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A NOTE ON THE p(z)-CURL-SYSTEMS PROBLEM ARISING IN
ELECTROMAGNETISM

Khaled Kefi', Mohamed Ayari?, Khaled Benali®

This paper deals with the existence of one non trivial solution for the p(x)-Curl
systems with sign-changing weight and nonstandard growth conditions. Our main tool
is the variational method.
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1. Introduction

The study of partial differential equation with non standard growth conditions is an
intriguing content of exploration due to its significant part in many topics and disciplines of
mathematics. In fact this type of equations is very active in many fields, we mention e.g.,the
filtration of barotropic gas through a porous medium Antontsev-Shmarev [3], image process-
ing Chen-Levine-Rao [5], stationary thermorheological viscous flows of non-Newtonian fluids
Rajagopal-Ruzicka,[21] electrorheological fluids Ruzicka [22] and elastic mechanics Zhikov
[24]. For recent problems involving these kind of operators, the reader can be referred to
the papers Ge [12], Hsini-Irzi-Kefi [16], Hou-Ge-Zhang [17], Kefi [18], Kefi-Irzi-Al-Shomrani-
Repovs [19] and Hamdani et al [15].

In this paper, we shall show the existence of a non-trivial weak solution for the
following problem involving the p(z)-curl operator

V x (|[V x ufP® =2V x u) + a(z)[ulP® =2 u = \V(2)|u|!@2u, V-u=0 in

|V xuf®) 2V xuxn=0, u-n=0, on 09,

(1)

where (2 is a bounded simply connected domain of R? with a C™! boundary denoted by 99,

p(z),q(z) € C(Q), 1 < p~ < p(z) <p" < 3 and p(x) satisfies logarithmic continuity: there
exists a function v : Ry — Ry such that

_ ) 1
Yo,y € Q, |z =yl <1, |p(z) = p(y)] <7(lz —yl), lim y(t)log - =C < co.
u is a vector function on 2. The divergence of u = (u1, ug, us) is denoted by
V-u =0y, uy + Op,u2 + Oy us
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and the curl of u is defined by
V xu = (0g,u3 — Opzua, Oyt — Op, Uz, Oz, Us — OpyUy).
Then V x u and V - u satisfy the following identity
—Au=Vx (Vxu-V(V-u),

where Au = (Auq, Aug, Aug) and Au; =V - (Vuy),i =1,2,3.
The p(z)-curl operator is a natural generalization of the p-curl operator which appear in
many papers in literature, however the constant p has been replaced by the function p(z).
Note That due to the fact that the p(z)-curl operator is not homogenous, it has more
complicated structure than the the p-curl one.

In the recent years many problems involving the p(x)- curl operator have been studied
in many papers, we refer e.g., to recent works of Afrouzi, Chung-Naghizadeh [1], Ge-Lu [13],
Hamdani-Repovs [14] and Xiang, Wang-Zhang [23].

For example and not limited to, we mention the paper of Afrouzi, Chung-Naghizadeh
[1] in which the authors consider the problem (1) in the particular case when a(z) = 0 and
under a suitable condition on the nonlinearity, they proved the existence of solution. Their
main tools are essentially based on the mountain pass theorem and fountain theorem. The
study of the existence of solutions for p(z)-curl systems is a new and interesting topic and
only minor results involving these kind of operators are present in literature.

In the hole paper, let

Ci(Q):={h|heCQ),h(z)>1, for all ze€ Q},
and for n > 0, h € C(Q), we set

h~ := inf h(z), h' :=suph(z)
zEQ zEN

and

- + . - +
)" = sup{n" 0"}, [l :=inf{n" 9"}
In the sequel, we shall need the following assumptions:
V : Q — R is a sign-changing function such that V' € L*°(Q) and
(A) a € L*>(Q) and ess ing2 a(xz) = ap > 0.

re

(V3) there exist an zy € 2 and two positive constants r and R with 0 < r < R such that

Br(zg) € Q and V() =0 for € Br(xo) \ Br(zo) and one of the following conditions
hold

V(z) > 0,Yz € Br(z9) and V(z) < 0,Vz € Q\ Bg(zo) (V)

or

V(z) <0,z € B,(x9) and V(z)>0,Yz € Q\ Br(zo).  (V3)
Moreover, we assume that
(@1) 1< q(x) <p*(z) = 3?’7171(78) for all x € Q.
(Q2) Either

max g¢(z) <p” <p" < min g¢(z) (Q2)
zE€By (o) z€Q\Br(zo)
or
max  g(z) <p~ <p" < min g(). (Qy)
z€Q\BR(z0) z€B(x0)

Our result can be described as follow.

Theorem 1.1. Assume that the assertions (A), (Vo) and (Q1) are fulfilled. Moreover,
either the assertions (Vy) — (Qy) or the assertions (Vs ) — (Qy) hold. Then any A > 0 is an
eigenvalue of problem (1).
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2. Backgrounds setting

In this part, let us recall some definitions and results be needed later.

Firstly, we recall some theories of Lebesgue-Sobolev space with variable exponent
which are described in details in Diening [15], Edmunds- Rékosnic [7], Fan- Zhang [8], Fan-
Zhao [9], Fan- Zhao- Zhao [10], Fan-Zhao [11], Kovacik- Rékosnic [20].

Let
Ci(Q) ={heC(Q):h(z) >1 forany z € Q},
h~ =minh(z), ht = maxh(z) for any h € C (). (2)
e €

Obviously, 1 < h~ < hT < +o0.
Denote by U(2) the set of all measurable real functions defined on Q. Two functions
in U(Q) are considered to be one element of U(2), when they are equal almost everywhere.
For p € C(Q), define

LP(Q) = {u € W(Q) / ()P @ dz < +o0), 3)
Q
with the norm [u|s) () = |Ulp@) =Inf{A >0 [, \@\P@)dw <1}, and
WP (Q) = {u € LP@(Q) : |Vu| € LP@(Q)} (4)
with the norm [Jull = [Jully 1@ (@) = [Ulp@) + VUl pe)-

Denote Wol’p(z)(Q) as the closure of C§°(Q) in W1P®)(Q).
Hereafter, let

3p(x)
pi(a) = { 3—pl) PO <P 5)
+ o0, p(z) > 3.

We recall that the variable exponent Lebesgue spaces are separable and reflexive

Banach spaces. Denote by Lp/(x)(Q) the conjugate Lebesgue space of LP(*)(Q) with ﬁ +
1

T = 1, then the Holder type inequality

1 1
[ lde < (= 4 vl w€ O@),0 € LO(@) (6)
Q p p
holds. Furthermore, define the mapping p : LP(*) () — R by

plu) = /Q () P de, (7)

then the following relations hold
- +
[ulpay > 1= [ul?,, < p(w) < [ul?y,,,

(8)

N -
‘u|p(w) <l= |U|£(3;) <pu) < |U|Z(3;)-

Proposition 2.1. (See Fan-Zhang[8] If ¢ € C1(Q) and q(x) < p*(z) for any x € Q, then
the embedding from WP (Q) to LI*)(Q) is compact and continuous.

Let LP(®)(Q) = LP@) () x LP@)(Q) x LPE)(Q) and define
WP (Q) = {u e LP(Q) : V x u e LP¥(Q),V-u = 0,u-n|pg = 0},
where n denotes the outward unitary normal vector to Q. Equip W? (m)(Q) with the norm

[all = [[ullwre @) = MlLee @) + [V X ulpse q)-
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If p~ > 1, then by Theorem 2.1 of [2], WP(*)(Q) is a closed subspace of WLP@)(Q), where
WLP®(Q) = {ue WP(Q) :u-nlpg = 0}
and
WHPE) () = WwhPE)(Q) x WHPE)(Q) x W@ (Q).
Thus, we have the following theorem.
Theorem 2.1. (See S. Antontsev, F. Mirandac [2, Theorem 2.1]) Assume that 1 < p~ <
pt < 0o and p satisfies (1.2). Then WP (Q) is a closed subspace of WP (). Moreover,
ifp™ > g, then |V x ~|Lp(m)(9) is a morm in VV"(””)(Q) and there exists C = C(N,p~,pT) >0
such that
Jull < CIV X ulppe q)

Corollary 2.1. (See Bahrouni-Repovs [4, Corollary 2.5]) The embedding WP®(Q) —
LY(Q) is compact, with 1 < p~ < pt < 3, ¢ € C(Q) and 1 < q(z) < p*(z) in Q.
Moreover, (WP™)(Q), ||u|) is a uniformly convex and reflexive Banach space.
Let
ully = inf {1z > 0: / (1Y) 4 g(0) 2 o)) g < 1)
Q H
for all u € WP®(Q). Since a~ > 0, it’s easy to see that || - || is equivalent to the norm
| - [[Weee (). In this paper, we shall use for convenience the norm [lul|, on wrE ().
Proposition 2.2. (See Hamdani-Repovs [14])
Let Ap(z),a(u) = / (IV x ulP®) 4 a(m)\u(x)|p(w))dx for all ue WP (Q).
Q
Then
[l llalp < Apy.a(w) < (Il fla]”
Consider the following function:
a(r) (@)
D (u) z/ |V x ul? ‘"”)dx—k/ lu|P®dz,u € WP (Q). (9)
o p(z) p(z)
We know that(see [23, Lemma 3.1]) ® € C'(WP®)(Q),R) and the p(z)-curl operator
V x (|V x u[P®) =2V x u) is the derivative operator of ® in the weak sense.
We denote £= @' : WP@ () — (WP (Q))*, then
(€(w).) = [ (7 % u(@)P @2V x u(e) -V x viw)ds
? (10)

+ / a(z)u(z)[P@~?u(z) - v(z)de,¥V u,v e WP (Q).
Q
Furthermore, one has

Proposition 2.3. Set X = WP@(Q), ¢ is as above, then

(a) £: X — X* is a continuous, bounded and strictly monotone operator.

(b) € : X — X* is a mapping of type (S)+, i.e., if u, — u weakly in X and
lim sup(&(wy, ), un, — u) < 0, implies u, — u in X.

n—roo

(c) €: X — X* is a homeomorphism.

In the rest of paper for u € LP®)(Q), we use the notation [ulp(x) instead of [[ul|ppe) -
In order to formulate the variational approach to problem (1), let us recall the defi-
nition of a weak solution for our problem.
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Definition 2.1. We say that u € X is a weak solution of problem (P), if
/|V X P2V xu-V x v d:1:+/ a(z)|uP@ 2y v dx
Q Q

fA/ﬁqmmMﬂ4m'vdx:m for all ve X.
Q

3. Proof of the Main Result

In order to prove Theorem 1.1 let us define the functions ¢; and ¢o as follows

@1 : Br(x0) — (1,400),q1(x) = g(x) for any = € B, (x0) and
42 : \Br(z0) — (1, +00), g2(¢) = g(a) for any @ € O\ Br(xo).
We also introduce here the notations

g, = main_q(x), g = maz q(z)
z€By(x0) x€By(x0)
g = _min_ g(z), ¢35 = _mar _ g(x).
€\ Br(zo) z€Q\Br(z0)

By the conditions (Q1) and (Q5)
1<qy <qf <p <p"<q, <qf <p*(z)forall z € Q, (12)

hence, for ¢ = 1,2, X is continuously embedded in L% (Q2), we deduce that there exists a
positive constant ¢; such that

[u|Le (o) < cillulle, forall ue X andi=1,2. (13)

To begin, let us denote

U(u) = /Q V&), 0@ .

q(x)

The Euler-Lagrange functional corresponding to problem (1) is then defined by I :
X =R,

In(u) = ®(u) — A¥(u), for allu € X,
where

q>(u)=/ L|vXu|P<ff>dx+/ Egu]’(m)ds&.

a
o p(z) Qb

By using inequality (8), one has

1 1 1
Mwét/W@MW%SiWM/MMMStMQWM?
q Q q Q q

The following result asserts the existence of a “valley” for Uy near the origin.

Lemma 3.1. There exists ug € X, such that ug # 0, and I\(tug) < 0 for any t > 0 small
enough.
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Proof. Let ug € (C§°(Q2))3, there exist x1 € By(z0) and € > 0 such that for any B.(z1) C
B, (zg) we have |ug(z1)| > 0. Letting 0 < t < 1 we then obtain

I (tug) = (/Q]%(W < (00) P+ afa) g ")) — )\/ @hﬁuo\q(”)dx

< —/t” f”) IV x up[P® + a(x)|uo? ””) dx — )\/ e ))t‘“(m| up| @ dz
(zo
P Al
S o (|V X u0|p(z) + a( )|u0‘p )dx e V(aj)|uo|q1(x)dx
P Ja q1 B (w0)
P Atd
<= (WXUW”LHKNMW”ﬁw——é— V()| ) da.
b Q2 ql Be(fﬁl)

Obviously, we have I (tug) < 0 for any 0 < t < 67 4 | where

N JB(x1)

/ (|V x [P + a(ﬂﬁ)\ﬂol”@))dm
Q

0<d< min{l,

Finally, we point out that
/ (|V x [P + a(x)|u0|p(w))d9c > 0.
Q

Indeed, supposing the contrary we have / (|V X ug [P + a(x)\u0|p(£))dm = 0. By Propo-
Q
sition 2.2, we deduce that ||ug||, = 0 and consequently uy = 0 in © which is a contradiction.

The proof of Lemma 3.1 is complete. (]

Proof of Theorem 1.1. We prove Theorem 1.1 in details for the case when the
conditions (V,) — (Q3) hold, the remaining one can be made by similarly arguments so we
omit it. Using Holder inequality (6) for ||ul|, > 1 combined with relations (8), it follows for
any A > 0 and all u € X with |lull, > 1,

/ (p( )|qu|P(x)dJE+ E ;|u|p )dx/\/ﬂ‘;((j))uq(x)dx

>l - = [ Ve

> —ugf——Voo/ u|® @ gy
prlulle ==V MU)l |

I)\(u)

- A
= ullg - qi\V\oo[Clllulla]q-

1
e |
By (Q3), we have ¢;i < p~, then Iy(u) — 400,as |lullq — +oo. This implies that Iy is
coercive and bounded from below on X. On the other hand, by (Q1), the embedding X «—
L) (Q) is compact, so I is weakly lower semicontinuous then it has a global minimizer w.
Due to Zeidler [[25] Theorem D.25], w is weak solution of problem (1). Finally, we point out
that due to the Lemma 3.1, this minimizer is nontrivial and thus any A > 0 is an eigenvalue
of problem (1). Which ends the proof.
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