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QUADRATIC RESIDUE CODES OVER Z4 + u1Z4 + ... + u1Z4y AND
QUANTUM CODES FROM THESE CODES

Arezoo Soufi Karbaski!, Karim Samei?

In this paper linear and cyclic codes over the ring R = Za+u1Za+...+utZa
are investigated, where t > 1. The structure of Euclidean and Hermitian linear self-
dual codes over R is studied. A distance preserving Gray map from R to ZZ+1 is also
presented. Moreover, quadratic residue codes over R are defined. Further, FEuclidean
and Hermitian self-dual families of quadratic residue codes over R are observed and
four Hermitian self-dual codes of length p over the ring R are introduced if p = —1 (mod
8) orp =1 (mod 8). In particular, a method is presented to construct quantum codes
over Fa from Gray images of quadratic residue codes over the ring R. The results are
presented in the table.

Keywords: Cyclic codes, Euclidean self-dual codes, Hermitian self-dual codes, Gray
map, Quadratic residue codes, Quantum codes.
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1. Introduction

Linear and cyclic codes over finite rings are an important class of codes from both a
theorical and a practical viewpoint. The study of cyclic codes over finite rings have been
studied in the late 1972s. In [1] and [2] the author studied the codes over finite rings. In this
relation Dinh and Lopez-permouth presented the structure of cyclic and negacyclic codes
over chain rings [6].

Quadratic residue (QR) codes are special cases of cyclic codes and over finite fields they
have been studied for many years. More recently, Quadratic residue codes over some special
rings have been studied and have generated a great deal of interest. First, Andrew Gleason
introduced quadratic residue codes. The link between quadratic residue codes over Fy and
these codes over Z, was given by pless and Qian [11]. Chiu et al. and Taeri presented
the structure of quadratic residue codes over Zg and Zg, respectively, and they provided a
different approach to the study of these codes [4] and [17]. In 2013, Kaya, Yildiz and Siap
studied the structure of quadratic residue codes over F), + v, [9]. Meanwhile, Authors [14]
obtained intresting results by the Gray map. Authors [15] used the Gray map for construc-
tion of some best-known binary linear quasi-cyclic codes. For see more details, we refer
readers to [13] and [16].

Quantum error-correcting codes have recently generated a great deal of intrest. A method
to construct quantum error-correcting codes from classical error-correcting codes was intro-
duced by Calderbank et al. [3]. Qian gave a construction for quantum codes from cyclic
codes of odd length n over Fy + vy, where v? = v [12]. More recently, Guenda and Gulliver
extended the Calderbank-Shor-Steane (CSS) construction to Frobenius rings [7]. In this
paper, we mainly discuss the structure of linear, cyclic and quadratic residue codes over
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the ring R = Zg + u1Z4 + ... + utZy, where t > 1, and use the ideas of authors [9] and
[11]. Moreover, we obtain quantum codes from quadratic residue codes over R using the
generalized Gray map.

First we survey the known results on quadratic residue codes over Z4 and give general prop-
erties with quadratic residue codes over R. In section 2, we describe the brief introduction
concerning linear and cyclic codes over the ring R and introduce Gray map from R to fol.
In sections 3 and 4 , we define the quadratic residue codes over R and investigate Hermitian
self-dual codes over the ring R, respectively. In this correspondence, we present examples of
Hermitian cyclic self-dual codes over R. Finally in the last section, we derive self-orthogonal
and self-dual codes over Z4 as Gray images of quadratic residue codes over R and use these
codes to determine the parameters of the corresponding quantum codes.

2. Preliminaries

The ring R = Z4 + u1Z4 + ... + u;Zy4 is a principal ideal ring of order 4'*! and
characteristic 4, subject to the restriction u;? = u;, and u;u; = 0if i # j, where 1 <7 < t and
t is a natural number. We denote this ring by ugZy4+u1Z4+...+usZy, where ug = 1725:1%.
The ring szo R; is isomorphic to the ring R, where R; = Z4 and 0 < i < t.

A linear code C over ring R of length n is a R-submodule of R". A generator matrix C
is a matrix whose rows generate C. The Hamming weight of a codeword is the number of
non-zero components.

Let x = (1,22, ...,2,) and y = (y1,¥2, ..., Yn) be two elements of R™. The Euclidean inner
product of vectors x,y is < x,y >g= Y7 ;z;4;. The dual or orthogonal of C' denoted C*
is defined as

Ct={x€eR":<x,y>p=0, forally € C}.

The code C is ( Euclidean) self-orthogonal provided C € C* and a ( Euclidean) self-dual
provided C = C+.

Definition 2.1. If z; € Z4, then we define the conjugate of x = Xt_ju;x; as
T = EE:Ouil‘i = ZE:O'IT@’ X

where we define the conjugate of u; as follows:

(1) Uzg = ugk+1, Uzl = ugk and Uy = uy if ¢ is an even number and 0 < k <

t—=2.
2

(2) ugk = ugp+1 and Ugrr1 = ugyk if ¢ is an odd number and 0 < k < % It is often useful
to consider another inner product, called Hermitian inner product, given by

<X,y >g=Xx.y
where x = 3!_ju;z; and y = X!_ju;y; in R™ and 7, called conjugation, is given above.

The dual or orthogonal of C' under the Hermitian inner product denoted C1# is
defined as
Cti ={xeR": <x,y >y=0, forally € C}.
The code C is Hermitian self-orthogonal provided C C C+# and Hermitian self-dual pro-
vided C = C+#. We note that if ¢ = (cg,c1,...,¢n_1) € R", then € = (¢g,¢1,...,Cn_1). A
linear code C of length n over R is said to be cyclic if for any codeword ¢ € C, we have:
¢ =(co,C1y.ey Cr—2,n—1) € C implies that A\(c) = (¢p—1,c0,¢1,..c;Cn_2) € C.

We let R, = % Since C' is a cyclic code of length n over R if and only if C is
an ideal of R,, we associate the vector ¢ = (cg,c1,...,cn—1) in R™ with the polynomial

c(x) =co+c1x +cax? + ...+ cp12™ L in R, where 7 = X+ < X™ — 1 >. A polynomial



quadratic residue codes over Zyg + w1Z4 + ... + utZ4 and quantum codes from these codes 113

e(r) in R, is an idempotent if €?(z) = e(x).

Two linear codes Cy and Cs are (permutation) equivalent provided there is a permutation
of coordinates which sends C7 to Cs.

A code is even — like if it has only even-like codewords; a code is odd — like if it is not
even-like (A vector x = (zg,x1,...,Zn—1) in R™ is even — like provided that E?;()lmi =0).
X™—1 has no repeated factors in Z4[X] if and only if ged(n, 2) = 1, an assumption we make
throughout this paper.

Remark 2.1. The finite ring R is a principal ideal ring. Then from Chinese remainder
theorem there exists a canonical R-module isomorphism

t
¢: R = [[R"
i=0
where Ry = 7Zy4. For 0 <i <t, let C; be a linear code over Z4 of length n, and let

t
C = CRT(Cy,Cy,...,Ct) =~ (][ i) = { ™" (vo, 01, .., v)|vi € Ci}.
=0

The code C' is called the Chinese product of codes Cy,...,Cs.

Let C be a linear code over R and let ¢ be an even number. If

a= ((0’107 A171y ey alt)? (a207 A271y ey a2t)a ey (an07 Appy ey ant)) € Cv
and p; is the canonical projection, then

¢(a) = ((alo?aQOv ey anO)a (a117a215 "'7an1)7 ey (a’lta QA2¢, ~-~7ant))7

and

pj(i/i(a)) = (a1j7a2jv ‘~~7anj)a
where 0 < j < t.
If j is an even and 0 < j < t, we define

P;i(¥(a)) = pjr1((a))

and if j is an odd and 0 < j < t, we define
pj(¥(a)) = pj-1(¥(a))

and if ¢ is an even, we define

pe(¥(a)) = pe((a)).
We first give the following lemma for all PIR rings:

Theorem 2.1. [5] Let C = CRT(Cy, (Y, ...,C}) be a linear code of length n over R. Then

1) ler=TITcil:
=0

(2) rank(C)=max {rank (C;) : 0 <i <t};
(3) dg(C) = min{d(C;) : 0<1i <t}

Theorem 2.2. Let C = CRT(Cy,Ch,...,Ct) be a linear code of length n over R. Then
C+ = CRT(Cy,Ci, ...,C).

Proof. By Remark 2.1, a € C* if and only if p;(¢(a))p;(¥(b)) = 0, for any b € C and
0 < i <t, if and only if p;(x(a)) € C;-, this is the case if and only if ¥(a) € ﬁ Cit, and if
and only if a € CRT(Cy,Ct, ..., Cib). = O

Theorem 2.3. Let C be a linear code of length n over ring R, then |C|.|C*| = |R|™.
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Proof. Theorem 2.3 is obviously true when R = Z4. Then the proof follows from Theorems
2.1 and 2.2. ([l

In the following theorem without loss of generality, we can assume that ¢ be an even
number.

Theorem 2.4. Let C = CRT(Cy,C,...,C) be a linear code of length n over R. The
following hold:

(1) C*+# = CRT(C},Cq,C5-, Cy-, ..., CH);

(2) (CH)tn = C.

Proof. @ € C if and only if pi(¥(a))pi((8) = 0, and py(e(a)p(6(b) = 0 , for any
be Cand0<Vi<t—1,if and only if paps1(¢(a)) € Cgh, par(v(a)) € Cap 4y, 0 < Vk < 152
and p;((a)) € CF if and only if ¥(a) € Cf x Cg x Cf x ... x C, and if and only if
a € CRT(Ci, Cy, ...,C).

(2) Since (CiH)+ = C;, it follows immediately from (1). O

Theorem 2.5. Let C = CRT(Cy,Ch,...,Cy) be a linear code over R. The following hold:
(1) If ¢ is an even number, then C' is Hermitian self-dual code over R if and only if Coy =

C3i41, where 0 < k < 152 and C, is a self-dual code;

(2) If t is an odd number, then C is Hermitian self-dual code over R if and only if Cy;, =
CQLk_H, where 0 < k < %

Proof. Tt follows by Theorem 2.4. O

Theorem 2.6. Let C = CRT(Cy,C1,...,Ct) be a linear code of length n over R. Then C' is
a cyclic code over R if and only if C; is a cyclic code of length n over Z4, for any 0 < i <t.

Proof. Suppose that C' is a cyclic code of length n over R and ¢; € C;, where 0 <
i <t Letc = (cg,cC1,...,Ct), there exists a € C such that ¢(a) = c¢. Hence A(a) =
(pn(a),p1(a),...,pn—1(a)) € C. Thus we have:

t

P(A((a))) = (Alco), Mer), - Aler)) € ] C-

i=0
The converse is similar. O
Remark 2.2. By Theorem 2.6, C = CRT(Cy, C4, ..., C}) is an ideal of R, if and only if C
is a cyclic code of length n over R if and only if for each 0 < ¢ < t, C; is a cyclic code of
length n over Zy4, and if and only if for each 0 < i < t, C; is an ideal of <)Z(4n[)_q1>. On the
other hand, R[X] = &!_ u;Z4[X], hence we have:

t
RIX Z4| X
% = ZGZ% ui% (as ring isomorphism)

Therefore when C = CRT(Cy, C4, ..., Cy) is a cyclic code over R, the ideal C is corresponding
to éBﬁzouiCi. Thus without loss of generality, we can assume that C' = GéﬁzouiC’i and by
Theorem 2.2, C+ = ®t_,Ci-.

Corollary 2.1. Let C = ugCy P uiCy & ... uCy be a cyclic code of length n over R. Then
C =< ugfi(z),ur fa(x), ..., us fr(x) >=< f(x) > such that f;(x) is the generator polynomial
of cyclic code C; and f(x) = Xt_qu;fi(x), with 0 < i < t. Moreover, if for each 0 < Vi < t,
Fi(X)|X™ =1, then f(X)|X™ —1.

Proof. The first part follows from Remark 2.2 and [[18], Theorem 7.26]. If for each 0 < i < ¢,
fi(X)|X™ — 1, therefore there exists r;(X) € <)Z(4n[)_q1> such that X" —1 = r;(X) f;(X). Put

r(X) =3 quri(X), we have X™ — 1 = f(X)r(X), i.e., f(X)|X™ —1. -
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Corollary 2.2. R, is a principal ideal ring.

Proposition 2.1. [8] Let R be a finite commutative ring with identity and let t(x) be the
idempotent generator of a cyclic code C. Then 1 —t(x~1) is the idempotent generator of the
dual code C+.

Theorem 2.7. [8] Let R be a finite commutative ring with identity and let f(x), g(z) be
idempotents of R, and let C1 =< f(x) >, Co =< g(x) > be cyclic codes over R. Then
Cy N Cy and Cy + Cy have idempotent generators f(x)g(x) and f(z) + g(z) — f(z)g(x),
respectively.

Corollary 2.3. Let C = ugCy & u1Cy & ... & uCy be a cyclic code of length n over R.
If each generator polynomial of cyclic code C; is a divisor of X™ — 1, then there exists
unique generating idempotent for C of the form e(x) = Si_ju;e;(x), where e;(x) is unique
generating idempotent for C; and C+ =<1 —e(z™1) >.

Proof. Since C; is a cyclic code of length n over Z,, then by [[18], Theorem 7.27] there exists
unique idempotent ¢;(z) in % such that C; =< e;(z) >.

It is obvious that e(x) = wupep(x) + uier(x) + ... + uger(x) is idempotent and C =<
¥!_ousei(x) >. If there exists another idempotent €’(z) € C such that C' =< €/(z) >, then

e'(x) = r(z)e(zx) for some r(z) € %. So €' (z)e(x) = €/(x). Similarly, e'(z)e(z) = e(z),
then e(z) = €’(z). The last statement is immediate consequence of Theorem 2.7. |

First, the Euclidean weights of 0,1, 2,3 of Z, are defined to be 0, 1,4, 1, respectively.
For later applications let us introduce the Euclidean weight of vectors in the ring R. Let 7
be the function from Z,4 to Z4 which 7(0) =0, 7(1) = 7(3) = 1 and 7(2) = 4.

Definition 2.2. We define the Euclidean weight of a = ag + w1a1 + usag + ... + uray in R:
wg(a) = 7(ag) + 7(ag + a1) + 7(ap + a2) + ... + 7(ap + ar).

Then the Euclidean weight of an n-tuple in R is defined to be the integral sum of the
Euclidean weights of its components. Let p be the map from Z4 to F3 which 1(0) = (0,0),
(1) =(0,1), u(2) =(1,1) and p(3) = (1,0). The map p is extended to Zf componentwise;
naturally.

Definition 2.3. We define two maps as

¢ : R— T

ag + uray + ugas + ... + upay — (pu(ag), wlag + ar), ulag + az), ..., wlag + az))

and

¢': R — Z{Y

ap + urag + ugaz + ... + urar — (ag, ap + a1, a9 + az, ..., ap + a).
The maps ¢ and ¢' are extended to R™ componentwise, naturally.
The Lee weight of an element ¢ in R is defined as the Hamming weight of its image
over Fy; in other words
wr, (¢)=the number of nonzero components of ¢(c)

where ¢ = ag + uia; + ... + uza;. We can easily verify that dp(z,y) = d(¢(z), #(y)) for all
z,y € R.

Corollary 2.4. Let C = CRT(Cy,Ch,...,Ct) be a linear code of length n over R. The
following hold:
(1) If dr, be the minimum Lee weight of a code C, then
dr,(C) =min{dr(C;): 0<i <t}
(2) If dg be the minimum Euclidean weight of a code C, then
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dE(C) = mm{dE(CZ) : 0 S ) S t};
where d(C;) and dg(C;) denote the minimum Lee and Euclidean weight of the code C;
over Z4, respectively.

Corollary 2.5. Let ¢’ be the Gray map which is described in Definition 2.3. The following
hold:

(1) ¢ is Zgy-linear;

(2) The image of a self-dual code over R is a self-dual code over Zy.

Proof. (1) It follows immediately from definition of ¢'.

(2) Let C be a self-dual code of length n over R and a = ag + uja; + ... + wgag, b =
bo + u1b1 + ... + u:b¢ be two codewords of C, where a;,b; € Z}, 0 < i <t. Then ab = 0.
It follows that, aobg + Ul(aobl + a]_b() + a1b1) + ...+ ut(agbt + atbo + atbt) = 0. Thus
¢'(a)¢’(b) = (ap,ao + ai,...,a0 + at)(bg, bg + b1,...,bg + by) = 0. Then ¢'(C) is self-
orthogonal. On the other hand by Theorem 2.3, |¢'(C+)| = |Ct] = % =|¢/(C)*|, then
|¢'(C)| = |¢'(CL)| = |¢/(C)*] and ¢'(C) is a self-dual code of length n(t + 1) over Zy. O

By Definition 2.3, we have the following corollary.

Corollary 2.6. Let C = CRT(Cy,C4,...,Ct) be a (n,M,dy) linear code over R. Then
@'(C) is a ((t + 1)n, M,dy) linear code over Zs.

Not that for n odd, the Z, cyclic code generated by 2 is self-dual. We call this a
trivial cyclic self-dual code.

Theorem 2.8. Let n be an odd number. Then self-dual code over R of length n exists.

Proof. Let C be the trivial cyclic self-dual code of length n over Zy. Then the code C' =
CRT(C,C,...,C) is self-dual code of length n over R. a

Theorem 2.9. Let n be an odd number. The following hold:

(1) Nontrivial cyclic self-dual codes of odd length n over R exist if and only if n { 2¢ + 1 for
any 1;

(2) There exist Hermitian cyclic self-dual codes of any odd length n over R.

Proof. (1) By [[10], Theorem 3], nontrivial cyclic self-dual codes of length n over Z, exist if
and only if n { 2° + 1 for any 4. Then we can prove (1) in a similar way to the one which
was used in Theorem 2.8.

(2) Without loss of generality, we can assume that ¢ is an even number. Let C = CRT(Cy, Cy-,
Co,C5-, ..., Cy), where Cy is cyclic self-dual code of length n over Z4 and C; is cyclic code of
length n over Z4, where i = 0,2,...,t —2. Then the proof is complete from Theorem 2.5. [

Theorem 2.10. Let n be an odd number. If X™ — 1 € Z4[X] be unique expressed as
X" —1= f1(X)fo(X)...fr(X), where f;(X) is a basic irreducible polynomial and 1 <1i <,
then the number of the cyclic codes of length n over R is 371,

Proof. Since the number of the cyclic codes of length n over Z4 is 3", then the number of
the cyclic codes of length n over R is 37(t+1),
O

Theorem 2.11. Let n be an odd number. If X™ — 1 € Z4[X] be unique expressed as
X" —1= f1(X)fo(X)...fr(X), where f;(X) is a basic irreducible polynomial and 1 <1i <,
then the following hold:

(1) If ¢t is an odd number, the number of the Hermitian cyclic self-dual codes of length n
over R is 3T(%);

(2) If t is an even number and the number of the Euclidean cyclic self-dual codes of length
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n over Zy4 is k, then the number of the Hermitian cyclic self-dual codes of length n over R
is 37(2) x k.

Proof. The (1) and (2) immediately follow from Theorem 2.5 and the fact that the number
of the cyclic codes of length n over Z, is 3". We note that there is a trivial Euclidean cyclic
self-dual code of any odd length n over Z,. |

3. Quadratic residue codes over R

Throughout this chapter, we assume that p is an odd prime and p = £1 (mod 8).
Then QR-codes of length p over Zy exist. Let Dy =< aj(z) >, Dy =< bi(x) > and
Cy =< az(x) >, Cy =< ba(x) > be QR~codes of type 4% and 4% over 7.4, respectively,
such that a;(x) and b;(z) are the idempotent generators of QR-codes, with i = 1,2 , see |
[18], ch. 11].
In this section, without loss of generality, we can assume that ¢ is an odd number. Denote @,
and N, are the sets of quadratic residues and quadratic non-residues modulo p, respectively.
We let e1(2) = Sicg, 2" and ez(z) = Sien, "

Definition 3.1. With above notation, we define four QR-codes over R as follows:
Q1 =uD1 ®urDs ®us D1 @ ... ® ugDa;

Q2 =uDa®ui D1 DugDe @ ... BueDy;

Q/l = ugC1 D u1Cs ® usCy ® ... D uyCs;

Q/Q =upCo ® u1C1 D uaCo & ...  u C1.

Let p1(x) = woar(z) + uib1(z) + uzar (x) + ... + usby (x), 1 () = uobr(x) + urai(x) +
ugby () + ... + wsar(z), pa(x) = ugaz(w) + uiba(z) + ugaz(w) + ... + ughe(x) and ga(v) =
uoba(z) + uras(x) + ugbe(x) + ... + uaz(x). By Corollary 2.3, pi(z), ¢i(x), p2(x) and
g2(z) are idempotent generators of Q1, Q2, @} and @Y, respectively. We note that j(z) =
14+ 2+ 22 + ... + 2P~ ! is the polynomial corresponding to the all one vector of length p.

3.1.

Case L. If p—1 = 8r and r is odd, then two QR~codes of type 4" and two QR-codes
of type 4= over Z4 have generating idempotents 1 + 3e1(z) + 2ex(x), 1+ 2e1(x) + 3ea(x)
and 2e;1(x) + e2(x), e1(x) + 2ea(x), respectively.

3.2

Case II. If p — 1 = 8 and r is even, then two QR-codes of type 4" and two QR-
codes of type 4" over Z4 have generating idempotents 1 + e1(z), 1 + ex(x) and 3es(z),
3e1(x), respectively.

QR-codes over R have the following properties.

Theorem 3.1. Let the situation be as in definition 3.1 and p = 1 (mod 8). Then the
following hold:
(1) @1 and QY are equivalent to Q2 and @, respectively;

()Q10Q2(+1)(£1))>aﬂdQ1+Q2=R
R

(5) Q1= Q1+ < j(z) > and Q2 = Q2+<J()
E;QlfQQandQQ*Q/andQ/CQ QICQL

5
6
7 QINQ,=<0>and Q) + Q) =<1—j(z) >
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Proof. (1) It is clear that the cyclic codes Dy and Cy are equivalent to the cyclic codes Dy
and Cy over Zy, respectively. Then @ and Q] are equivalent to Q2 and @Y, respectively.
(2) By Theorem 2.7, Q1 NQ2 =< p1(x)q1(z) >=< a1(z)b1(z) >=< j(z) > and Q1+ Q2 =
p1(x) + q1(z) — pr(z)gi(x) >=< ai(x) + b1 () — a1(z)bi(x) >=<1p >=< (1,1,...,1) >.
(3) Since |D;| = 4", with i = 1,2, then |Q1| = |D1||Ds]...|Ds| = 4“5 Similarly,
10| = N

(4) We can prove in a similar way to the one which was used in (3).

( ) Let Ql =ugD1 Bu1Ds Dus D1 P ... BusDs. Since D1 = C1+ < ](I) > and Dy = Co+ <
j(x) >, we have Q1 = Q|+ < j(z) >. Similarly, Q2 = Q4+ < j(z) >

(6) By Theorem 2.2,

Qf = upDi @ u1 Dy @ usDi @ ... ©uy Dy and Qi = ugDy © uyDi @ us Dy @ ... ® uy Di-.

Note that Di- = Cy and Dy = C;. It follows that Qi = Q% and Q5 = Q). To prove the
last claim, we can use (5) and the equations Qi = @ and Q3 = Q.

(7) By Theorem 2.7, Q) N Q4 =< pa(x)q2(z) >=< az(x)bz(z) >=< 0 > and

Q1 + Qh =< pa(x) + q2(z) — p2(2)q2(x) >=< az(x) + ba(z) — az(z)be(z) >=

< 1—j(z) >. So the proof is complete. O

3.3.

Case IIIL. If p+ 1 = 8 and r is odd, then two QR-codes of type 4% and two
p—1 . .
QR-codes of type 472 over Zg4, have generating idempotents e1(z) + 2e2(x), 2e1(x) + e2(x)
and 1+ 2e1(z) 4+ 3ea(x), 1 + 3er(x) + 2es(x), respectively.

3.4.

Case VI. If p+ 1 = 8r and r is even, then two QR~codes of type 4" and the two
QR-codes of type 4% over Z4, have generating idempotents 3e;(z), 3ea(z) and 1 + ea(x),
1+ e1(x), respectively.

Theorem 3.2. Let the situation be as in Definition 3.1. If p = —1 (mod 8), then the
following hold:

(1) @y and Q] are equivalent to Qo and @, respectively;

(2) Q1NQ2=<3j(xr) >and Q1 + Q2 =R,

(8) Qi) = 425 = 1Qu;

,1 JEESSIEESS) ,2 '
E4§ Qi =4""=2"" =1Q5;
(6)
(

= Q1+ < 3j(z) > and Q2 = Q3+ < 3j(z) >
Ql and Q) are self-orthogonal and Qi = Ql and Q2 = Q5;

) Q1NQ5=<0>and Q) + Q5 =<1+ j(z) >
Proof. The proof of the theorem is similar to that for the cases I and II of this section. O

5
6
7

Corollary 3.1. If p = 41 (mod 8), there are no Euclidean self-dual QR-codes of length p
over R.

Proof. Since D; and C; are not Euclidean self-dual codes over Z4, then by theorem 2.2, there
are no Euclidean self-dual QR~codes of length p over R. ]

Remark 3.1. Let D; be the quadratic residue code of length p over Z4 with i = 1,2. There
exist different QR-extended codes over Z4 as follows:

(1) Z = {(co,C1s e, Cp—1, —Ef;olci)\ (co,c1y .-y Cp—1) € D;};
(2) Dl = {(C(),Cl7 ...7Cp_172f;olci)| (Co,Cl, --'7Cp—1) € Dz}
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We can consider extending quadratic residue codes over R in such a way that exten-
sions are self-dual or dual to each other.

Definition 3.2. The extended codes Q; and Ql over R are formed by adding the same
columns that are used to extend codes over Zy.
Theorem 3.3. If p = +1 (mod 8), then
Qi =uoD1 ®uiDs @ ... & uDo.
If p=1 (mod 8), then
Qi = u0D1 (&%) Ulfjg b ...5P UtDQ}
where 1 = 1, 2.

Proof. The proof is obvious from the definition of the extended codes over R. O

Theorem 3.4. If p=1 (mod 8), then the dual of Q1 and Q2 are QQ and Ql, respectively.
If p=—1 (mod 8), then Q; is self-dual code, with i =1,2.

Proof. By [[18], Proposition 11.13 |, if p = 1 (mod 8), then the dual of D; and D, are Dy
and Dy, respectively and if p = —1 (mod 8), then D; is self-dual code, with i = 1,2. So if
p =1 (mod 8), then

— 1 - 1 - L1 - L ~ ~ ~ A
Ql = UODl D U1D2 D...D uth = UODQ D u1D1 D...D ”U,tDl = QQ.

We can prove the last statment in a very similar way to the one which was used above.
|

In continue, we study Hermitian self-dual codes over the ring R and give some results
about them.

Theorem 3.5. Let t be an odd number. The following hold:
(1) If p=1 (mod 8), then
1= Q) and Q" = Q;
(2) If p=—1 (mod 8) , then
1= Q5 and Q" = Q5.
Proof. (1) If p =1 (mod 8), then Di- = Cy and Dy = Cy, then by Theorem 2.4,
1 = wugDy ®u1 Dy ®ugDy & ... ®u D = Q)
and
1 = gD ® uy Dy ® usDE & ... & uy Dy = Qb.

(2) If p= —1 (mod 8), then D = Cy and D5 = Cy. We use similar way to the one used in
proof of (1). O

We propose using Theorem 3.5 to construct eight Hermitian self-dual codes of length
p over the ring R.

Theorem 3.6. Lett be an odd number. If p =1 (mod 8), there are four Hermitian self-dual
codes over R as follows:

E1 = UoDl ) u1C2 D u2D1 D...D UtCQ,'

Es = ugCo @ ur D1y @ usCo @ ... DugDr;

Es =uyDs @ u1C1 @ ueDy @ ... ® uCy;

Ey=ugCi ®urDy ®usCq @ ... B ugDo.
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Proof. If p =1 (mod 8), Di = Cy and Di- = C;. So we can prove this theorem in a very
similar way to the one which was used in Theorem 3.5. |

There is another construction in QR~codes over R in addition to that introduced in
Theorem 3.6, where ¢ is an odd number and p = —1 (mod 8).

Theorem 3.7. Let t be an odd number. If p = —1 (mod 8), there are four Hermitian
self-dual codes over R as follows:

Es =uoD1 @ ui1C1 @ ue D1 @ ... ® uCy;

Eg =upgCr @ ur Dy B usCy B ... DugDy;

E7 = ’LLODQ D ung D U2D2 D...PD utCQ;

Eg = ’LLOCQ D 'LL1.D2 D UQCQ D..D ’LLtDQ.

Proof. Since Di+ = C; and D3 = (Y, then this follows from Theorem 2.5.
O

Corollary 3.2. Ifp =1 (mod 8), then Ey and Es are equivalent to E5 and E4, respectively
and if p = —1 (mod 8), then E5 and Eg are equivalent to E7 and Es, respectively.

Proof. We use similar way to that used in the proof of Theorem 3.1. O

4. Examples of Hermitian self-dual codes over R

In this section, we study an example of Hermitian cyclic self-dual code of length 3
over R, where t = 1,2. We also investigate an example of Hermitian self-dual families of
quadratic residue codes of length 17 over R = Zy4 + u1Zy4.

Example 4.1. Lett =1 and R = Z4 + u1Z4. Over Z4, we have
2 —1=0B+2)(1+x+2%) = gi1(1)g2(2).

There are nine Hermitian cyclic self-dual codes of length 3 over R. For example the code
C =< 2ugg1 +u1(2+ g2) > is Hermitian cyclic self-dual code of length 3 and type 4*2* over
R and its Gray image corresponds to a (6,64,2) linear code over Zy and [12,6,2] linear code
over Fy. So the Gray image C corresponds to a (8,64,4) linear code over Z, and [16,6,4]
linear code over Fy. Lett = 2 and R = uoZy + u1Z4 + usZy. There are nine Hermitian
cyclic self-dual codes of length 3 over R'. To obtain these codes we can simply add 2us to
the generators of the Hermitian cyclic self-dual codes over R. There is only one Euclidean
cyclic self-dual code of length 3 over R. It is C =< 2 >.

Example 4.2. Let R = Zy+u1Z4 andp = 17. Letey(x) = 4ttt a8 2942134154216
and ex(z) = 23 + 25 + 25 + 27 + 219 + 21t + 22 + 2. Then QR-codes Q1 and Q) are
generated by p1(x) = up(l + e1(x)) + ur(1 + ea(x)) and p2(z) = up(3e2(x)) + u1(3e1(z)) in
—xtr—1s, respectively. By Theorem 3.6, E; is a Hermitian self-dual code of length 17 over
R, with 1 < i < 4. So its Gray image corresponds to a (34,4'7,5) linear code over Z, and
(68,23, 5) non-linear code over Fo and dg(E;) = dr(E;) = 7. The Lee and Euclidean and
Hamming weight distribution of E; are given as follows:

Wi(z) =1+13627 + 47628 + 57829 + 2788210 +- 4760211 + 13328212 + 14008213 4 30804214 +
5086421 + 10251021¢ + 245856217 + 63649728 + ...

Wg(2) = 1+ 13627 + 34028 + 1702° + 544210 + 54421 + 1258212 + 1768213 + 476024 +
281522'% + 3814820 + 5375627 + 10540028 + ...

Wi (z) =1+ 342° + 13625 + 74827 + 350228 + 84492° + 2176020 + 45220211 + 67524212 +
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153102212 + 356320214 + 145356821° 4+ 5404589216 + 17024568217 + 49412064218 + ...

5. Quantum codes from quadratic residue codes over R

Let ¢ be a prime power. A g-ary quantum code of length n ia a subspace of C?".
The following theorem gives a condition on the existence of quantum codes over F = which
obtain from linear codes over finite chain ring with residue field F .

Theorem 5.1. [[7], Corollary 5.4] Let R be a finite chain ring with maximal ideal < v >,

nilpotency index e, and residue field % = Fgv and let C; and C be two linear codes
over R of length n such that €y C Cy with |Cy] = K7 and |Cs| = K. Then there exists

an ((¢*(¢=Vn, %, d)) quantum code over F » with minimum distance d = min{dpom(C2 \

C(1 )a dho’m (OlL)}

Theorem 5.2. Let p= —1 (mod 8). Then there exists an ((2(t + 1)p, 22+ d)) quantum
code over Fo, with minimum distance d = min{dr(Q1 \ Q1),dr(Q1)}. Moreover, there
exists an ((2(t + 1)p, 1,dr(Q}))) quantum code over Fs.

Proof. By Theorem 3.2, if p = —1 (mod 8), Q} and Q) are self-orthogonal and Q- = @,
and Q5 = Q2. So QF = Q) C Qi = Q;, where i = 1,2. Then ¢'(Q;)* = ¢'(QF) C ¢'(Q;).
Then by Corollary 5.1, there exists an ((2(t + 1)p, 22+ d)) quantum code over Fy, with
minimum distance d = min{d.(Q1\Q1),dr(Q1)}. On the other hand, ¢'(Q})*+ = ¢'(Q}*) =
@' (Q;), where i = 1,2. Then by Theorem 5.1, there exists an ((2(t + 1)p,1,dr(Q}))) over
Fs.

(]

Theorem 5.3. Let p = 1 (mod 8). Then there exists an ((2(t + 1)p, 220+D d)) quantum
code over Fo, with minimum distance d = min{dr(Q1 \ Q3),dr(Q2)}. Moreover, there
exists an ((2(t 4+ 1)p, 1,dr(Q%))) quantum code over Fs.

Proof. By Theorem 3.1, if p = 1 (mod 8), then Q; C @; and Q" = Q2 and Q5 = Q1
where i = 1,2. So Qf C Q2 and Q3 C Q;. Then ¢'(Q1)* = ¢'(Qf) C #'(Q2) and
#'(Q2)* = ¢'(Q3) € ¢'(Q1). Then by Theorem 5.1, there exists an ((2(¢ 4 1)p, 22+ d))
quantum code over Fo, with minimum distance d = min{d(Q1 \ Q3 ),dr(Q2)}. On the
other hand, since ¢/(Q))" = ¢/(Q1) = #'(Qa) and ¢/(Q4)- = &/ (Q4) = #'(Q1), it follows
there exists an ((2(t + 1)p, 1,dr(Q%))) quantum code over Fs. O

Table 1 presents some ((n, K, d)) quantum codes derived from quadratic residue codes
over Z4 + uyZ4 using Theorems 5.2 and 5.3.

TABLE 1. ((n, K,d))2 quantum codes derived from quadratic residue codes over Z4 + u1Z4
Length | ((n,K,d))s

7 ((28,2%,4)),
7 ((28,1,6))s
17 ((68,25,7)),

17 ((68,1,8))2
23 | ((92,2%,10)),
23 ((92,1,12)),
31 | ((124,2%,11)),
31 | ((124,1,12)),
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6. Conclusions

We studied the structure of linear, cyclic and, especially, quadratic residue codes over
the ring R = Zy + w124 + ... + usZy4, where t > 1. Moreover, we gave general properties of
Euclidean and Hermitian linear self-dual codes over R and obtained a method to construct
quantum codes over Fs from Gray images of quadratic residue codes over the ring R.
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