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DYNAMICS OF THE ORTHOGLIDE PARALLEL ROBOT

Damien CHABLAT!, Philippe WENGER?, Stefan STAICU?

Articolul stabileste relatii matriceale pentru cinematica §i dinamica robotului
paralel Orthoglide prevazut cu trei actionori prismatici concurenti. Acestia sunt
aranjati in raport cu sistemul cartezian de coordonate astfel incdt directiile lor sa
fie normale unele fata de celelalte. Trei lanturi cinematice identice, conectate la
platforma mobila, sunt localizate in trei plane perpendiculare unul pe celalalt.
Cunoscdnd pozitia si migcarea de translatie a platformei, se dezvolta problema de
cinematicd inversa i se determind pozitia, viteza si acceleratia fiecdarui element al
robotului. In continuare, principiul lucrului mecanic virtual este folosit in problema
de dinamica inversa. Cdteva ecuatii matriceale oferd expresii recurente §i grafice
pentru fortele active si puterile mecanice ale celor trei actionori.

Recursive matrix relations for kinematics and dynamics of the Orthoglide
parallel robot having three concurrent prismatic actuators are established in this
paper. These are arranged according to the Cartesian coordinate system with fixed
orientation, which means that the actuating directions are normal to each other.
Three identical legs connecting to the moving platform are located on three planes
being perpendicular to each other too. Knowing the position and the translation
motion of the platform, we develop the inverse kinematics problem and determine
the position, velocity and acceleration of each element of the robot. Further, the
principle of virtual work is used in the inverse dynamic problem. Some matrix
equations offer iterative expressions and graphs for the input forces and the powers
of the three actuators.
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List of symbols

a, ,, - orthogonal relative transformation matrix

u,,u,,u,: three orthogonal unit vectors
o :  orientation angle of the slider about the guide-way
@, «, - relative rotation angle of 7, rigid body

@, ., - relative angular velocity of 7,

@,,: absolute angular velocity of 7,
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@, ,_, - skew symmetric matrix associated to the angular velocity @, , _,
g, .. relative angular acceleration of7),

£,. absolute angular acceleration of 7,
2, ,,- skew symmetric matrix associated to the angular accelerationg,, ,

.+ relative position vector of the centre of 4, joint

v/, : relative velocity of the centre 4,

7 (., : relative acceleration of the centre 4,

m, : mass of T, rigid body

J,: symmetric matrix of tensor of inertia of 7, about the link-frame 4, x, y, z,
J,,J,:two Jacobian matrices of the manipulator

fid, fi&, £:5: forces of three actuators pointing about the 4z, Bz, C,z axes

1. Introduction

Generally, the mechanism of a parallel robot has two platforms: one of them is
attached to the fixed reference frame and the other one can have arbitrary motions
in its workspace. Some movable legs, made up as serial robots, connect the
moving platform to the fixed platform. Typically, a parallel mechanism is said to
be symmetrical if it satisfies the following conditions: the number of legs is equal
to the number of degrees of freedom of the moving platform, one actuator, which
can be mounted at or near the fixed base, controls every limb and the location and
the number of actuated joints in all the limbs are the same (Tsai [1]).

For two decades, parallel manipulators attracted to the attention of more and
more researches that consider them as valuable alternative design for robotic
mechanisms [2], [3], [4]. As stated by a number of authors [1], conventional serial
kinematical machines have already reached their dynamic performance limits,
which are bounded by high stiffness of the machine components required to
support sequential joints, links and actuators.

The parallel robots are spatial mechanisms with supplementary characteristics,
compared with the serial architecture manipulators such as: more rigid structure,
important dynamic charge capacity, high orientation accuracy, stabile functioning
as well as good control of velocity and acceleration limits. However, most
existing parallel manipulators have limited and complicated workspace with
singularities and highly non-isotropic input-output relations [5].

Research in the field of parallel manipulators began with the most known
application in the flight simulator with six degrees of freedom, which is in fact the
Stewart-Gough platform (Stewart [6]; Merlet [7]; Parenti-Castelli and Di Gregorio
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[8]). The Star parallel manipulator (Hervé and Sparacino [9]) and the Delta
parallel robot (Clavel [10]; Tsai and Stamper [11]; Staicu [12]) equipped with
three motors, which have a parallel setting, train on the effectors in a three-
degrees-of-freedom general translation motion.

While the kinematics has been studied extensively during the last two decades,
fewer papers can be focused on the dynamics of parallel robots. When good
dynamic performance and precise positioning under high load are required, the
dynamic model is important for their control. The analysis of parallel robots is
usually implemented trough analytical methods in classical mechanics [13], in
which projection and resolution of equations on the reference axes are written in a
considerable number of cumbersome, scalar relations and the solutions are
rendered by large scale computation together with time consuming computer
codes. Geng [14] developed Lagrange’s equations of motion under some
simplifying assumptions regarding the geometry and inertia distribution of the
manipulator. Dasgupta and Mruthyunjaya [15] used the Newton-Euler approach to
develop closed-form dynamic equations of Stewart platform, considering all
dynamic and gravity effects as well as viscous friction at joints. However, to the
best of our knowledge, these are no efficient dynamic modelling approach
available for parallel manipulators. In recent years, several new kinematical
structures have been proposed that possess higher isotropy [16], [17], [18], [19],
[20].

The objective of this paper is to analyse the kinematics and dynamics of the
Orthoglide parallel robot, which is well adapted to the applications of precision
assembly machines. In design, the three actuators are arranged according to the
Cartesian coordinate space, which means that the actuating directions are normal
to each other and the joints connecting to the moving platform are located on three
planes being perpendicular to each other too. Proposed by Wenger and Chablat
[21], [22], the prototype of the manipulator has good kinetostatic performance and
some technological advantages such as: symmetrical design, regular workspace
shape properties with a bounded velocity amplification factor and low inertia
effects.

In the present paper we focus our attention on a recursive matrix method,
which is adopted to derive the kinematics model and the inverse dynamics
equations of the spatial Orthoglide parallel robot [23], which has three translation
degrees of freedom (Fig. 1).

2. Inverse kinematics

The mechanism input of the manipulator is made up of three actuated
orthogonal prismatic joints. The output body is connected to the prismatic joints
through a set of three identical kinematical chains.
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The architecture of one of the three parallel closed chains of the Orthoglide
manipulator is formally described as PRP,R mechanism, where P, R and P, denote

the prismatic, revolute and parallelogram joints, respectively. So, the topological
structure consists in an active prismatic system, a passive revolute joint, an
intermediate mechanism with four revolute links that connect four bars, which are
parallel two by two, ending with a passive revolute link connected to the moving
platform. Inside each chain, the parallelogram mechanism is used and oriented in
a manner that the end-effector is restricted to tramslation movement only. The
arrangement of the joints in the chains has been defined to eliminate any
constraint singularity in the Cartesian workspace [22], [23], [24].

Fig. 1 Orthoglide parallel robot

Let us locate a fixed reference frame Ox,y,z,(7,) at the intersection point of

three axes of actuated prismatic joints, about which the three-degrees-of-freedom
manipulator moves. It has three legs of known dimensions and masses. To
simplify the graphical image of the kinematical scheme of the mechanism, in the
follows we will represent the intermediate reference systems by only two axes, so
as 1s used in most of books [1], [4], [5], [7]. The z, axis is represented, of course,

for each component element7, . We mention that the relative rotation or relative
translation with ¢, , , angle or 4,  displacement of7, body most be always
pointing about or along the direction z, .

The first element of leg A4 is one of the three sliders of the robot. It is a
homogenous rod of length 4,4, =/, and massm,, moving horizontally along the

fixed 4,z axis with a displacementA ). The centre of the transmission
rod 4,4, =1,is denoted as 4,. This link is connected to the frame 4,x; y;z;

(called7,") and it has a relative rotation with the angleg; , so that
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o} =@jandg], =5 . It has the massm,and the central tensor of inertiajz.
Further one, two identical and parallel bars 4,4, and 4,4, with same length I,
rotate about the7," frame with the anglep, =@ . They have also the same
mass m, and the same tensor of inertia J ,. The four-bar parallelogram is closed by
an element 7, , which is identical with 7} . Its tensor of inertia is./, . This element
rotates with the relative angle ¢;; = @5, (Fig. 2).

The centre 4;of the interval between the two revolute joints connects the
moving platform 4,x{y{z{(T;"). The platform of the robot may be a cube of
masse 1, central tensor of inertia.J,,and side dimension/, which rotate relatively
by an angleg{, with respect to the neighbouring body7,'. Finally, another
reference system Gx,y.z;is located at the centre G of the cubic moving platform.

Fig. 2 Kinematical scheme of first leg A of the mechanism

Due to the special arrangement of the four-bar parallelograms and the three
prismatic joints at points 4,, B;, C,, the mechanism has three translation degrees of
freedom. This unique characteristic is useful in many applications, such as a
X —y—z positioning device.

At the central configuration, we consider that all legs are initially extended at
equal length and that the angles giving the orientation of the three sliders about
their guide-ways area, =a, =a. = o .

In the followings, we apply the method of successive displacements to
geometric analysis of closed-loop chains and we note that a joint variable is the



8 Damien Chablat, Philippe Wenger, Stefan Staicu

displacement required to move a link from the initial location to the actual
position. If every link is connected to least two other links, the chain forms one or

more independent closed-loops. The variable angles @, ,_, of rotation about the
joint axes z, are the parameters needed to bring the next link from a reference
configuration to the next configuration. We call the matrix a,‘f,k,l , for example, the
orthogonal transformation 3x3 matrix of relative rotation with the angle ¢/, , of

link 7, around z;' axis.

In the study of the kinematics of robot manipulators, we are interested in
deriving a matrix equation relating the location of an arbitrary 7, body to the joint

variables. When the change of coordinates is successively considered, the
corresponding matrices are multiplied.

So, starting from the reference origin O and pursuing the three
legs A4, B, C we obtains the following transformation matrices [25]

_ _ 0 _ 0
Ajg = ay, Ay =054, Ay = A3d,
a,=ala,, a,, =ala, ,a., =a
43 = A3dy, gy =d50, ,dg; =3,

_ _ 70 _ 1o
by =as, by =bja,, b;, =b3,a,

(1)
by =bja,, by, =bga, , by, =by,
Clp =g €y =C31ay, C3y =Chdy
Cys = Cply, Csy =C540, , Cy =Cyy
where we denoted
0 0 -1 0 0 1 0 0 -1
a =01 0/,a=[0 1 0},%1 0 0
10 0 “10 0 0 1 0
-1 0 0 -1 00 0 -1 0
a,={0 1 0]>a;={0 0 1|,a,=|1 0 O
100 -1 0 1 0 0 0 1
cosgo,‘f,k_l sin(p,f,k_l 0 .
a/’?,k—lz _Singolf,k—l COSgolék—l 0f, akOZHak—jH,k—j (k=1,2,...,5). (2)
0 0 1 =

The translation conditions for the platform are given by the following
identities
oT oT oT
asgasy = bsybsy = cspcso =1, 3)
where
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0 -1 0 0 0 -1 -1 0 0
ai,=|-1 0 0 |by=[0 -1 0|,cy=[0 -1 0] 4)
0 0 -1 -1 0 0 0 0 1

From these relations, one obtains the following relations between angles
P34 = 031 P54 = P11 P54 = P51 (5)
The three concurrent displacements A;, Ayy, Ay, of the actuators 4;, B, C, are
the joint variables that give the input vector /Tlo of the instantaneous position of the
mechanism. But, the objective of the inverse geometric problem is to find the
input vector /Tlo and the position of the robot with the given three absolute
coordinates of the center G of the platform: x{, y¢, zJ .

Supposing, for example, that the known motion of the mass center G of the
platform is expressed by the following relations

-G G G _G
ro=0xy vy oz

xg =xf*(l—cos§t), vy =y(§;*(l—cos§t), zy =zg*(l—cos§t), (6)

A
10
will be given by the following geometrical conditions
4 4 4
=4 T —~4 T —GA =B T =B T =GB =C T =C T —-GC =G
I + zakorlw-l,k tas s =h t zbkork+1,k +hsrs” =1y + zckork+1,k tCsls =1y o (7)
k=1 k=1 k=1

the inputs A7, A5, A5, of the manipulators and the variables ;,, 05, 05,05, 05> Ps,

where, for example, one denoted

1 0 0 0 -1 0
1/71: 0 ,172: 1 ,173: 0 ,173: 1 0 0
0 0 1 0 0 O
- / -
’”1(;1 =(4 l/i)_ll Cosa_ls_g)aro”s )
. - L .
Al=[0 Isina [lcosal", 7 =—E2u3
- O A, .
r4§'=—l3u2,r£=52u1,rSGA:[llsma _E O]T'

Actually, these equations means that there is the inverse geometric solution for
the manipulator, given through following analytical relations

G G
. z . A G A A
sing;; === » sing;] :yioA s A =X +1;(1-cos @y cospyy)
3 l; cos @3,
v ZG B G B B
0 > g =Yy +1;(1—cosg, cospy,) ©)

. X .
singy, =——" » sing,; =———
L I cos s,
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G

G
Yo Xo

s sinqozcl =T ¢ ° }“ﬁ) :Z(E; +13(1_COS¢7; COS¢3§) ‘
3 13 €os ¢32
In that follows, we determine, the velocities and the accelerations of the robot,
supposing that the translation motion of the moving platform is known.
The motions of the component elements of each leg (for example the leg 4)

are characterized by the following skew symmetric matrices [26]

singy, =-

@i = A -1 51?4,0“1{,1(71 + a)lf,k—ﬂj}’ (k=2,.5), (10)
which are associated to the absolute angular velocities given by the recurrence
relations

By = A -1 @kA—l,o +ka,k—1ﬁss w/f,k-l = ¢I:I,k—l . (11)

Following relations give the velocities ¥ of the joints A,

=4 —A ~ A =4 —A 7 A =

Vio = G j {kal,o T O 07k }’ Vig = A jo U (12)
If the other two kinematical chains of the manipulator are pursued, analogous
relations can be easily obtained.

Equations (3) and (7) can be differentiated with respect to time to obtain the
following matrix conditions of connectivity [27]
oliilalii, + ok al i, =0 )

visii! alii, + Lol ayil,anii, + Lo ayii, =i 7', (i=1,2,3),
whereu,, u,, i, are skew-symmetric matrices associate to three orthogonal unit
vectorsii,, i, , ii, .From these equations, relative velocities vi), w3, wsh and w2y = 3]

result as functions of the translation velocity of the platform. The relations (13)
give the complete Jacobian matrix of the manipulator. This matrix is a
fundamental element for the analysis of the robot workspace and the particular
configurations of singularities where the manipulator becomes uncontrollable.

Rearranging, above nine constraint equations (9) of the Orthoglide robot can
immediately written as follows

200y O L= A =1
x4z A+l -A0) =1 (14)
Yot (2 L= A =1,
where the “zero” position 7,’° =[0 0 0]corresponds to the joints variables
A%=[0 0 0]. The derivative with respect to time of conditions (14) leads to the
matrix equation
Jquo :Jz’ioc- (15)
Matrices J,andJ, are, respectively, the inverse and forward Jacobian of the
manipulator and can be expressed as
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a v, oz
J, =diagla, a, a;},J,=|x{ a, z{| (16)

Xy vy a
with
a, =xg +1L =My a, =y +1, -8 oy =z0 +1, - A, (17)

The three kinds of singularities of the three closed-loop kinematical chains can
be determined through the analysis of two Jacobian matrices ./, and J, .

Let us assume that the robot has a first virtual motion determined by the linear
velocities 4 vigr =1, Vﬁ)va =0, lea =0. The characteristic virtual velocities are
expressed as functions of the position of the mechanism by the general
kinematical constraints equations (13). Other two sets of relations of connectivity
can be obtained if one considers successively: v, =1,v$ =0, v}, =0
andv, =1,v =0,v> =0.

As for the relative accelerations y 1, £ 5, £ 3, and € 5,= ¢ 5, of the manipulator,
the derivatives with respect to time of the relations (13) give other following

conditions of connectivity [28]

A=T T —
epu ayi, +eiul aliii, =0

Violl; Gyl + 1631 arilyas i, +Lebi] aiiil, = ﬁiT;j;)G - (18)
— L3\ @314, ity as, i, — Loy, 03] agilsiil, -
—2Lwiolu! alianii,, (i=1,2, 3).
The angular accelerations ;5 and the accelerations 7;} of joints are given by
some relations, obtained by der1v1ng the relations (10), (11) and (12):
& =y Ei 1,0 +8Ak U +a)kk oy o loakk iUy
By Do + &y = A e l(a)k 1owk o TEC 10)“/(,/(71 + wk,k—lw/ik—11’73"73 +5/:1,k4t73 +
+ 2wk,k—1ak,k—l wk—l,oak,k—lu3
Vio = A jar [7/i1,0 + (C‘N)lil,oaw)/il,o + EkA—l,O )’7}:1/(4 ]’ Vio = A 10 3 19)
The relations (13), (18) represent the inverse kinematics model of the
Orthoglide parallel robot. As application let us consider a manipulator, which has
the following characteristics
xS =0.05m,yS" =0.10m, z{" =-0.20m

1=020m,1, =0.15m,1, =0.08m, 1, =0.85m, 1, =1,, :%, At=2s

m, =0.35kg, m, =0.2kg, my, =2.5kg, m, =m,, ms; =15kg, m; =m,.
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A program which implements the suggested algorithm is developed in
MATLAB to solve first the inverse kinematics of the Orthoglide parallel robot.
For illustration, it is assumed that for a period of two second the platform starts at
rest from a central configuration and is moving in a general translation. A

numerical study of the robot kinematics is carried out by computation of the input

displacements 2{’0, /Ifo, ﬂfo , for example, of three prismatic actuators (Fig. 3, 4, 5).
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3. Inverse dynamics model

In the context of the real-time control, neglecting the frictions forces and
considering the gravitational effects, the relevant objective of the dynamics is to
determine the input forces, which must be exerted by the actuators in order to
produce a given trajectory of the effector.

There are three methods, which can provide the same results concerning these
actuating forces. The first one is using the Newton-Euler classic procedure [13],
[15], [19], [29], the second one applies the Lagrange’s equations and multipliers
formalism [14], [30] and the third one is based on the principle of virtual work
[1], [5], [25], [26]. In the inverse dynamic problem, in the present paper one
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applies the principle of virtual work in order to establish some recursive matrix
relations for the forces and the powers of the three active systems.

Three input spatial concurrent forces f,jand three powers p/) =v;, [}
(j=4,B,C) required in a given motion of the moving platform will easily be
computed using a recursive procedure. Some independent pneumatic or hydraulic
systems that generate three input forces f;/ = f,/ii,, which are oriented along the

axes 4,z{', B,z , C, z{, control the motion of the three sliders of the robot.

Now, the parallel mechanism can artificially be transformed in a set of three
open serial chains C, (j =4, B, C) subject to the constraints. This is possible by
cutting successively the joints 4, B, Csfor the moving platform and 4,, B,, C,

for the four-bar parallelograms and taking their effects into account by
introducing the corresponding constraint conditions. The first and more
complicated open tree system includes the acting link and could comprise the
moving platform.

The force of inertia of an arbitrary rigid body 7", for example

at =-milpi + @i + 24 )R] (20)
and the resulting moment of the forces of inertia
ﬂ/inoA z_[m/kaCA?kAo +1AkAgk/:) +5/?0i1:1&”k/10] 21)

are determined with respect to the centre of its fist joint 4, . On the other hand, the
wrench of two vectors ]7,:‘4 and m;" evaluates the influence of the action of the

external and internal forces applied to the same element 7," or of its weightm,'g,
for example:

£t =9.81m/a, iy, m," =9.81m/'7. " a, i, (k=1,2,..,6). (22)
Finally, two recursive relations generate the vectors

| p T A
S =Tt ak+1,kfk+1

. (23)
~ 4 =4 T =4 ,~4 T 4
M =My + g My, + rk+l,kak+1,kfk+l’
where one denoted
A4 pind THA A —ind A
Seo =—Jio =S5 My =—my —m". (24)

Considering three independent virtual motions of the robot, all virtual
displacements and virtual velocities should be compatible with the virtual motions
imposed by all kinematical constraints and joints at a given instant in time. By
intermediate of the complete Jacobian matrix expressed by the conditions of
connectivity (13), the absolute virtual velocitiesv,,, ®,,associated with all
moving links are related to a set of independent relative virtual velocities

.
Oy j = Op U
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Knowing the position and kinematics state of each link as well as the external
forces acting on the robot, in that follow one apply the principle of virtual work
for an inverse dynamic problem. The fundamental principle of the virtual work
states that a mechanism is under dynamic equilibrium if and only if the total
virtual work developed by all external, internal and inertia forces vanish during
any general virtual displacement, which is compatible with the constraints
imposed on the mechanism. Assuming that frictional forces at the joints are
negligible, the virtual work produced by the forces of constraint at the joints is
Zero.

s TN N T NS N T S B S T T T I S I R
o 02 0.4 0B 08 1 1.2 1.4 1.6 18 2 1) 0z 0.4 08 0s 1 1.2 1.4 1.8 18 2

Fig. 7 Input power pﬁ) of second actuator Fig. 8 Input power plc(; of third actuator
Applying the fundamental equations of the parallel robots dynamics
established [31], following compact matrix relation results for the input force of
first actuator
fh =il [f ol md +ofwd +ob (@l +mf +md )+ o5
Bv =B Bv (=B —~ B —~ B Cv = C Cv [=C - C — C
+w,),m, + 5, (m3 +m, + g )+ @, m; + @y, (m3 +my, +mg )] ,
The relations (23), (25) represent the inverse dynamics model of the Orthoglide
parallel robot.
Based on the algorithm derived from the above recursive relations, a computer
program solve the inverse dynamics modelling of the robot, using the MATLAB
software.

Assuming that the weights m,fg of compounding rigid bodies constitute the

external forces acting on the robot during its evolution, a numerical computation
in the dynamics is developed, based on the determination of the three active

powers p/s =Vvio fia, Pio =Vis fie s Pro =Vio fio . The time-history evolution of the
input powers p/; (fig. 6), pi; (fig. 7), p{, (fig. 8) required by the actuators are
plotted for a period of two second of platform’s motion.
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4. Conclusions

In the inverse kinematics analysis some exact relations that give in real-time
the position, velocity and acceleration of each element of the parallel robot have
been established in present paper. The dynamics model takes into consideration
the masses and forces of inertia introduced by all component elements of the
robot.

The new approach based on the principle of virtual work can eliminate all
forces of internal joints and establishes a direct determination of the time-history
evolution of forces and powers required by the actuators. The recursive matrix
relations (25) represent the explicit equations of the dynamics simulation and can
easily be transformed in a model for the automatic command of the Orthoglide
parallel robot. Also, the method described above is quit available in forward and
inverse mechanics of all serial or parallel mechanisms, the platform of which
behaves in translation, rotation evolution or general 6-DOF motion.
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