 = b-dX- S EY | X+ k5 Z;,
j=1 j=1
dy; + - =T,
O A BV U K7 =TT ()
de — + i—1. M

Here X, Y}, Z; (j = 1, M) denote concentrations in an enzymatic reaction, which
appears in the study of micro RNA - messenger RNA dynamics (for further details
see [5], [2], [7], [4], [10], [6]). The coefficients b,d, 3;,0;, k:;-r,k‘;,Kj and o; are all
positive.

In this paper we study the positive ortant equilibria of the system, proving
existence and uniqueness (Theorem 2.1). Further, in Section 3, we provide numeri-
cally tractable conditions (by using Linear Matrix Inequalities techniques), to check
the asymptotic stability of the equilibrium point. An illustrative numerical example
is closing the paper along with some conclusions.
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2. Problem statement

The system can be rewritten as

X

Y
4o ;
— = F(®), where ®:= |Y)y
dt

A

AYs

and F is the appropriate vector field defined on R?™*+1 and associated to the system
(1). For every &) = (X°,Y?, Z?) € Ry x R2M | denote by ®(t;to, ®o) the solution of
the Cauchy problem
do
= = (@), 0(to) = P

Remark 2.1. Obviously, the Ezistence and Uniqueness Theorem applies to the sys-
tem (1); moreover, the positive ortant RiMH is a positively invariant set for the
system - see [8].

The first main result is:

Theorem 2.1. For every positive set of parameters b, 8, d,d;, 05, k:;-r, k‘;,Kj, j=

1, M, the system (1) has an unique equilibrium point ()A(:, )7}, 2]) n R?FM'H, j=1,M;

moreover
Ye <O,b>, v, ¢ (ﬂﬁ)
d 0+ Bjg 9

ko
T ok K

Proof. From (1) we get the following equilibria 2M + 1 algebraic equations

M M
b—dX — | > kY | X+) k7 = 0, (2)

j=1 j=1
,Bj—éjY;'—k;_}/jX-i-(kIj_-i-Kj)Zj = 0, j=1,M (3)
—(oj+k; +K)Zj +k[Y;X = 0, j=1,M (4)

From the last M equations (4) we get
kfY;X
Zj=—"7,L~—— j=1M.

oj+k; + K
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Replace Z; in the first M + 1 equations (2)-(3) and obtain

M .+
kT(K; +0;
b—dX — ZMYJ X =0
O'j+k‘j +Kj

j=1
B, —6.Y. ko 0 T
J jLj a]—&—k:j_—i—KJJ = , J =1

or, equivalently,

;Uj—i—k:j + K
v (64— % B, =T,
. + = i s = 5 .
i\9 o)+ k; K i J

With the notations below
k‘;r (Kj + Uj)

oj + k‘j + Kj
kfo;
B = —J1 21
O'j + k'j + Kj
the previous system of equations becomes
M
X (d+) Ay = b (5)
j=1
Yj(6;+Bjm) = B j=1,M. (6)
Take Y; = (Sj:ng, j=1,M, and replace Y; in (5):
- 8
X A g =
-t Z 76+ BjX ’
7j=1
- 8
Let f:R R =X |d A J
ef +_> 7f() +Zl ]6]+BJX
Mo ABis;
Then f'(X) =d+ ng W > 0, which shows that f is increasing.
Noticing that f(0) =0 < b and f(%) = % <d + Zj]\il A; &flj}b> > b, one gets that
J Jd

the equation f(X) = b has a unique solution X e (O, g). A straight computation

shows that
Y, = Bi . Bj ) g\
5 +B;X \&+B;5 6
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3. LMI stability conditions

In order to investigate the asymptotic stability of the equilibrium point, we
will use Lyapunov’s stability theorem in first approximation and obtaining an LMI
(Linear Matrix Inequality) sufficient condition.
Let us first translate the system (1) to the origin. Define the deviations with respect
to the equilibrium point in Theorem 2.1 by

ZC:X_)}:’ y]:}/vj_i};v Z]:Z]_Zvjzlva

x=X — )?, y=Y — Y and 2z = Z — Z, respectively. Then, with this change of
variables, the dynamics of the deviations’ system are given by

da Mo Mo M M
O (25 1%27) P o170 RS N it
J=1 J=1 j=1 j=1
. dy; > - - R v
Yj = dftj = —k‘jYJJS —(6; + k‘;rX) yj + (k; + Kj)zj — l{:;-“xyj, j=1,M (7)
. dz > > _ .
Zj = d—tj = k:;rYJQ:+ k‘;.erj —(oj + ki + Kj)z; + k‘;.r:vyj, j=1,M

Obviously the origin is an equilibrium point for (7), exhibiting the same stability
and topological properties as (X, Y}, Z;) for the system (1) - see [9], Ch.4.

The translated system (7) rewrites now as

-4 Mo~ ~ B B - e -
& —(d+ S R [ =K kX [k k] @
U1 kffﬁ Y

: — — diag(0; + k;r)N() diag(k} + K;) :
Um| = ki Y Yym
Z kfY: z1

: diag(k;f)?) —diag(o; + k; + Kj)
Zv] | kT, Yar INEa

_ o Z
— Ej:l ijyj

—k’fr Y1

+ fkj\}xyM

kfﬁﬂyl

ki rynm
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or, equivalently,

€= A¢+ ().
Here ¢ = [:): Y1

e oYM 21 zm ), A:A0+ij\i1f4jv
9(&) = 3L, ajy;a,
[ —d| O | [k ... ky] ]
Ag=1| O —diagéj‘ diag(k;“—i-Kj) , Aj:ajva,
| O O | —diag(o; +k; + K;) |
S o
}/"j
! 0
0 :
1 )9(
0
0
aj—kj+ 0 and vj= | 0
0
0
0
1 0
0
Lo -0

Then the Jacobian matrix associated to the system (7) in a point ¢ € R?M+1 ig

M
JE)=A+> a;(y; + ),
j=1

hence

M
J(O)ZA:A()-FZAJ'. (9)
j=1
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Remark 3.1. The Jacobian matriz associated to the system (7) does not depend
on Ej. In order to investigate the stability of the origin for the "translated” system,
we will make use of Lyapunov first Theorem. For proving that the origin is an
asymptotically stable equilibrium point for (7), it is sufficient to check that J(0) is
a Hurwitz matriz, or equivalently, there exists a symmetric positive definite matriz
P such that

M M
ATP+PA <0< ATP+PAc+ > vp] + > pjv; <0, pj=Pa;.  (10)
j=1 j=1

One can show that

UJpJ +pﬂ’ <UJU —l—p]p] < Arnax (V0; )I2M+1+P(1]a P.

Since
T2 | U2 b? BJQ
)\max(vjj) X +Y <ﬁ+52
J

it follows that the LMI (10) is satisfied whenever the following (Riccati) matric
inequality

M 2
v B
A(I;P—FPAo-i—z:<d2 52>I+PBBTP<O where B:[al as ... aM]
j=1
(11)
holds. Equivalently, by using a Schur complement argument and denoting by
M 2 2
p= jzl (Z2 + §2> > 0, the above inequality becomes
AgP-i—PAo—i-pIzM_H PB
[ BTp Iy < 0. (12)

From the above considerations the next important result follows.

Proposition 3.1. If there exists a symmetric positive definite matriz P satisfying
the above LMI (12), then the origin is an asymptotically stable equilibrium point for
the translated system (8).

This last relation is an LMI in the unknown P and can be solved by using
existing semidefinite programming software packages.

As we will show in the next section, we have used the cvx programming envi-
ronment developed by Boyd et. al[3] and run the SDPT3 semidefinite programming
package.

4. Numerical examples

Consider M = 2 and the following parameters (coefficients): b = 4,0, =
15,8 = 0.1; d = 12,81 = 14,69 = 11; k = 10,k = 5; k; = 3,k;, = 0.1;
K1 = 0.8,K2 =1 and g1 = 1.5,0’2 = 10.
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In this case the feasibility problem (12) has a positive definite solution

[ 46996 —2.9796 —2.2656 2.0782  2.1960 |
—2.9796 1.9734  1.4191 —1.3454 —1.3977
P=|-22656 1.4191 2.0419 —1.0036 —0.8466],
2.0782 —1.3454 —1.0036 0.9881  0.9665
| 21960 —1.3977 —0.8466 0.9665  1.3968 |

and the spectrum of P is Ap = {0.0475, 0.0625, 0.2566, 0.9745, 9.7586}. Further-
more, the spectrum of the left-hand side in (12) is

A = {-242.7839, —19.0743, —2.1913, —0.9617, —0.2660, —0.1102, —0.0011}

confirming that the LMI is fulfilled.

This approach does not necessary replace the direct verification of the fact
that the Jacobian matrix (9) is stable. Such a verification implies the numerical
calculation of the equilibrium point (X = 0.3206, Y; = 0.1006, Y, = 0.0084) and
also that of the eigenvalues of the Jacobian matrix

[—13.0481  —3.2059 —1.6030  3.0000  0.1000 |
—1.0062 —17.2059 0 10.8000 0
A= | -0.0419 0 —12.6030 0 6.0000 |,
1.0062 3.2059 0 —5.3000 0
0.0419 0 1.6030 0 —5.3000

that is,
Aa = {-20.4212, —12.2267, —13.8016, —2.8432, —4.1643} .

All these eigenvalues are in the left half of the complex plane.

5. Conclusions

For those studying the micro RNA - messenger RNA dynamics our approach
offers a sound numerical tool for checking the asymptotic stability of the system
equilibrium in the positive ortant. It is worthwhile to mention that the proposed
stability test is independent of the values of the equilibrium point, depending exclu-
sively on the system coefficients.

Since Proposition 3.1 only provides a sufficient condition for verifying the
asymptotic stability of the equilibrium point, a certain degree of conservatism is
implicitly present in the numerical procedure; if the LMI (12) proves to be infeasible,
this does not mean that the Jacobian matrix A is unstable. Numerical experiments
show that this conservatism becomes to be present for larger values of p.

Future work will be dedicated to the extension of the procedure to the situation
N > 1 and to a better exploitation of the system’s structure.
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