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THE RAIL’S RESPONSE TO THE ACTION OF VERTICAL
SLIDING FORCE

Tr. MAZILU"

Este prezentat raspunsul unei gine pe traverse sub actiunea unei forte
verticale alunecdtoare constante sau armonice. Sina este o grindd infinitd de tip
Timoshenko rezematd pe semitraverse rigide cu trei grade de libertate. Pentru
miscarile longitudinale sina este tratata ca o bara simpla. Solutia ecuatiilor de
migcare se obtine prin aplicarea metodei functiilor Green temporale. Influenta
vitezei asupra rigiditdtii dinamice a gsinei este prezentatd. Se demonstreazd ca
migcarile verticale ale rotilor unui boghiu pot fi cuplate prin undele de incovoiere
care se transmit prin sind. Practic, acest cuplaj nu apare la frecvente joase, ci la
frecvente mai mari decdt frecventa de rezonantd varf la varf.

This article presents the response of a rail track to the action of a vertical
sliding force. The dynamic model of railway track is presented, incorporating the rail
as an infinite Timoshenko beam, discreetly supported by semi-sleepers with three d.
o. f. s. For longitudinal dynamics, the rail is treated as a simple bar. The solution of
the motion equations may be obtained by using Green’s functions. The influence of
velocity on the dynamic stiffness of the rail is presented as well. It is also
demonstrated that the vertical movements of the wheels in a bogie may be related
through the bend waves that are transmitted through the rail. Practically, this
relation does not appear at low frequencies but at frequencies that are superior to
the so called ‘pinned-pinned resonance frequency’.
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Introduction

The vertical wheel-rail vibrations may be caused by various factors, such
as: irregularities of the wheel/rail rolling surfaces, wheel/rail discontinuities (rail
joints, crossings, wheel flats, etc.), the variation of dynamic stiffness caused by
the sleeper passing, etc. The vertical vibrations may damage the rolling quality
and noise emission. They may also lead to rail corrugation.

Basically, the level of wheel-rail vibrations is related to the mechanical
characteristics of both, wheel and rail track. As far as it concerns the rail, the main
factors are the rail, sleeper and rail-pad characteristics. In order to study the
dynamics of the wheel-rail system, the characteristics above could be reflected by
the rail’s response to a unitary vertical force. The force may be considered as
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constant or harmonic. Two behaviours captured our attention: the force having a
fixed support and, the second — a constant speed sliding force.

Practically, the first behaviour is justified because the propagation speed of
the free bend waves through the rail is significantly higher than the train velocity.
This particular behaviour is used when the vibration frequency is higher than the
sleeper-passing frequency and it suites best to the model with a moving
irregularity between a stationary wheel and rail. Remington [1] and Thompson [2]
used this kind of model in frequency domain for noise prediction.

The second behaviour is specifically adapted to the ‘wheel rolling on rail’
model. The response of a rail track to sleeper-passing may be studied using this
model. Hempelmann [3] has calculated the wheel-rail interaction force in the time
domain, at different wheel velocities. After a modal decomposition of the rail and
the wheel set he has integrated the differential equations using a modal time-step
procedure.

The rail may be described through the finite element method or through
analytic models. For example, Nielsen uses finite elements of Rayleigh-
Timoshenko beam type. He studies the influence of the irregularities of the
wheel/rail rolling surfaces on the vertical loads at different running velocities [4]
or calculates the rail corrugation [5].

The rail analytic modeling is based on the Euler-Bernoulli beam or on the
Timoshenko beam as well. The Euler-Bernoulli beam has a simpler equation,
which can be used successfully only in the low frequencies range. In works [6, 7,
8], the Euler-Bernoulli beam model is used for studying the ground vibrations
generated by the vertical interaction wheel/rail forces.

The Timoshenko beam considers the influence of the rotary inertia and
shear. The rail could be considered as a Timoshenko beam [3, 9, and 10] or even
two Timoshenko beams [11, 12] at medium and high frequencies.

Most of the related works were adopting the hypothesis that the motions of
the two rails are uncoupled. Consequently, the rail track is reduced to a rail
supported by semi-sleepers that are considered to be inertial elements in vertical
translation. The rail pad and the ballast bed are represented each other as elastic
and damping paralleled elements of linear characteristics.

The vertical response of the rail supported by concrete sleepers is
characterized by two resonance frequencies caused by the rail/sleeper inertial
effect. The rail and the sleepers form a two layer elastic oscillating system.
Between the two resonance frequencies, the rail’s vertical vibration has its own
anti-resonance frequency. That is because the sleepers are becoming a vibration
absorber. At frequencies in the range of 700 — 1000 Hz (depending on the rail type
and the distance between two sleepers - span), the rail’s vibration behaviour is
characterized by the ‘pinned-pinned’ resonance frequency, if the harmonic
excitation force is applied between two sleepers. The wavelength of the rail’s
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bend wave equals to twice the span. If the excitation force is applied on the
sleeper, the rail’s response will be characterized by an anti-resonance which is
slightly higher than the ‘pinned-pinned’ frequency. The resonance/anti-resonance
effect described above is the main cause of the short wavelength rail corrugation.
The whole mechanism is described in [5].

Mazilu [10] shows that the rail’s bend motions are in fact coupled to the
longitudinal motions through the rail-pad. Beyond that, in a harmonic fixed
support force behaviour, the resonant pinned-pinned effect could be minimized if
the rail-pad would be stiffer along the rail.

This work adopts the rail model presented in [10] and studies the rail’s
response to a sliding (constant and harmonic) force. In order to calculate the
response in the time domain, an original variant of Green functions method is
applied.

1. The rail’s mathematical model

A linear analytic model of the railway track where the rail is an infinite
Timoshenko beam and considers the discrete location of sleeper supports has been
developed (fig. 1).

The vertical beam bend-motion - v(x, 7) is the vertical displacement, 0(x, ?)
is the rotation of the cross-section — is coupled to the longitudinal motion - u(x, f)
is the longitudinal displacement — due to the rail-pad; the rail is modeled as an
infinite bar. The rail’s main characteristics are: the mass per unit length m, the
density p, the flexural rigidity £, the shear modulus G, the shear constant x, the
area of the cross-section S.

a+ve

Eitq

]

Fig. 1 Wlechanical model of track.
1. radl, 2. ral-pad; 3. semi-sleeper; 4. ballast.
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The infinite beam has the advantage of eliminating the end-effect that
appears in case of using finite beams. Although the numeric simulation will
consider a finite number of sleepers, the receptance of rail is periodic along the
track and widespread around the considered calculation sector. This aspect is
crucial for time-domain integration of the equations of motion, when dealing with
a non stationary force.

The semi-sleeper is considered a rigid body with three d. o. f. s.: the
vertical translation z;, the lateral translation x; (along rail) and the rotation o
(across rail). A semi-sleeper has the mass M, and mass-moment of inertia /;. The
place of the sleeper i is s;.

The rail-pad and the ballast bed are assimilated to elastic and damping
elements with linear characteristics. The elastic constants %,., k. and k., and the
damping constants ¢, ¢,. and ¢, are related to rail-pad. The stiffness ks, k». and
the viscous damping constants cy,, ¢, refer to the ballast.

A vertical sliding force P(f) that moves with the v velocity in time ¢ is
considered to act on the rail. The force is situated at a a distance from the Oxz
referential in the initial moment.

The equations of motion may be written in matrix form:

L, {a}+ (A dq )+ B o (e —s) = {p) (1)

ieZ

Ct{qf}:Dt{ i} ()

where Ly;, A, B, C; si D;are standing for matrix differentials (see appendix). The
rail’s displacements in any x section and in x = s; sections (to ‘i’ sleeper) are

af=1aex.0f=[u(x,t) v, 6], o }=la,0)}=laG.0}. Q)

The ‘i ‘semi-sleeper, situated in the x = s; section has the following
displacements:

W=l ol=ko 20 o0]. @)
The column vector of the external forces is:

p}=P®)d(x—a-v)l0 -1 0]. (3)

The problem could be solved if we assume the hypothesis that at the initial
moment, the displacements are considered to be null. The boundary conditions are
null at any particular moment, i.e. the rail’s displacements are null if x — =+ co.
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For this particular form of the equations of motion - vertical force only —
the solution may be written as follows:

q(x,n}= j j g(x,&,t = D)P(D3(E —a —vr)dédr = —[ {g(x,a +vi,t = 1)}P()dt (6)

HOIE {

8'—:8

g, (&,t— P(1:)8(§ —a-vr)d&dr = j g (a+vt,t— t)}P(I)dr @)

in which {g(x, &, £ - T)}=[g“(x, &, £ - 1), g'(x, &, 1 - 1), g(x, &, 1 - 1)]' stands for the
Green functions’ column vector for rail displacements and {g'(&, ¢ - 1)} = [g"4E, ¢
- 1), &4E, t- 1), g%E, t - 1)] stands for the Green functions’ column vector for ‘i’
sleeper displacements. The Green functions’ vector {g(x, &, ¢ - t)} contains the rail
displacements in section ‘x’ at the moment # - T > 0, if at the T moment in section &
an impulse force occurred. The Green functions’ vector {g*/(&, 7 - )} contains the
‘i’ sleeper displacement at 7 - T moment, if at the T moment in section & an impulse
force occurred.

The Green’s functions are the solutions for equations (1-2) if the right term
of the first equation is

p}=8(x-&d¢-10 1 0], (8)

The Green’s functions may be calculated using the Fourier transform

0

{g(x,é,t - r)} = 2L I{G(x, &1, (o)}exp(jmt)dco = T Re G(x,&t (o)}cos otdo  (9)
T, o

©

g @Er-1)= 2i [16: €. r.0)jexp(jor)do = T ReG! (& 1,0)fcosotdo  (10)
L2 o

in which j*=-1 and

Gl={G(x.t10)=[6" (xEn0) G'(rnEte) G'(n&no)] = Flgke—1] (11)
Gl=lcierwi=[6/Erno) GErnw GlErnw] =Flg e, 12)
[

F[.] is the Fourier transform.
It’s easy to observe that the Fourier transform of the Green’s functions are:

{G}=exp(-jon){Q} = exp(-jor)U (x,5,0) V(x,E0) Ox&w)]  (13)

(G }= exp(-jon{Q: = exp(—jon)[X,(G.0) Z,(E0) AE]. (14



46 Tr. Mazilu

in which the column vectors {Q} and {Q°;} are the solutions for the following
equations:

Q)+ (4,10, }+B,{Q x—s)=sx-50 1 of (15)
c.lo;}=p,{Q} (16)

where {Q;}= [U(s;, &, ®) V(s;, &, ) O(s;, &, )]' and L., = F[L./], A, = F[A/]
etc. In the equations above U, V, ©, X;, Y;, and A, are standing for complex value
functions.

Depending on {Q;}, the vector {Q’} may be extracted from the last
equation. Then, from the first equation the following results:

->'K,1Q

ieZ

L {Q}=3(x-90 1 of Jo(x—s,) (17)

with Ko = Ay + BoC oD,
The L, , operator may be diagonal led if the equation above is multiplied
by the matrix operator

1 , 0 ) 0
J - EI d2 plo” d (18)
GSk dx GSx dx
d d> o'm
0 -— —+
L dx dx*  GSk
The solutions may be written as follows
- j r[Jx,s(x'—g)[o 1 o] - J3.8(x-s)K,{Q, }}dx’ (19)

where I' stands for the diagonal operator’s Green’s functions matrix

2

ESd—Zera)2 0 0
dx
L.,=JL= 0 H, 0 (20)
H
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with

4 2 2
H, =L +0)2(m£+p1j ¢ mer[P2L |
dx kSG dx kSG

The I' matrix of Green’s functions is the solution of the following
equation:
L  T=38x-x)E, 21

where E stands for the 3 x 3 unity matrix.
The I" matrix has the following shape:

' (x,x', o) 0 0
Ir= 0 I'(x,x',m) 0 (22)
0 0 I (x,x',0)

in which the Green’s functions are [10]

S

~ Boexpl-Byx - x{)+ jBiexpl- B,Jx - x1)
2B, (B} +B2)EI

2 2 2
mo’ p20)4(E J my _ pw [E j
- B, = ——1| + Laudi et n 1l
sp i Pre \/\/ 48"\ Gx EI " 2E\Ge

The calculation for rail displacements near the ‘%’ sleeper is going to be
done by the use of (19) in which {Q} will be replaced by {Q}. Thus, the
following will result:

I (x,x', o) =T(x,x',0) =

where

{QGs,. 8 0)=1{P, |- DT (s,,5,, 0K, {Q(s,,& 0)}, (23)

ieZ
where

P I=T"(s. 500 1 O]Z;F*(sk,ci,(o)zTF(sk,x’,u))Jx.S(x'—é)dx'.
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Finally, by considering a number of n sleepers (with n sufficiently as
large), the following matrix equation results:

E _FT,IK(» FT,ZK(» FT,nK(n {Ql} {Pl}
r;,le E - FZ,ZK(D r;,nKm {QZ} — {PZ } (24)
Fz,le FZ,ZK(D E - FZ,ano {Qn } {Pn }

with T« =T (s3, 51, ®).

2. Numerical application

Further on, the particular case of a rail track consisting in a rail having the
linear mass m = 56 kg/m on concrete sleepers, is studied. The values for the
involved parameters are: [ = 23.1410° m*, § = 7.134- 10° m* E =210 GPa, G =
85 GPa, k = 0.34, M, = 129 kg, I, = 0.82 kgm’, d = 0.698, & = 0.08 m , h; = 0.085
m, /1, = 0.089 m, k.. =34 MN/m, k,. =280 MN/m, k,,= 114.3 kKNm, ¢,,, = 24 kNs/m, ¢,
=63 kNs/m, ¢, = 25.7 Nms, kp, = 35 MN/m, k;,= 180 MN/m, ¢, = 52 kNs/m, and ¢,
= 82 kNs/m. The magnitude of vertical force is P = 1N.

| o = ] |

—

B 2 %o Z le |59 60

Fig 2. The schema for numeric simulation.

This original numerical application considers a track sector of n = 60
sleepers with the referential originating in its middle (see Fig. 2). The vertical
force displaces itself between the initial abscissa point a and the final abscissa
point, b. The calculation covered the rail displacement at the half of the distance
between two sleepers (point ‘O’) and right above a sleeper (sleeper #31).

The integration time step was chosen as Af = 1/40000 s, no matter how
high the vertical force displacement speed was. According to that, the & coordinate
along the rail was discreet with the step of A = vAz. The (9) integration was
numerically calculated using the 31 degree spleen functions in a frequency range
of 0 to 2200 Hz.
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Fig 3. The receptance of rail between two sleepers.

Fig. 3 displays the frequency response of the rail’s vertical displacement in
the origin point in the range of 10 — 2200 Hz. Three particular cases were
considered: the harmonic excitation force applied in the origin point (curve 1),
five sleepers away (curve 2) and ten sleepers away (curve 3). In the first case, the
response was dominated by the rail’s resonance frequency and the two elastic
layers (the rail-pad and the ballast). This was calculated for f = 148 Hz. The
response was additionally dominated by the pinned — pinned resonance frequency
caused by the sleeper-passing effect (f = 772 Hz). In the last other cases, the
receptance of rail reached its maximum at the pinned — pinned resonance
frequency.

The damping of the rail vibrations increases along with the distance
between the point of force application and the receptance calculation point. This
damping is high in the range of low and medium frequencies and significantly low
at high frequencies.

Fig. 4 displays the receptance of rail just above one sleeper. Curve 1 is
corresponding to excitation above the sleeper, curve 2 — the harmonic force at a
distance of 10 sleepers away from the calculation point and curve 3 — excitation at
9 Y sleepers, between the sleepers. It is to notice that the anti-resonance effect
occurred near the sleeper considered for calculation and that the anti-resonance
frequency is slightly higher than the pinned-pinned frequency. If the harmonic
force is applied at a certain distance from the considered calculation point, the
frequency response is dominated by the pinned-pinned resonance frequency. This
indicates that the rail has a certain tendency to transmit the bend waves
corresponding to this frequency.
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Fig4. The receptance of ral over a sleeper.
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Fig5. The relative error between the receptance of rail calculated between 10
sleepers from the origin and the one calculated in the origin

Fig. 5 displays the relative error between the receptance of rail calculated
between the sleepers #39 and #40 and the one calculated in the origin; the
excitation force was applied near the calculation receptance point. Minor
differences appeared at the resonance frequency only and that is due to the
sleeper-passing effect (under 0.3 %) and at the maximum calculus frequency
(under 0.7 %). As a result, the proposed rail model will keep the periodic
character for the rail’s frequency response along the considered calculation sector.
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Fig 7 The Green's function g¥(0, - 4,2, £).

Figs. 6 and 7 are displaying the Green’s temporal function for the rail’s
vertical displacement. The vertical rail displacement in the origin point ‘O’, was
calculated at the moment t = 0, when the impulse force occurs (see Fig. 6) and at
a distance of 6 sleepers away (see Fig. 7). The maximum vertical rail
displacement decreases along with the increase of the distance where the initial
impulse is applied, from 8.2 um to 0.42 um respectively. By observing Fig. 6, it is
to notice that two oscillations corresponding to the respective resonance
frequencies are coexisting. The damping of the vibration occurs pretty fast. If the
impulse is applied at a greater distance (Fig. 7), the rail’s vibration begins
practically with a delay caused by the propagation of the impulse along the rail
from the application point to the calculation point. The rail vibration is dominated

by the pinned — pinned resonance frequency’s component. The damping is much
slower this time.
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The Green’s function calculated near the 31 sleeper when the impulse is
applied there and, respectively, at a distance of 6 sleepers away is presented in
Figs. 8 and 9. The values are smaller then the ones calculated at half distance
between two sleepers. In both simulated situations, the rail vibration is quickly
damped.

Displacement (pm)

0 5 10 15 20
Time {ms)
Fig. 8. The Green's function g¥(0.35, 0,35, £).

0.4 ! ! !
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Fig 9. The Green's function g% (0,35, - 3,85, £),

Fig. 10 displays the rail’s vertical displacement calculated in the origin
point while a constant sliding force (with its magnitude of 1 N) passes with a
velocity of 40 m/s. The movement begins at a distance of 6 sleepers away from
the calculation point (¢ = - 4,2 m and b = 4,2 m). At the beginning of the force
displacement, the rail will enter a transitory behaviour. After 50 — 60 ms, the
transitory behaviour is damped and the rail’s deformation resembles with the one
corresponding to the static load behaviour. The displacement variation is
practically symmetric, using a correct approximation. The maximal value for the
displacement is 6.57 nm.

A similar evolution may be observed in Fig. 11, which shows the rail’s
displacement calculated near sleeper #31. The force is also constant and passes at
a velocity of 40 m/s. Though, the rail’s maximum displacement is smaller due to
the sleeper’s vertical withstanding. Its value is 5.63 nm.
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Fig 10. The rail displacement at half the distance between two sleepers under a
constant shiding force (with its magnitude of 1 I7).
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Fig 11 The rail displacement over a sleeper under a constant shding
force (with its magnitude of 1 ).

The calculation is showing that together with the increase of the velocity,
the rail’s maximum displacement at half the distance between two sleepers is also
increasing. The static deformation at half the distance between two sleepers is
6.44 nm and for a constant sliding force (with its magnitude of 1 N) which passes
with a velocity of 80 m/s, the displacement is 6.62 nm. Thus, the dynamic
stiffness decreases because the sliding force’s velocity is close to the bend wave
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propagation speed according to the first resonance. This particular aspect explains
partially that the track is overloaded along with the increase of the running speeds.

Displacement (rumn)
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Fig. 12. The rail displacement at half the distance between two sleepers under a
harmonic shiding force (speed 40 m/fs, frecquency 1458 Hz).
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Fig. 13. The rai displacement at half the distance between two sleepers under a
harmonic shiding force (speed 40 mfs, frecquency 772 Hz).

Figs. 12 and 13 are displaying the rail’s response at half the distance
between two sleepers when a harmonic sliding force (with its amplitude of 1 N)
passes. Two frequencies were considered — one equal to 148 Hz (fig. 12) and the
other one equal to 772 Hz (fig. 13). If the excitation force has a frequency of 148
Hz, the rail’s amplitude increases as the force approaches the calculation point.
The sleepers do not influence the rail vibration in a significant matter. The time
history is symmetric. The maximum amplitude is practically equal to the one
calculated for the fixed support harmonic force. The rail’s vibration increases and
decreases its intensity when the force is situated at a distance equal to twice the
span from the calculation point.
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Fig 15. The rail displacement ower a sleeper under a harmonic sliding force (speed 40 m/fs, frecquency 772 Hz).

If the excitation force has a frequency of 772 Hz — the pinned — pinned
resonance — then the rail’s maximum displacement is smaller than the one
calculated for the fixed support harmonic force (fig. 3). As a result, the maximum
amplitude was 4.3 nm, compared to 8.5 nm for the one calculated for the fixed
support harmonic force.

The rail’s vibration begins intensively way earlier than the harmonic force
has reached the calculation point, between sleepers #30 and #31, respectively. The
rail vibration is highly modulated due to the sleepers. At this frequency, the
wavelength is equal to twice the span. It is also important to notice a specific
delay which decreases as the force approaches from the calculation point. At the
beginning of the force movement, the vibration peak is reached when passing over
a sleeper. The rail displacement’s history is no longer symmetrical, but clearly
asymmetrical. The rail vibration lasts longer after the force has passed.

Similar evolutions were noticed when passing over a sleeper with a
harmonic force (with its amplitude of 1 N) at a speed of 40 m/s and frequencies of
148 Hz and 772 Hz respectively (see Figs. 14 and 15).
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Conclusions

The knowledge of the rail’s response to the action of a vertical sliding
force (constant or sinusoidal) is useful in solving specific problems such as: rail
track dynamics, rolling quality, noise emission and rail corrugation occurrence.

The complex dynamic model of railway track was presented, incorporating
the rail as an infinite Timoshenko beam, discreetly supported by semi-sleepers
with three d. o. f. s. The coupling of bend motions together to the longitudinal
ones was considered. The Green’s (temporal) functions method was used for
solving the movement equations. These were calculated numerically, starting from
the Green’s harmonic response functions.

The infinite beam has the advantage of that preserves the periodicity of the
receptance of rail on a long distance.

The numeric results showed that under a constant sliding load, the rail’s
maximum displacement increases along with the force speed, which is in
accordance to the experimental observations.

The rail’s response to the action of a vertical sinusoidal sliding force is
selective depending on the frequency. At low frequencies, the response is not
influenced by the sleepers. The rail vibration as well, begins and ends practically
when the excitation force is close to the calculation point. For the studied rail
characteristics, the influence distance is approximately the span. Usually, the
bogie wheelbase is 1.8 m for freight cars and 2.5 — 2.6 m for passenger cars. Thus,
the bend waves could not reach from a wheel to another. The wheels may be
considered as uncoupled.

At the pinned — pinned resonance frequency and at high frequencies, the
rail’s response is influenced by the sleeper positions. The rail vibration begins
way earlier than the harmonic force has reached the calculation point. The rail
continues to vibrate long after the force has passed. In this particular situation, a
bogie’s wheels are coupled through the bend waves propagating through the rail.

The results are quite similar to the ones corresponding to the fixed support
force. These aspects influence the rail’s acoustic radiation. Thus, some
discrepancies from the above mentioned situation occur. As a conclusion, is the
fact that the rail’s dynamic response may be calculated more accurately.
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APPENDIX

The differential matrix operators from the movement equations (1) and (2)

are:
2 2 T
s m e 0 0
ox ot . ,
L. = 0 GS/ca—z—ma—2 —GSKQ ’
' ox ot ) ox ,
0 Gsx-2- E]a—Z—GSK—p[a_Z
| ox Ox ot |
- ch i - er O h(crx i + erj
dr dr
At = 0 - crz i - krz 0 5
dr
h[cl’xi—'_km) 0 _(cra +h2crx)i_kroc _hzer
i dr dt |
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crx i+er 0 hl(crx i—'_erJ
de dt
d
Bt = 0 crz -+t krz 0 >
dt
d d
“Hoe, Stk 0 (c. —hhe )~—+k, —hhk,
I dr * de g
2 -
?d—2+c“i+kw 0 Aci+Ak
d Cde , t
C = 0 gd—2+cgzi+ksz 0
S dt - d .
Aci+Ak 0 Isd—2+cmi+km
i d dr e ]
with
csx = crx + cbx > csz = crz + cbz; csa = crot + hlzcrx + h22cbx;
Ac= hlcrx - hZCbx >
ksx = er + kbx > ksz = krz + kbz; kxu = krcc + hlzer + h22kbx >
Ak = hler - thbx
and
crx i+er 0 _h(crx i—i_er)
dt de
d
D, = 0 ¢ vk, 0
dr
d d
hle —+k_ 0 (c,, —hhe V—+k —hhk,_
U di |




