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THE RAIL’S RESPONSE TO THE ACTION OF VERTICAL 
SLIDING FORCE 

Tr. MAZILU∗ 
 
 

Este prezentat răspunsul unei şine pe traverse sub acţiunea unei forţe 
verticale alunecătoare constante sau armonice. Şina este o grindă infinită de tip 
Timoshenko rezemată pe semitraverse rigide cu trei grade de libertate. Pentru 
mişcările longitudinale şina este tratată ca o bară simplă. Soluţia ecuaţiilor de 
mişcare se obţine prin aplicarea metodei funcţiilor Green temporale. Influenţa 
vitezei asupra rigidităţii dinamice a şinei este prezentată. Se demonstrează că 
mişcările verticale ale roţilor unui boghiu pot fi cuplate prin undele de încovoiere 
care se transmit prin şină. Practic, acest cuplaj nu apare la frecvenţe joase, ci la 
frecvenţe mai mari decât frecvenţa de rezonanţă vârf la vârf.  

This article presents the response of a rail track to the action of a vertical 
sliding force. The dynamic model of railway track is presented, incorporating the rail 
as an infinite Timoshenko beam, discreetly supported by semi-sleepers with three d. 
o. f. s. For longitudinal dynamics, the rail is treated as a simple bar. The solution of 
the motion equations may be obtained by using Green’s functions. The influence of 
velocity on the dynamic stiffness of the rail is presented as well. It is also 
demonstrated that the vertical movements of the wheels in a bogie may be related 
through the bend waves that are transmitted through the rail. Practically, this 
relation does not appear at low frequencies but at frequencies that are superior to 
the so called ‘pinned-pinned resonance frequency’. 
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Introduction 
 

The vertical wheel-rail vibrations may be caused by various factors, such 
as: irregularities of the wheel/rail rolling surfaces, wheel/rail discontinuities (rail 
joints, crossings, wheel flats, etc.), the variation of dynamic stiffness caused by 
the sleeper passing, etc. The vertical vibrations may damage the rolling quality 
and noise emission. They may also lead to rail corrugation. 

Basically, the level of wheel-rail vibrations is related to the mechanical 
characteristics of both, wheel and rail track. As far as it concerns the rail, the main 
factors are the rail, sleeper and rail-pad characteristics. In order to study the 
dynamics of the wheel-rail system, the characteristics above could be reflected by 
the rail’s response to a unitary vertical force. The force may be considered as 
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constant or harmonic. Two behaviours captured our attention: the force having a 
fixed support and, the second – a constant speed sliding force. 

Practically, the first behaviour is justified because the propagation speed of 
the free bend waves through the rail is significantly higher than the train velocity. 
This particular behaviour is used when the vibration frequency is higher than the 
sleeper-passing frequency and it suites best to the model with a moving 
irregularity between a stationary wheel and rail. Remington [1] and Thompson [2] 
used this kind of model in frequency domain for noise prediction. 

The second behaviour is specifically adapted to the ‘wheel rolling on rail’ 
model. The response of a rail track to sleeper-passing may be studied using this 
model. Hempelmann [3] has calculated the wheel-rail interaction force in the time 
domain, at different wheel velocities. After a modal decomposition of the rail and 
the wheel set he has integrated the differential equations using a modal time-step 
procedure. 

The rail may be described through the finite element method or through 
analytic models. For example, Nielsen uses finite elements of Rayleigh-
Timoshenko beam type. He studies the influence of the irregularities of the 
wheel/rail rolling surfaces on the vertical loads at different running velocities [4] 
or calculates the rail corrugation [5]. 

The rail analytic modeling is based on the Euler-Bernoulli beam or on the 
Timoshenko beam as well. The Euler-Bernoulli beam has a simpler equation, 
which can be used successfully only in the low frequencies range. In works [6, 7, 
8], the Euler-Bernoulli beam model is used for studying the ground vibrations 
generated by the vertical interaction wheel/rail forces.  

The Timoshenko beam considers the influence of the rotary inertia and 
shear. The rail could be considered as a Timoshenko beam [3, 9, and 10] or even 
two Timoshenko beams [11, 12] at medium and high frequencies. 

Most of the related works were adopting the hypothesis that the motions of 
the two rails are uncoupled. Consequently, the rail track is reduced to a rail 
supported by semi-sleepers that are considered to be inertial elements in vertical 
translation. The rail pad and the ballast bed are represented each other as elastic 
and damping paralleled elements of linear characteristics. 

The vertical response of the rail supported by concrete sleepers is 
characterized by two resonance frequencies caused by the rail/sleeper inertial 
effect. The rail and the sleepers form a two layer elastic oscillating system. 
Between the two resonance frequencies, the rail’s vertical vibration has its own 
anti-resonance frequency. That is because the sleepers are becoming a vibration 
absorber. At frequencies in the range of 700 – 1000 Hz (depending on the rail type 
and the distance between two sleepers - span), the rail’s vibration behaviour is 
characterized by the ‘pinned-pinned’ resonance frequency, if the harmonic 
excitation force is applied between two sleepers. The wavelength of the rail’s 
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bend wave equals to twice the span. If the excitation force is applied on the 
sleeper, the rail’s response will be characterized by an anti-resonance which is 
slightly higher than the ‘pinned-pinned’ frequency. The resonance/anti-resonance 
effect described above is the main cause of the short wavelength rail corrugation. 
The whole mechanism is described in [5]. 

Mazilu [10] shows that the rail’s bend motions are in fact coupled to the 
longitudinal motions through the rail-pad. Beyond that, in a harmonic fixed 
support force behaviour, the resonant pinned-pinned effect could be minimized if 
the rail-pad would be stiffer along the rail. 

This work adopts the rail model presented in [10] and studies the rail’s 
response to a sliding (constant and harmonic) force. In order to calculate the 
response in the time domain, an original variant of Green functions method is 
applied.  
  

1. The rail’s mathematical model 
 

A linear analytic model of the railway track where the rail is an infinite 
Timoshenko beam and considers the discrete location of sleeper supports has been 
developed (fig. 1). 

The vertical beam bend-motion - v(x, t) is the vertical displacement, θ(x, t) 
is the rotation of the cross-section – is coupled to the longitudinal motion - u(x, t) 
is the longitudinal displacement – due to the rail-pad; the rail is modeled as an 
infinite bar. The rail’s main characteristics are: the mass per unit length m, the 
density ρ, the flexural rigidity EI, the shear modulus G, the shear constant κ, the 
area of the cross-section S. 
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The infinite beam has the advantage of eliminating the end-effect that 
appears in case of using finite beams. Although the numeric simulation will 
consider a finite number of sleepers, the receptance of rail is periodic along the 
track and widespread around the considered calculation sector. This aspect is 
crucial for time-domain integration of the equations of motion, when dealing with 
a non stationary force. 

The semi-sleeper is considered a rigid body with three d. o. f. s.: the 
vertical translation zi, the lateral translation xi (along rail) and the rotation αi 
(across rail).  A semi-sleeper has the mass Mt and mass-moment of inertia It. The 
place of the sleeper i is si. 

The rail-pad and the ballast bed are assimilated to elastic and damping 
elements with linear characteristics. The elastic constants krx, krz and krα  and the 
damping constants crx, crz and crα  are related to rail-pad. The stiffness kbx, kbz and 
the viscous damping constants cbx, cbz refer to the ballast. 

A vertical sliding force P(t) that moves with the v velocity in time t is 
considered to act on the rail. The force is situated at a a distance from the Oxz 
referential in the initial moment.  

The equations of motion may be written in matrix form: 
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where Lx,t, At, Bt, Ct şi Dt are standing for matrix differentials (see appendix). The 
rail’s displacements in any x section and in x = si sections (to ‘i’ sleeper) are 
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The ‘i ‘semi-sleeper‚ situated in the x = si section has the following 

displacements: 
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The column vector of the external forces is: 
 
                         { } [ ]tvtaxtP 010)()( −−−δ=p .                            (5) 
 
The problem could be solved if we assume the hypothesis that at the initial 

moment, the displacements are considered to be null. The boundary conditions are 
null at any particular moment, i.e. the rail’s displacements are null if x → ± ∞.  
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For this particular form of the equations of motion - vertical force only – 
the solution may be written as follows: 
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in which {g(x, ξ, t - τ)}= [gu(x, ξ, t - τ), gv(x, ξ, t - τ), gθ(x, ξ, t - τ)]t stands for the 
Green functions’ column vector for rail displacements and {gs

i(ξ, t - τ)} = [gx
i(ξ, t 

- τ), gz
i(ξ, t - τ), gα

i(ξ, t - τ)]t stands for the Green functions’ column vector for ‘i’ 
sleeper displacements. The Green functions’ vector {g(x, ξ, t - τ)} contains the rail 
displacements in section ‘x’ at the moment t - τ > 0, if at the τ moment in section ξ 
an impulse force occurred. The Green functions’ vector {gs

i(ξ, t - τ)} contains the 
‘i’ sleeper displacement at t - τ moment, if at the τ moment in section ξ an impulse 
force occurred. 

The Green’s functions are the solutions for equations (1-2) if the right term 
of the first equation is 
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The Green’s functions may be calculated using the Fourier transform  
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in which j2 = -1 and  
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F [.] is the Fourier transform. 
It’s easy to observe that the Fourier transform of the Green’s functions are: 
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in which the column vectors {Q} and {Qs
i} are the solutions for the following 

equations: 
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where {Qi}= [U(si, ξ, ω) V(si, ξ, ω) Θ(si, ξ, ω)]t  and Lx,ω = F[Lx,t], Aω = F[At] 
etc. In the equations above U, V, Θ, Xi, Yi, and Ai are standing for complex value 
functions. 

Depending on {Qi}, the vector {Qs
i} may be extracted from the last 

equation. Then, from the first equation the following results: 
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with Kω = Αω + BωC-1
ωDω. 

The Lx,ω operator may be diagonal led if the equation above is multiplied 
by the matrix operator 
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The solutions may be written as follows 
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where Γ stands for the diagonal operator’s Green’s functions matrix 
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The Γ matrix of Green’s functions is the solution of the following 

equation: 
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where E stands for the 3 x 3 unity matrix. 

The Γ matrix has the following shape: 
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in which the Green’s functions are [10] 
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The calculation for rail displacements near the ‘k’ sleeper is going to be 

done by the use of (19) in which {Q} will be replaced by {Qk}. Thus, the 
following will result: 
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Finally, by considering a number of n sleepers (with n sufficiently as 
large), the following matrix equation results: 
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with Γ*

i,k  = Γ*(si, sk, ω). 
 

2. Numerical application 
 
Further on, the particular case of a rail track consisting in a rail having the 

linear mass m = 56 kg/m on concrete sleepers, is studied. The values for the 
involved parameters are: I = 23.14·10-6 m4, S = 7.134· 10-3 m2, E = 210 GPa, G = 
85 GPa, κ = 0.34, Ms = 129 kg, Is = 0.82 kgm2, d = 0.698, h = 0.08 m , h1 = 0.085 
m, h2 = 0.089 m, krx = 34 MN/m, krz = 280 MN/m, krα = 114.3 kNm, crx = 24 kNs/m, crz 
= 63 kNs/m, crα = 25.7 Nms, kbx = 35 MN/m, kbz = 180 MN/m, cbx = 52 kNs/m, and cbz 
= 82 kNs/m. The magnitude of vertical force is P = 1N. 

 
This original numerical application considers a track sector of n = 60 

sleepers with the referential originating in its middle (see Fig. 2). The vertical 
force displaces itself between the initial abscissa point a and the final abscissa 
point, b. The calculation covered the rail displacement at the half of the distance 
between two sleepers (point ‘O’) and right above a sleeper (sleeper #31).  

The integration time step was chosen as Δt = 1/40000 s, no matter how 
high the vertical force displacement speed was. According to that, the ξ coordinate 
along the rail was discreet with the step of Δξ = vΔt. The (9) integration was 
numerically calculated using the 3rd degree spleen functions in a frequency range 
of 0 to 2200 Hz.  
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Fig. 3 displays the frequency response of the rail’s vertical displacement in 
the origin point in the range of 10 – 2200 Hz. Three particular cases were 
considered: the harmonic excitation force applied in the origin point (curve 1), 
five sleepers away (curve 2) and ten sleepers away (curve 3). In the first case, the 
response was dominated by the rail’s resonance frequency and the two elastic 
layers (the rail-pad and the ballast). This was calculated for f = 148 Hz. The 
response was additionally dominated by the pinned – pinned resonance frequency 
caused by the sleeper-passing effect (f = 772 Hz). In the last other cases, the 
receptance of rail reached its maximum at the pinned – pinned resonance 
frequency. 

The damping of the rail vibrations increases along with the distance 
between the point of force application and the receptance calculation point. This 
damping is high in the range of low and medium frequencies and significantly low 
at high frequencies. 

Fig. 4 displays the receptance of rail just above one sleeper. Curve 1 is 
corresponding to excitation above the sleeper, curve 2 – the harmonic force at a 
distance of 10 sleepers away from the calculation point and curve 3 – excitation at 
9 ½ sleepers, between the sleepers. It is to notice that the anti-resonance effect 
occurred near the sleeper considered for calculation and that the anti-resonance 
frequency is slightly higher than the pinned-pinned frequency. If the harmonic 
force is applied at a certain distance from the considered calculation point, the 
frequency response is dominated by the pinned-pinned resonance frequency. This 
indicates that the rail has a certain tendency to transmit the bend waves 
corresponding to this frequency. 
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Fig. 5 displays the relative error between the receptance of rail calculated 

between the sleepers #39 and #40 and the one calculated in the origin; the 
excitation force was applied near the calculation receptance point. Minor 
differences appeared at the resonance frequency only and that is due to the 
sleeper-passing effect (under 0.3 %) and at the maximum calculus frequency 
(under 0.7 %). As a result, the proposed rail model will keep the periodic 
character for the rail’s frequency response along the considered calculation sector. 
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Figs. 6 and 7 are displaying the Green’s temporal function for the rail’s 
vertical displacement. The vertical rail displacement in the origin point ‘O’, was 
calculated at the moment τ = 0, when the impulse force occurs (see Fig. 6) and at 
a distance of 6 sleepers away (see Fig. 7). The maximum vertical rail 
displacement decreases along with the increase of the distance where the initial 
impulse is applied, from 8.2 μm to 0.42 μm respectively. By observing Fig. 6, it is 
to notice that two oscillations corresponding to the respective resonance 
frequencies are coexisting. The damping of the vibration occurs pretty fast. If the 
impulse is applied at a greater distance (Fig. 7), the rail’s vibration begins 
practically with a delay caused by the propagation of the impulse along the rail 
from the application point to the calculation point. The rail vibration is dominated 
by the pinned – pinned resonance frequency’s component. The damping is much 
slower this time. 
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The Green’s function calculated near the 31st sleeper when the impulse is 
applied there and, respectively, at a distance of 6 sleepers away is presented in 
Figs. 8 and 9. The values are smaller then the ones calculated at half distance 
between two sleepers. In both simulated situations, the rail vibration is quickly 
damped. 

Fig. 10 displays the rail’s vertical displacement calculated in the origin 
point while a constant sliding force (with its magnitude of 1 N) passes with a 
velocity of 40 m/s. The movement begins at a distance of 6 sleepers away from 
the calculation point (a = - 4,2 m and b = 4,2 m). At the beginning of the force 
displacement, the rail will enter a transitory behaviour. After 50 – 60 ms, the 
transitory behaviour is damped and the rail’s deformation resembles with the one 
corresponding to the static load behaviour. The displacement variation is 
practically symmetric, using a correct approximation. The maximal value for the 
displacement is 6.57 nm.  

A similar evolution may be observed in Fig. 11, which shows the rail’s 
displacement calculated near sleeper #31. The force is also constant and passes at 
a velocity of 40 m/s. Though, the rail’s maximum displacement is smaller due to 
the sleeper’s vertical withstanding. Its value is 5.63 nm. 
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The calculation is showing that together with the increase of the velocity, 
the rail’s maximum displacement at half the distance between two sleepers is also 
increasing. The static deformation at half the distance between two sleepers is 
6.44 nm and for a constant sliding force (with its magnitude of 1 N) which passes 
with a velocity of 80 m/s, the displacement is 6.62 nm. Thus, the dynamic 
stiffness decreases because the sliding force’s velocity is close to the bend wave 
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propagation speed according to the first resonance. This particular aspect explains 
partially that the track is overloaded along with the increase of the running speeds.  

Figs. 12 and 13 are displaying the rail’s response at half the distance 
between two sleepers when a harmonic sliding force (with its amplitude of 1 N) 
passes. Two frequencies were considered – one equal to 148 Hz (fig. 12) and the 
other one equal to 772 Hz (fig. 13). If the excitation force has a frequency of 148 
Hz, the rail’s amplitude increases as the force approaches the calculation point. 
The sleepers do not influence the rail vibration in a significant matter. The time 
history is symmetric. The maximum amplitude is practically equal to the one 
calculated for the fixed support harmonic force. The rail’s vibration increases and 
decreases its intensity when the force is situated at a distance equal to twice the 
span from the calculation point. 
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If the excitation force has a frequency of 772 Hz – the pinned – pinned 
resonance – then the rail’s maximum displacement is smaller than the one 
calculated for the fixed support harmonic force (fig. 3). As a result, the maximum 
amplitude was 4.3 nm, compared to 8.5 nm for the one calculated for the fixed 
support harmonic force. 

The rail’s vibration begins intensively way earlier than the harmonic force 
has reached the calculation point, between sleepers #30 and #31, respectively. The 
rail vibration is highly modulated due to the sleepers. At this frequency, the 
wavelength is equal to twice the span. It is also important to notice a specific 
delay which decreases as the force approaches from the calculation point. At the 
beginning of the force movement, the vibration peak is reached when passing over 
a sleeper. The rail displacement’s history is no longer symmetrical, but clearly 
asymmetrical. The rail vibration lasts longer after the force has passed. 

Similar evolutions were noticed when passing over a sleeper with a 
harmonic force (with its amplitude of 1 N) at a speed of 40 m/s and frequencies of 
148 Hz and 772 Hz respectively (see Figs. 14 and 15).  
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Conclusions 
  
The knowledge of the rail’s response to the action of a vertical sliding 

force (constant or sinusoidal) is useful in solving specific problems such as: rail 
track dynamics, rolling quality, noise emission and rail corrugation occurrence.  

The complex dynamic model of railway track was presented, incorporating 
the rail as an infinite Timoshenko beam, discreetly supported by semi-sleepers 
with three d. o. f. s. The coupling of bend motions together to the longitudinal 
ones was considered. The Green’s (temporal) functions method was used for 
solving the movement equations. These were calculated numerically, starting from 
the Green’s harmonic response functions.  

The infinite beam has the advantage of that preserves the periodicity of the 
receptance of rail on a long distance. 

The numeric results showed that under a constant sliding load, the rail’s 
maximum displacement increases along with the force speed, which is in 
accordance to the experimental observations.  

The rail’s response to the action of a vertical sinusoidal sliding force is 
selective depending on the frequency. At low frequencies, the response is not 
influenced by the sleepers. The rail vibration as well, begins and ends practically 
when the excitation force is close to the calculation point. For the studied rail 
characteristics, the influence distance is approximately the span. Usually, the 
bogie wheelbase is 1.8 m for freight cars and 2.5 – 2.6 m for passenger cars. Thus, 
the bend waves could not reach from a wheel to another. The wheels may be 
considered as uncoupled.  

At the pinned – pinned resonance frequency and at high frequencies, the 
rail’s response is influenced by the sleeper positions. The rail vibration begins 
way earlier than the harmonic force has reached the calculation point. The rail 
continues to vibrate long after the force has passed. In this particular situation, a 
bogie’s wheels are coupled through the bend waves propagating through the rail. 

The results are quite similar to the ones corresponding to the fixed support 
force. These aspects influence the rail’s acoustic radiation. Thus, some 
discrepancies from the above mentioned situation occur. As a conclusion, is the 
fact that the rail’s dynamic response may be calculated more accurately. 
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APPENDIX 
 
The differential matrix operators from the movement equations (1) and (2) 

are: 
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with 
                bxrxsx ccc += ; bzrzsz ccc += ; bxrxrs chchcc 2

2
2

1 ++= αα ; 

                                              bxrx chchc 21 −=Δ ; 
 
                     bxrxsx kkk += ; bzrzsz kkk += ; bxrxrs khkhkk 2

2
2

1 ++= αα ;  
 
                                             bxrx khkhk 21 −=Δ  
 
and 
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