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CLASSIFICATION OF NON STATIC SPHERICALLY
SYMMETRIC SPACE-TIMES ACCORDING TO THEIR
PROPER CONFORMAL VECTOR FIELDS

Ghulam SHABBIR!, M. RAMZAN?, Amjad ALI®

Direct integration technique is used to study proper conformal vector field in
non conformally flat spherically symmetric non static space-times. Using the above
mentioned technique we show that there exist two possibilities when the above
space-times admit proper conformal vector fields.
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1. Introduction

In this paper we investigate the existence of proper conformal vector fields
in non conformally flat spherically symmetric non static space-times by using the
direct integration technique. The conformal vector field which preserves the
metric structure upto a conformal factor carries significant interest in Einstein’s
theory of general relativity. Unlike Killing, homothetic and affine symmetries,
conformal symmetry is difficult to study because it lacks the linearity property.
These difficulties are discussed in [1-5]. Some more general results on the Lie
algebra and dimensions of conformal vector fields are given in [5]. It is therefore
important to study these symmetries.

Throughout M represents a four dimensional, connected, Hausdorff
space-time manifold with Lorentz metric g of signature (-, +, +, +). The curvature

tensor associated with g,p, through the Levi-Civita connection, is denoted in
component form by RZped, the Ricci tensor components are Ry, = Rach and

the Weyl tensor components are C%pcd. The usual covariant, partial and Lie
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derivatives are denoted by a semicolon, a comma and the symbol L, respectively.

Round and square brackets denote the usual symmetrization and skew-
symmetrization, respectively. The space-time M will be assumed non
conformally flat in the sense that the Weyl tensor does not vanish over any non
empty open subset of M.

The covariant derivative of any vector field X on M can be decomposed
as

1
Xa;b = Ehab + I:ab (1)

where hgp(=hpa)=Lx 0 and Fgy(=—Fpa) are symmetric and skew
symmetric tensors on M, respectively. Such a vector field X is called conformal
vector field if the local diffeomorphisms n (for appropriate t) associated with

X preserves the metric structure up to a conformal factor i.e. nt*g =y g, where

w is a nowhere zero positive function on some open subset of M and nt* is a
pullback map on some open subset of M [3,6]. This is equivalent to the condition
that

hap =2y Jap .

or, equivalently, if

gab,cxc"‘gcbx,%"‘gacx,% =2y Jap, (2)

where w :U — R is the smooth conformal function on some open subset of M,
then X is called conformal vector field. If y is constanton M, X is homothetic
(proper homothetic if w = 0) while if w =0 then it is Killing. If the vector field
X is conformal, but not homothetic, then it is called proper conformal.

2. Main Results

Consider the space-times in the usual coordinate system (t,r,8,¢) with
line element
ds® = - t7dt? +ePdr? + r?(d@? +sin’ dg?). (3)

For the above space-time (3) “the Ricci tensor Segre type” is {1,1(11)} or
{211} or one of its degeneracies. The above space-times (3) admit three linearly
independent Killing vector fields which are

cos¢i—cotesin¢i, sin¢ﬁ+cot9cos¢i, i. 4)
00 op 00 op 0¢
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A vector field X is said to be a conformal vector field if it satisfies
equation (2). One can write (2) explicitly using (3) as

A )Xo +A (L)X +2X9 =2y, (5)
e®tr) X1 —e"tr) x 9 =0, (6)
r? X2 —e*tr x 9 =0, (7)
r’sin? @ X3 —e*t x4 =0, ®)
B.(t,r)X°+B,(t,r)X'+2X =2y, )
r? Xi +eBr) X’12 =0, (10)
r¥sin? g X3 +e®") x4 =0, (11)
%Xlﬂ“x,%:\lf’ (12)
sin? @ X5+ X5 =0, (13)
1,1 2 3
FX +cotd X"+ X5=vy, (14)

where v = y/(t, r,o, ¢). Considering equations (8) and (7) and differentiating with
respect to ¢ and @, respectively and subtracting them we get

~fsinzox3], +x2,=0. )
Differentiating equation (13) with respect to t we get
sin® @ X 3, + X 5, =0. (16)
Subtracting equation (15) from equation (16) and integrating we get

X 3 = cosech El(t, r,o)+ Ez(r,e,d)),
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where E'(t,r,¢) and E*(r,0,¢) are functions of integration. Using the above
information in equation (8) one has

X0 = e~ AN 2 gjp e_[ El r,0)do+ E3(t,,0),
where E*(t,r,#) is a function of integration. Substituting the value of X° in
equations (7) and (6) we get

X 2 :cosejEl(t, r,$)do +i2J'eA(“)Eg(t, r,0)dt+E*(r,0,0)

.
x1=rZsin eje_B(t'r)[J ELt, r,¢)d¢]dt+2 rsin eje_B(t'r)U ELt, r,q))dq)]dt

~rZsin eje‘B(”) [Ar j EL(t,r,¢)dt ]dt+IeA("r*B(‘vr) E3(t,r,0)dt+E>(r,6,¢),

where E*(r,8,4) and E°(r,8,¢) are functions of integration. Thus we have
X 0 =g~ AN 2gjp ej EL(tr. 0)do + E3(t,r,6),
X1 =r2sin eje—B(t'f)UE}(t, r,¢)d¢]dt+2rsin eJ'e—B(t’f)[J' ELt, r,¢)d¢]dt
—rZsin eje—B(“) [Ar J' EL(t,r, ¢)dt ]dt +IeA(‘vr*B(tvr) E3(t,r,0)dt + E3(r,0,0)
X 2 =cosej ELt,r, 0)dd +rlzjeA(t'r)Eg(t, r,6)dt+E4(r,6,0),

X3 = cosecej El(t, r,o)dt + Ez(r,e,¢).
(17

In order to determine E'(t,r,¢),E*(r,6,4),E>(t,r,60),E*(r,0,4) and
E°(r,0,4) we need to integrate the remaining six equations. To avoid details,

here we will present only results, when the above space-times (3) admit conformal
vector fields. It follows after some tedious and lengthy calculations that the
following possibilities exist when the above space-times (3) admit conformal
vector fields, which are:

Case (1)

In this case we have A(r)=2Inr+c, and B(t)=cgt+cg, where
C7,Cg,Cq € R(cg # 0). The space-time (3) becomes
ds? = —e2INTC7t2 4 e% M qr2 1 r2(de2 +sin? 0dg?).  (18)
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The conformal vector fields in this case are

X0 =c,, X =rlcgInr+cg] )
1
X 2 =¢; cos+Cysing, X 3 =cotd[-c; sinp+c, cosd]+cs,

C4C
where ¢q,C»,C3,C4,C5,C6 € R(C4 #0,c5 20) and Cs =—478- The conformal

factor is W =C.Inr+c,. One can write the above equation (19) after
subtracting Killing vector fields as

X% =c,, X'=r[c;Inr+c,] X?=X3=0. (20)

The above space-time (18) admits six independent conformal vector fields

which are given in equation (19) in which three are proper conformal see equation

(20) and three are independent Killing vector fields.
Case (2)

In this case we have A(r) =2Inr+c, and B = N(r), where c, eR.
The space-time (3) can, after a suitable rescaling of t be written in the form

ds® =—r?dt? +e""dr> + r?(do” +sin® 6dg®). (1
The conformal vector fields in this case are

0 1 —NO :
XY =cq, X*=cC5re 2 X“=cqcOSh+Cysing, 22)

X 3 =cot0[-cy sin¢+c, cosd+cs,

N

where y=cge 2 and C1,C9,C3,C4,C5 € R(C5 #0). One can write the
above equation (22) after subtracting Killing vector fields as

_EN(r)
Xx0=0 Xl=cgre 2, Xx?=x3=0, (23)

The above space-time (21) admits five independent conformal vector
fields which are given in equation (22) in which one is proper conformal see
equation (23) and four are independent Killing vector fields.
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