U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 2, 2011 ISSN 1454-234x

LIPT-DERIVED TRANSFORM METHODS USED IN
LOSSLESS COMPRESSION OF TEXT FILES

Radu RADESCU'

Acest articol se ocupd de avantajele obtinute in compresia fara pierderi a
datelor prin utilizarea metodelor de preprocesare, cu scopul de a exploata mai
eficient redundanta fisierului sursa. Contributiile originale ale lucrarii se
concentreaza pe transformata ILPT (Length-Index Preserving Transform). ILPT
face parte dintre cele trei proceduri derivate din transformata cu conservarea
lungimii indexului, LIPT (Index Length Preserving Transform): ILPT, NIT si LIT.
Aceste transformari sunt aplicate fisierelor text, iar algoritmii aferenti sunt
prezentati pe scurt in lucrare, inainte de a se evidentia efectele lor benefice asupra
unui set de figiere de test alese din corpusurile clasice de texte. Au fost obtinute
cdteva rezultate experimentale, din care au fost deduse concluzii interesante.

The present paper refers to the benefits provided in the lossless compression
by using preprocessing methods in order to exploit better the redundancy of the
source file. The following contributions focus on the Length-Index Preserving
Transform (LIPT). The procedures are derived from LIPT and are known as ILPT,
NIT and LIT. These transforms are applied to text files. The algorithms are briefly
presented before emphasizing their positive effects on a set of test files chosen from
the classical text corpora. Experimental results were performed and some
interesting conclusions were driven on their basis.

Keywords: data compression, lossless algorithms, transform methods
1. Introduction

One of the new approaches in lossless text compression is to apply a
reversible lossless transformation [5], [6] to a source file before applying any other
existing compression algorithm. The transformation is meant to make the file
compression easier [1], [2]. The original text is offered to the transformation input
and its output is the transformed text, further applied to an existing compression
algorithm [7], [8]. Decompression uses the same methods in the reverse order:
decompression of the transformed text first and the inverse transform after that.

Several important remarks could be made regarding this model. The
transformation has to be perfectly reversible, in order to keep the lossless feature
of text compression [6]. The compression and decompression algorithms remain
unchanged, thus they do not exploit the transformation-related information during

' Assoc. Prof., Applied Electronics and Information Engineering Department, University
POLITEHNICA of Bucharest, Romania, e-mail: radu.radescu@upb.ro

64 Radu Radescu

the compression [11], [12]. The goal is to increase the compression ratio
compared to the result obtained by using the compression algorithm only [3], [4].
The algorithms use a fixed amount of data stored in a dictionary [13], [16]
specific to every work domain [15]. This dictionary should be known both by the
sender and the receiver of the compressed files [9]. The average size of the English
language dictionary is about 0.5 MB and it can be downloaded along with
application files. If the compression algorithms are to be use repeatedly (a valid
assumption in the practical cases), the dictionary size is negligible. The
experimental results measuring the performances of the preprocessing methods are
given using the Calgary Corpus [17] and some representative Romanian text files.

2. ILPT, NIT, and LIT Transforms

The three transform methods to be described here are all derived from the
Length-Index Preserving Transform (LIPT), which is briefly presented in the
following. LIPT uses a transformation dictionary of the corresponding language.
Between the transformation dictionary and the specified language (English,
Romanian, etc.), there is a one to one correspondence. The words that are not
found in the dictionary are left unchanged in the coded text.

To create the LIPT dictionary, the language dictionary needs to be sorted
depending on the word length, and every block of a specific length to be sorted in
descending order of the frequency of the words. The encoding and decoding
processes can be put together. We assume that both the compressor and the
decompressor have access to the same D dictionary and its Dy jpr correspondent.

The encoding steps are:

1. The words from the input text are searched in the D dictionary.

2. If the input text is found in the D dictionary, then the position and the
number of its length block are marked down and the adequate transformation is
searched at the same position and same length block in the Dy pr dictionary. This
transformation is the encoding of the input word. It this is not found in the D
dictionary that it is transferred unchanged.

3. Once the input text is transformed according to step 1 and 2, this is sent
to a compressor (e.g., Bzip2, PPM, etc.)

The decoding steps are:

1. The compressed received text is first decompressed using the same
compressor used in the coding phase the result being the LIPT transformed text.

2. To the decompressed text, an inverse transformation is applied. The
words preceded by the “*” character are the transformed ones, and those without
it are unchanged, so they do not need the inverse transformation. The
transformed word is then interpreted like this: the length character indicates the
length block where the decoded word is found, the next three symbols indicate

LIPT-derived transform methods used in lossless compression of text files 65

the offset where the word is situated in that block and there can also be a
capitalization mask. The word is then searched in the D dictionary according to
the above parameters. The transformed words are then replaced with the
corresponding ones from the D dictionary.

3. The capitalization mask is applied.

It was noticed that the majority of words in the English language have a
length ranging between 1 and 10 letters. Most of them have a length ranging
between 2 and 5 letters. The length and the frequency of words were a solid base
on creating the LIPT transform method [12], [17]. This can be considered a first
phase of a compression algorithm with many stages, like the Bzip2, that includes
the RLE encoding [6], the BWT transform [1] and the MTF [1] and Huffman
encoding [6], [14], and [15]. LIPT can be used as an additional component in the
Bzip2 algorithm, before the RLE encoding, or it can also replace it.

ILPT, NIT, and LIT do lossless reversible text transforms, and are based upon
LIPT Transform [10], [14], and [20]. They do not offer a significant increase of the
execution time performance, because they use the same method of loading a dictionary
as LIPT does, and the static dictionary and the code dictionary remain the same.

The transform that preserves the initial letter (ILPT) is similar to LIPT [20]
excepting that the dictionary is sorted in blocks according to the initial letters of the
words. Then the words of each block of letters are sorted in descending order of
frequencies of occurrence of these words. The character that for LIPT is the length
of the coded word, in this case is the first letter of the coded word, that is instead of
*cren[c][c][c], for ILPT is *cipi[c][c][c], where ciyie represents the first letter of the
coded word. Besides that, everything remains as for LIPT. Numerical Index
Transform (NIT) uses variable addresses based on numbers instead of letters of the
alphabet. This method was tested using a simple linear address with numbers,
giving the 59,951 words from English dictionary addresses from 0 to 59,950.

Using this method on English dictionary D, sorted first by word length,
then the frequency of their appearance, offered a performance lower than LIPT.
As a result, the dictionary was sorted globally in descending order of the
frequency of appearance of the words. In the new dictionary, the sorting of the
blocks was not used. The transformed words are represented by the character “*”
followed by the corresponding code of the respective word. This way the first
word is coded as “*0”, the 1000th word is coded as “*999”, and so on. Special
characters are treated the same way as for LIPT.

Combining the method used for NIT with the use of letters to specifying
the offset was discovered another transform which is similar to the NIT, except
that now, for the specification of the linear address of a word in the dictionary, the
alphabet letters [a-z; A-Z] are used instead of numbers. This is called the Literal
Index Transform (LIT).

66 Radu Radescu

The size of the dictionary of transformation is variable depending on the
individual transform. For example, the text book1.txt, which had 767 KB, the size
of the dictionaries of transformation obtained for ILPT, NIT and LIT are 294 KB,
344 KB, and 311 KB. It is noted that ILPT has the dictionary of transformation
with the smallest size.

The frequency of the repeated words remains the same in the original text
file and the transformed one, only the frequency of the characters changes. This
factor, together with reducing the file size, contributes to a better compression by
using these transforms. For all transforms for generating transformation, dictionary
words have been sorted according to their frequency of occurrence. For ILPT words
of the vector are sorted in descending order of frequency of their occurrence. For
NIT the entire dictionary is considered a single block, and is sorted in descending
order of frequency of occurrence of words. LIT uses the same structure as NIT.
Sorting words according to frequency plays an important role in determining the
size of the transformed file and its entropy. Arranging words in the decreasing order
of their frequencies leads to shorter codes for more often used words and longer
codes for less used words. This leads to obtain the file size smaller.

The coding scheme for the three transforms is shown in Fig. 1.

~ .

Original text: Apply Transformed) 5?‘}' €

Acesta este un transtormed texct in file
(coding)

fest.

1l

Transimission of
compressed text

1l

Inverse Transformed Compressed file
transform text receive
(decoding)

Fig. 1. Coding scheme for ILPT, NIT and LIT transforms

Original text:
Acesta este un
test.

3. Compression Tests

Software compression [18]-[20] results are presented for the following
files using Initial Letter Preservation Transform (ILPT), Literal Index Transform
(LIT) and Numerical Index Transform (NIT) with the classic archiver WinRar
(see Tables 1-3). There have been used some representatives Romanian text files
and two test files, called "book1" and "book2", taken from the set of evaluation of
lossless compression algorithms Calgary Corpus [17].

LIPT-derived transform methods used in lossless compression of text files 67
Table 1
ILPT Transform
File File ILPT WinRar
Name Size Compression Compression
book]1.txt 767 596 273 261
book?2 612 456 179 161
creierul o enigma 494 328 139 122
regulament ordine interioara 84 50 14 10
tarzan of the apes 497 380 165 144
Yserver 260 158 14 12
Table 2
NIT Transform
File File NIT WinRar
Name Size Compression Compression
book]1.txt 767 697 273 233
book?2 612 516 179 157
creierul o enigma 494 374 139 118
regulament ordine interioara 84 55 14 10
tarzan of the apes 497 434 165 141
Yserver 260 137 14 10
Table 3
LIT Transform
File File LIT WinRar
Name Size Compression Compression
bookl.txt 767 571 273 231
book?2 612 431 179 154
creierul o enigma 494 310 139 117
regulament ordine interioara 84 55 14 10
tarzan of the apes 497 364 165 140
Yserver 260 124 14 9

4. Experimental Results

The following experimental results were obtained (see Figs. 2-7).
There can be noticed improvements in compression without classic
archivers from 34 KB for 80 KB files up to 171 KB for 767 KB files.
For example, a file of 170 KB has about 1200 lines, which is not
negligible. Transformation algorithm is based on the exploitation of redundancy,
so the larger the file the better the compression.

68 Radu Radescu

@ File size
B File size with ILPT

Fig. 2. The original file and ILPT transformed file

@ Winrar file size
m Winrar file size with ILPT

Fig. 3. WinRar archived file with and without ILPT

LIPT-derived transform methods used in lossless compression of text files 69

DFile size
mFile size with NIT

Fig. 4. The file with and without NIT

O WinRar file size
m WinRar file size with NIT

Fig. 5. WinRar archived file with and without NIT

70 Radu Radescu

O File size
B File size with LIT

Fig. 6. File with and without LIT

O WinRar file size
m WinRar file size with LIT

Fig. 7. WinRar archived file with and without LIT

Tables 4-6 are given in percentage of the rate of compression for archiving
performed.

LIPT-derived transform methods used in lossless compression of text files 71

Table 4
ILPT Transform
File Name ILPT Compression (%) WinRar Compression (%)
book1.txt 22.29465 4.395604
book?2 25.4902 10.05587
creierul o enigma 33.60324 12.23022
regulament ordine interioara 40.47619 28.57143
tarzan of the apes 23.54125 12.72727
Yserver 39.23077 14.28571
Table 5
NIT Transform
File Name ILPT Compression (%) WinRar Compression (%)
book1.txt 9.126467 14.65201
book?2 15.68627 12.2905
creierul o enigma 24.2915 15.10791
regulament ordine interioara 34.52381 28.57143
tarzan of the apes 12.67606 14.54545
Yserver 47.30769 28.57143
Table 6
LIT Transform
File Name ILPT Compression (%) WinRar Compression (%)
book1.txt 25.55411 15.38462
book?2 29.57516 13.96648
creierul o enigma 37.24696 15.82734
regulament ordine interioara 34.52381 28.57143
tarzan of the apes 26.76056 15.15152
Yserver 52.30769 35.71429

5. Conclusions

This paper presents important results in pre-compression processing for lossless
algorithms using a set of transforms for different text files. If Burrows-Wheeler, Star,
and Length-Index Preserving Transforms are already well-known and widely used for
this purpose, the derived transforms (ILPT, NIT, and LIT) are more recent and their
capabilities still not enough exploited. The present contribution focuses on the
compression performances obtained using the three transform methods in the particular
case of the Romanian text files. All three transforms present significant improvements
over the original files in terms of compression rate. There is not a distinction to be seen
between transforms, no one can say that one is better than the other.

As optimization of the compression process, some suggestions can be made:

. one can work with a database that retains all dictionary words at a time;
° one can define filters for words, for example, for an e-mail address;

72

Radu Radescu

11.
12.

13.

14.

15.

16.

17.
18.
19.
20.

. when the dictionary is formed, it may be lexicographical ordered, and
not by the frequency of occurrence and then a "divide et impera"
algorithm to search for that word can be used.

REFERENCES

M. Burrows, D.J. Wheeler, "A Block-Sorting Lossless Data Compression Algorithm", 1994, report
available at: http:/gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-ir-124.html

M. Nelson, "Data Compression with the Burrows-Wheeler Transform", September 1996, available at:
http://dogma.net/markn/articles/bwt/bwt.htm

M.A. Maniscalco, " A Run Length Encoding Scheme for Block Sort Transformed Data", 2000, available at:
http://www.geocities.com/m99datacompression/papers/rle/rle.html
P. M. Fenwick, "Block Sorting Text Compression", 1996, available at: fip.cs.auckland.ac.nz

T.C. Tell, J.G. Cleary and I.H. Witten, Text Compression, Prentice Hall, Englewood Clifts, NJ, 1990.

R. Franceschini, H. Kruse, N. Zhang, R. Igbal, A. Mukherjee, "Lossless, Reversible Transformations that
Improve Text Compression Ratios", Preprint of the M5 Lab, University of Central Florida, 2000.

R. Franceschini, A. Mukherjee, "Data compression using text encryption", Proceedings of the Third Forum
on Research and Technology, Advances on Digital Libraries, ADL, 1996.

H. Kruse, A. Mukherjee, "Data compression using text encryption", Proceedings of Data Compression
Conference, IEEE Comput. Soc., Los Alamitos, CA, 1997.

M. R. Nelson, "Star Encoding", Dr. Dobb's Journal, August, 2002.

. F.S. Awan, N. Zhang, N. Motgi, R T. Igbal, A. Mukherjee, "LIPT: A Reversible Lossless Text Transform to

Improve Compression Performance", Proc. of Data Compression Conf., Snowbird, UT, 2001.

R. Radescu, Compresia fara pierderi — algoritmi si aplicatii, MatrixRom, Press Bucharest, 2003.

R. Radescu, 1. Bélasan, "Recent Results in Lossless Text Compression Using the Burrows-Wheeler
Transform (BWT)", Proceedings of IEEE Intemational Conference on Communications 2004
(COMMO04), pp. 105-110, Bucharest, Romania, 3-5 June 2004.

R. Radescu, G. Liculescu, "Table Look-Up Lossless Compression Using Index Archiving", Proceedings of
the Fifth International Workshop on Optimal Codes and Related Topics OC2007, Balchik, Bulgaria, 16-
22 June 2007, pp. 216-221.

R. Radescu, "Lossless Text Compression Using the LIPT Transform", Proceedings of the 7th International
Conference Communications 2008 (COMM2008), pp. 59-62, Bucharest, Romania, 5-7 June 2008.

R. Radescu, "Lossless Compression Tool for Medical Imaging", Proceedings of the 6th International
Symposium on Advanced Topics in Electrical Engineering, ELTH & AIEER, pp. 265-267, November
20-21, 2008, Bucharest, Romania, Printech Press.

R. Radescu, C. Bontas, "Design and Implementation of a Dictionary-Based Archiver", Sci. Bull., Electrical
Engineering Series C, University Politehnica of Bucharest, vol. 70, nr. 3, pp. 21-28, 2008.

The Calgary Corpus can be found at: fip:/fip.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/

Derived classes My TabCtrl: http://www.codersource.net/mfc_ctabetrl.html

Ostream libraries: http:/www.cplusplus.com/reference/iostream/ostream/

Radu Radescu, "Transform Methods Used in Lossless Compression of Text Files", Romanian Journal of
Information Science and Technology (ROMIJIST), Publishing House of the Romanian Academy,
Bucharest, vol. 12, nr. 1, pp. 101-115, 2009, ISSN 1453-8245.

http://www.agilemodeling.com/artifacts/classDiagram.htm
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-124.html
http://www.dogma.net/markn/articles/Star/

http://www.codeguru.com/forum/

http://www.codersource.net/codersource mfc prog.html

http://www.yOda.cjb.net

