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QUADRATIC RESIDUE CODES OVER Z4 + u1Z4 + ...+ utZ4 AND

QUANTUM CODES FROM THESE CODES

Arezoo Soufi Karbaski1, Karim Samei2

In this paper linear and cyclic codes over the ring R = Z4+u1Z4+...+utZ4

are investigated, where t ≥ 1. The structure of Euclidean and Hermitian linear self-

dual codes over R is studied. A distance preserving Gray map from R to Zt+1
4 is also

presented. Moreover, quadratic residue codes over R are defined. Further, Euclidean

and Hermitian self-dual families of quadratic residue codes over R are observed and
four Hermitian self-dual codes of length p over the ring R are introduced if p ≡ −1 (mod
8) or p ≡ 1 (mod 8). In particular, a method is presented to construct quantum codes
over F2 from Gray images of quadratic residue codes over the ring R. The results are

presented in the table.
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map, Quadratic residue codes, Quantum codes.

MSC2010: 94B 05, 94B 15, 81P 70.

1. Introduction

Linear and cyclic codes over finite rings are an important class of codes from both a
theorical and a practical viewpoint. The study of cyclic codes over finite rings have been
studied in the late 1972s. In [1] and [2] the author studied the codes over finite rings. In this
relation Dinh and Lopez-permouth presented the structure of cyclic and negacyclic codes
over chain rings [6].
Quadratic residue (QR) codes are special cases of cyclic codes and over finite fields they
have been studied for many years. More recently, Quadratic residue codes over some special
rings have been studied and have generated a great deal of interest. First, Andrew Gleason
introduced quadratic residue codes. The link between quadratic residue codes over F2 and
these codes over Z4 was given by pless and Qian [11]. Chiu et al. and Taeri presented
the structure of quadratic residue codes over Z8 and Z9, respectively, and they provided a
different approach to the study of these codes [4] and [17]. In 2013, Kaya, Yildiz and Siap
studied the structure of quadratic residue codes over Fp + vFp [9]. Meanwhile, Authors [14]
obtained intresting results by the Gray map. Authors [15] used the Gray map for construc-
tion of some best-known binary linear quasi-cyclic codes. For see more details, we refer
readers to [13] and [16].
Quantum error-correcting codes have recently generated a great deal of intrest. A method
to construct quantum error-correcting codes from classical error-correcting codes was intro-
duced by Calderbank et al. [3]. Qian gave a construction for quantum codes from cyclic
codes of odd length n over F2+vF2, where v

2 = v [12]. More recently, Guenda and Gulliver
extended the Calderbank-Shor-Steane (CSS) construction to Frobenius rings [7]. In this
paper, we mainly discuss the structure of linear, cyclic and quadratic residue codes over
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the ring R = Z4 + u1Z4 + ... + utZ4, where t ≥ 1, and use the ideas of authors [9] and
[11]. Moreover, we obtain quantum codes from quadratic residue codes over R using the
generalized Gray map.
First we survey the known results on quadratic residue codes over Z4 and give general prop-
erties with quadratic residue codes over R. In section 2, we describe the brief introduction
concerning linear and cyclic codes over the ring R and introduce Gray map from R to Zt+1

4 .
In sections 3 and 4 , we define the quadratic residue codes over R and investigate Hermitian
self-dual codes over the ring R, respectively. In this correspondence, we present examples of
Hermitian cyclic self-dual codes over R. Finally in the last section, we derive self-orthogonal
and self-dual codes over Z4 as Gray images of quadratic residue codes over R and use these
codes to determine the parameters of the corresponding quantum codes.

2. Preliminaries

The ring R = Z4 + u1Z4 + ... + utZ4 is a principal ideal ring of order 4t+1 and
characteristic 4, subject to the restriction ui

2 = ui, and uiuj = 0 if i ̸= j, where 1 ≤ i ≤ t and
t is a natural number. We denote this ring by u0Z4+u1Z4+...+utZ4, where u0 = 1−Σt

i=1ui.

The ring
∏t

i=0Ri is isomorphic to the ring R, where Ri = Z4 and 0 ≤ i ≤ t.
A linear code C over ring R of length n is a R-submodule of Rn. A generator matrix C
is a matrix whose rows generate C. The Hamming weight of a codeword is the number of
non-zero components.
Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be two elements of Rn. The Euclidean inner
product of vectors x,y is < x,y >E= Σn

i=1xiyi. The dual or orthogonal of C denoted C⊥

is defined as

C⊥ = {x ∈ Rn : < x,y >E= 0, for all y ∈ C}.
The code C is ( Euclidean) self-orthogonal provided C ⊆ C⊥ and a ( Euclidean) self-dual
provided C = C⊥.

Definition 2.1. If xi ∈ Z4, then we define the conjugate of x = Σt
i=0uixi as

x = Σt
i=0uixi = Σt

i=0ui xi

where we define the conjugate of ui as follows:
(1) u2k = u2k+1, u2k+1 = u2k and ut = ut if t is an even number and 0 ≤ k ≤ t−2

2 ;

(2) u2k = u2k+1 and u2k+1 = u2k if t is an odd number and 0 ≤ k ≤ t−1
2 . It is often useful

to consider another inner product, called Hermitian inner product, given by

< x,y >H= x.y

where x = Σt
i=0uixi and y = Σt

i=0uiyi in R
n and ,̄ called conjugation, is given above.

The dual or orthogonal of C under the Hermitian inner product denoted C⊥H is
defined as

C⊥H = {x ∈ Rn : < x,y >H= 0, for all y ∈ C}.
The code C is Hermitian self-orthogonal provided C ⊆ C⊥H and Hermitian self-dual pro-
vided C = C⊥H . We note that if c = (c0, c1, ..., cn−1) ∈ Rn, then c = (c0, c1, ..., cn−1). A
linear code C of length n over R is said to be cyclic if for any codeword c ∈ C, we have:

c = (c0, c1, ..., cn−2, cn−1) ∈ C implies that λ(c) = (cn−1, c0, c1, ..., cn−2) ∈ C.

We let Rn = R[X]
<Xn−1> . Since C is a cyclic code of length n over R if and only if C is

an ideal of Rn, we associate the vector c = (c0, c1, ..., cn−1) in Rn with the polynomial
c(x) = c0 + c1x + c2x

2 + ... + cn−1x
n−1 in Rn, where x = X+ < Xn − 1 >. A polynomial
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e(x) in Rn is an idempotent if e2(x) = e(x).
Two linear codes C1 and C2 are (permutation) equivalent provided there is a permutation
of coordinates which sends C1 to C2.
A code is even − like if it has only even-like codewords; a code is odd − like if it is not
even-like (A vector x = (x0, x1, ..., xn−1) in R

n is even− like provided that Σn−1
i=0 xi = 0).

Xn−1 has no repeated factors in Z4[X] if and only if gcd(n, 2) = 1, an assumption we make
throughout this paper.

Remark 2.1. The finite ring R is a principal ideal ring. Then from Chinese remainder
theorem there exists a canonical R-module isomorphism

ψ : Rn →
t∏

i=0

Ri
n

where Ri = Z4. For 0 ≤ i ≤ t, let Ci be a linear code over Z4 of length n, and let

C = CRT (C0, C1, ..., Ct) = ψ−1(
t∏

i=0

Ci) = {ψ−1(v0, v1, ..., vt)|vi ∈ Ci}.

The code C is called the Chinese product of codes C0,...,Ct.

Let C be a linear code over R and let t be an even number. If

a = ((a10, a11, ..., a1t), (a20, a21, ..., a2t), ..., (an0, an1, ..., ant)) ∈ C,

and pj is the canonical projection, then

ψ(a) = ((a10, a20, ..., an0), (a11, a21, ..., an1), ..., (a1t, a2t, ..., ant)),

and

pj(ψ(a)) = (a1j , a2j , ..., anj),

where 0 ≤ j ≤ t.
If j is an even and 0 ≤ j < t, we define

p̂j(ψ(a)) = pj+1(ψ(a))

and if j is an odd and 0 ≤ j ≤ t, we define

p̂j(ψ(a)) = pj−1(ψ(a))

and if t is an even, we define

p̂t(ψ(a)) = pt(ψ(a)).

We first give the following lemma for all PIR rings:

Theorem 2.1. [5] Let C = CRT (C0, C1, ..., Ct) be a linear code of length n over R. Then

(1) |C| =
t∏

i=0

|Ci|;

(2) rank(C)=max {rank (Ci) : 0 ≤ i ≤ t};
(3) dH(C) = min{d(Ci) : 0 ≤ i ≤ t}.

Theorem 2.2. Let C = CRT (C0, C1, ..., Ct) be a linear code of length n over R. Then
C⊥ = CRT (C⊥

0 , C
⊥
1 , ..., C

⊥
t ).

Proof. By Remark 2.1, a ∈ C⊥ if and only if pi(ψ(a))pi(ψ(b)) = 0, for any b ∈ C and

0 ≤ i ≤ t, if and only if pi(ψ(a)) ∈ C⊥
i , this is the case if and only if ψ(a) ∈

t∏
i=0

C⊥
i , and if

and only if a ∈ CRT (C⊥
0 , C

⊥
1 , ..., C

⊥
t ). �

Theorem 2.3. Let C be a linear code of length n over ring R, then |C|.|C⊥| = |R|n.
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Proof. Theorem 2.3 is obviously true when R = Z4. Then the proof follows from Theorems
2.1 and 2.2. �

In the following theorem without loss of generality, we can assume that t be an even
number.

Theorem 2.4. Let C = CRT (C0, C1, ..., Ct) be a linear code of length n over R. The
following hold:
(1) C⊥H = CRT (C⊥

1 , C
⊥
0 , C

⊥
3 , C

⊥
2 , ..., C

⊥
t );

(2) (C⊥H )⊥H = C.

Proof. a ∈ C⊥H if and only if pi(ψ(a))p̂i(ψ(b)) = 0, and pt(ψ(a))pt(ψ(b)) = 0 , for any
b ∈ C and 0 ≤ ∀i ≤ t−1, if and only if p2k+1(ψ(a)) ∈ C⊥

2k, p2k(ψ(a)) ∈ C⊥
2k+1, 0 ≤ ∀k ≤ t−2

2

and pt(ψ(a)) ∈ C⊥
t if and only if ψ(a) ∈ C⊥

1 × C⊥
0 × C⊥

3 × ... × C⊥
t , and if and only if

a ∈ CRT (C⊥
1 , C

⊥
0 , ..., C

⊥
t ).

(2) Since (C⊥
i )⊥ = Ci, it follows immediately from (1). �

Theorem 2.5. Let C = CRT (C0, C1, ..., Ct) be a linear code over R. The following hold:
(1) If t is an even number, then C is Hermitian self-dual code over R if and only if C2k =
C⊥

2k+1, where 0 ≤ k ≤ t−2
2 , and Ct is a self-dual code;

(2) If t is an odd number, then C is Hermitian self-dual code over R if and only if C2k =
C⊥

2k+1, where 0 ≤ k ≤ t−1
2 .

Proof. It follows by Theorem 2.4. �
Theorem 2.6. Let C = CRT (C0, C1, ..., Ct) be a linear code of length n over R. Then C is
a cyclic code over R if and only if Ci is a cyclic code of length n over Z4, for any 0 ≤ i ≤ t.

Proof. Suppose that C is a cyclic code of length n over R and ci ∈ Ci, where 0 ≤
i ≤ t. Let c = (c0, c1, ..., ct), there exists a ∈ C such that ψ(a) = c. Hence λ(a) =
(pn(a), p1(a), ..., pn−1(a)) ∈ C. Thus we have:

ψ(λ((a))) = (λ(c0), λ(c1), ..., λ(ct)) ∈
t∏

i=0

Ci.

The converse is similar. �
Remark 2.2. By Theorem 2.6, C = CRT (C0, C1, ..., Ct) is an ideal of Rn if and only if C
is a cyclic code of length n over R if and only if for each 0 ≤ i ≤ t, Ci is a cyclic code of

length n over Z4, and if and only if for each 0 ≤ i ≤ t, Ci is an ideal of Z4[X]
<Xn−1> . On the

other hand, R[X] ∼= ⊕t
i=0uiZ4[X], hence we have:

R[X]

< Xn − 1 >
∼=

t⊕
i=0

ui
Z4[X]

< Xn − 1 >
(as ring isomorphism)

Therefore when C = CRT (C0, C1, ..., Ct) is a cyclic code over R, the ideal C is corresponding
to ⊕t

i=0uiCi. Thus without loss of generality, we can assume that C = ⊕t
i=0uiCi and by

Theorem 2.2, C⊥ = ⊕t
i=0C

⊥
i .

Corollary 2.1. Let C = u0C0⊕u1C1⊕ ...⊕utCt be a cyclic code of length n over R. Then
C =< u0f1(x), u1f2(x), ..., utft(x) >=< f(x) > such that fi(x) is the generator polynomial
of cyclic code Ci and f(x) = Σt

i=0uifi(x), with 0 ≤ i ≤ t. Moreover, if for each 0 ≤ ∀i ≤ t,
fi(X)|Xn − 1, then f(X)|Xn − 1.

Proof. The first part follows from Remark 2.2 and [[18], Theorem 7.26]. If for each 0 ≤ i ≤ t,

fi(X)|Xn − 1, therefore there exists ri(X) ∈ Z4[X]
<Xn−1> such that Xn − 1 = ri(X)fi(X). Put

r(X) = Σt
i=0uiri(X), we have Xn − 1 = f(X)r(X), i.e., f(X)|Xn − 1. �
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Corollary 2.2. Rn is a principal ideal ring.

Proposition 2.1. [8] Let R be a finite commutative ring with identity and let t(x) be the
idempotent generator of a cyclic code C. Then 1− t(x−1) is the idempotent generator of the
dual code C⊥.

Theorem 2.7. [8] Let R be a finite commutative ring with identity and let f(x), g(x) be
idempotents of Rn and let C1 =< f(x) >, C2 =< g(x) > be cyclic codes over R. Then
C1 ∩ C2 and C1 + C2 have idempotent generators f(x)g(x) and f(x) + g(x) − f(x)g(x),
respectively.

Corollary 2.3. Let C = u0C0 ⊕ u1C1 ⊕ ... ⊕ utCt be a cyclic code of length n over R.
If each generator polynomial of cyclic code Ci is a divisor of Xn − 1, then there exists
unique generating idempotent for C of the form e(x) = Σt

i=0uiei(x), where ei(x) is unique
generating idempotent for Ci and C

⊥ =< 1− e(x−1) >.

Proof. Since Ci is a cyclic code of length n over Z4, then by [[18], Theorem 7.27] there exists

unique idempotent ei(x) in
Z4[X]

<Xn−1> such that Ci =< ei(x) >.

It is obvious that e(x) = u0e0(x) + u1e1(x) + ... + utet(x) is idempotent and C =<
Σt

i=0uiei(x) >. If there exists another idempotent e′(x) ∈ C such that C =< e′(x) >, then

e′(x) = r(x)e(x) for some r(x) ∈ R[X]
<Xn−1> . So e′(x)e(x) = e′(x). Similarly, e′(x)e(x) = e(x),

then e(x) = e′(x). The last statement is immediate consequence of Theorem 2.7. �
First, the Euclidean weights of 0, 1, 2, 3 of Z4 are defined to be 0, 1, 4, 1, respectively.

For later applications let us introduce the Euclidean weight of vectors in the ring R. Let τ
be the function from Z4 to Z4 which τ(0) = 0, τ(1) = τ(3) = 1 and τ(2) = 4.

Definition 2.2. We define the Euclidean weight of a = a0 + u1a1 + u2a2 + ...+ utat in R:

wE(a) = τ(a0) + τ(a0 + a1) + τ(a0 + a2) + ...+ τ(a0 + at).

Then the Euclidean weight of an n-tuple in R is defined to be the integral sum of the
Euclidean weights of its components. Let µ be the map from Z4 to F2

2 which µ(0) = (0, 0),
µ(1) = (0, 1), µ(2) = (1, 1) and µ(3) = (1, 0). The map µ is extended to Zn

4 componentwise;
naturally.

Definition 2.3. We define two maps as

ϕ : R→ F2(t+1)
2

a0 + u1a1 + u2a2 + ...+ utat → (µ(a0), µ(a0 + a1), µ(a0 + a2), ..., µ(a0 + at))

and

ϕ′ : R→ Z(t+1)
4

a0 + u1a1 + u2a2 + ...+ utat → (a0, a0 + a1, a0 + a2, ..., a0 + at).

The maps ϕ and ϕ′ are extended to Rn componentwise, naturally.

The Lee weight of an element c in R is defined as the Hamming weight of its image
over F2; in other words

wL(c)=the number of nonzero components of ϕ(c)

where c = a0 + u1a1 + ... + utat. We can easily verify that dL(x, y) = d(ϕ(x), ϕ(y)) for all
x, y ∈ R.

Corollary 2.4. Let C = CRT (C0, C1, ..., Ct) be a linear code of length n over R. The
following hold:
(1) If dL be the minimum Lee weight of a code C, then

dL(C) = min{dL(Ci) : 0 ≤ i ≤ t};
(2) If dE be the minimum Euclidean weight of a code C, then
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dE(C) = min{dE(Ci) : 0 ≤ i ≤ t};
where dL(Ci) and dE(Ci) denote the minimum Lee and Euclidean weight of the code Ci

over Z4, respectively.

Corollary 2.5. Let ϕ′ be the Gray map which is described in Definition 2.3. The following
hold:
(1) ϕ′ is Z4-linear;
(2) The image of a self-dual code over R is a self-dual code over Z4.

Proof. (1) It follows immediately from definition of ϕ′.
(2) Let C be a self-dual code of length n over R and a = a0 + u1a1 + ... + utat, b =
b0 + u1b1 + ...+ utbt be two codewords of C, where ai,bi ∈ Zn

4 , 0 ≤ i ≤ t. Then ab = 0.
It follows that, a0b0 + u1(a0b1 + a1b0 + a1b1) + ... + ut(a0bt + atb0 + atbt) = 0. Thus
ϕ′(a)ϕ′(b) = (a0,a0 + a1, ...,a0 + at)(b0,b0 + b1, ...,b0 + bt) = 0. Then ϕ′(C) is self-

orthogonal. On the other hand by Theorem 2.3, |ϕ′(C⊥)| = |C⊥| = |Rn|
|C| = |ϕ′(C)⊥|, then

|ϕ′(C)| = |ϕ′(C⊥)| = |ϕ′(C)⊥| and ϕ′(C) is a self-dual code of length n(t+ 1) over Z4. �

By Definition 2.3, we have the following corollary.

Corollary 2.6. Let C = CRT (C0, C1, ..., Ct) be a (n,M, dL) linear code over R. Then
ϕ′(C) is a ((t+ 1)n,M, dL) linear code over Z4.

Not that for n odd, the Z4 cyclic code generated by 2 is self-dual. We call this a
trivial cyclic self-dual code.

Theorem 2.8. Let n be an odd number. Then self-dual code over R of length n exists.

Proof. Let C be the trivial cyclic self-dual code of length n over Z4. Then the code C ′ =
CRT (C,C, ..., C) is self-dual code of length n over R. �

Theorem 2.9. Let n be an odd number. The following hold:
(1) Nontrivial cyclic self-dual codes of odd length n over R exist if and only if n - 2i + 1 for
any i;
(2) There exist Hermitian cyclic self-dual codes of any odd length n over R.

Proof. (1) By [[10], Theorem 3], nontrivial cyclic self-dual codes of length n over Z4 exist if
and only if n - 2i + 1 for any i. Then we can prove (1) in a similar way to the one which
was used in Theorem 2.8.
(2) Without loss of generality, we can assume that t is an even number. Let C = CRT (C0, C

⊥
0 ,

C2, C
⊥
2 , ..., Ct), where Ct is cyclic self-dual code of length n over Z4 and Ci is cyclic code of

length n over Z4, where i = 0, 2, ..., t−2. Then the proof is complete from Theorem 2.5. �

Theorem 2.10. Let n be an odd number. If Xn − 1 ∈ Z4[X] be unique expressed as
Xn − 1 = f1(X)f2(X)...fr(X), where fi(X) is a basic irreducible polynomial and 1 ≤ i ≤ r,
then the number of the cyclic codes of length n over R is 3r(t+1).

Proof. Since the number of the cyclic codes of length n over Z4 is 3r, then the number of
the cyclic codes of length n over R is 3r(t+1).

�

Theorem 2.11. Let n be an odd number. If Xn − 1 ∈ Z4[X] be unique expressed as
Xn − 1 = f1(X)f2(X)...fr(X), where fi(X) is a basic irreducible polynomial and 1 ≤ i ≤ r,
then the following hold:
(1) If t is an odd number, the number of the Hermitian cyclic self-dual codes of length n

over R is 3r(
t+1
2 );

(2) If t is an even number and the number of the Euclidean cyclic self-dual codes of length
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n over Z4 is k, then the number of the Hermitian cyclic self-dual codes of length n over R
is 3r(

t
2 ) × k.

Proof. The (1) and (2) immediately follow from Theorem 2.5 and the fact that the number
of the cyclic codes of length n over Z4 is 3r. We note that there is a trivial Euclidean cyclic
self-dual code of any odd length n over Z4. �

3. Quadratic residue codes over R

Throughout this chapter, we assume that p is an odd prime and p = ±1 (mod 8).
Then QR-codes of length p over Z4 exist. Let D1 =< a1(x) >, D2 =< b1(x) > and

C1 =< a2(x) >, C2 =< b2(x) > be QR-codes of type 4
p+1
2 and 4

p−1
2 over Z4, respectively,

such that ai(x) and bi(x) are the idempotent generators of QR-codes, with i = 1, 2 , see [
[18], ch. 11 ].
In this section, without loss of generality, we can assume that t is an odd number. Denote Qp

and Np are the sets of quadratic residues and quadratic non-residues modulo p, respectively.
We let e1(x) = Σi∈Qpx

i and e2(x) = Σi∈Npx
i.

Definition 3.1. With above notation, we define four QR-codes over R as follows:
Q1 = u0D1 ⊕ u1D2 ⊕ u2D1 ⊕ ...⊕ utD2;
Q2 = u0D2 ⊕ u1D1 ⊕ u2D2 ⊕ ...⊕ utD1;
Q′

1 = u0C1 ⊕ u1C2 ⊕ u2C1 ⊕ ...⊕ utC2;
Q′

2 = u0C2 ⊕ u1C1 ⊕ u2C2 ⊕ ...⊕ utC1.

Let p1(x) = u0a1(x) + u1b1(x) + u2a1(x) + ...+ utb1(x), q1(x) = u0b1(x) + u1a1(x) +
u2b1(x) + ... + uta1(x), p2(x) = u0a2(x) + u1b2(x) + u2a2(x) + ... + utb2(x) and q2(x) =
u0b2(x) + u1a2(x) + u2b2(x) + ... + uta2(x). By Corollary 2.3, p1(x), q1(x), p2(x) and
q2(x) are idempotent generators of Q1, Q2, Q

′
1 and Q′

2, respectively. We note that j(x) =
1 + x+ x2 + ...+ xp−1 is the polynomial corresponding to the all one vector of length p.

3.1.

Case I. If p−1 = 8r and r is odd, then two QR-codes of type 4
p+1
2 and two QR-codes

of type 4
p−1
2 over Z4 have generating idempotents 1 + 3e1(x) + 2e2(x), 1 + 2e1(x) + 3e2(x)

and 2e1(x) + e2(x), e1(x) + 2e2(x), respectively.

3.2.

Case II. If p − 1 = 8r and r is even, then two QR-codes of type 4
p+1
2 and two QR-

codes of type 4
p−1
2 over Z4 have generating idempotents 1 + e1(x), 1 + e2(x) and 3e2(x),

3e1(x), respectively.
QR-codes over R have the following properties.

Theorem 3.1. Let the situation be as in definition 3.1 and p ≡ 1 (mod 8). Then the
following hold:
(1) Q1 and Q′

1 are equivalent to Q2 and Q′
2, respectively;

(2) Q1 ∩Q2 =< j(x) > and Q1 +Q2 = Rp;

(3) |Q1| = 4
(p+1)(t+1)

2 = |Q2|;
(4) |Q′

1| = 4
(p−1)(t+1)

2 = |Q′
2|;

(5) Q1 = Q′
1+ < j(x) > and Q2 = Q′

2+ < j(x) >;
(6) Q⊥

1 = Q′
2 and Q⊥

2 = Q′
1 and Q′

1 ⊆ Q′⊥
2 , Q′

2 ⊆ Q′⊥
1 ;

(7) Q′
1 ∩Q′

2 =< 0 > and Q′
1 +Q′

2 =< 1− j(x) >.
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Proof. (1) It is clear that the cyclic codes D1 and C1 are equivalent to the cyclic codes D2

and C2 over Z4, respectively. Then Q1 and Q′
1 are equivalent to Q2 and Q′

2, respectively.
(2) By Theorem 2.7, Q1∩Q2 =< p1(x)q1(x) >=< a1(x)b1(x) >=< j(x) > and Q1+Q2 =<
p1(x) + q1(x)− p1(x)q1(x) >=< a1(x) + b1(x)− a1(x)b1(x) >=< 1R >=< (1, 1, ..., 1) >.

(3) Since |Di| = 4
p+1
2 , with i = 1, 2, then |Q1| = |D1||D2|...|D2| = 4

(p+1)(t+1)
2 . Similarly,

|Q2| = 4
(p+1)(t+1)

2 .
(4) We can prove in a similar way to the one which was used in (3).
(5) Let Q1 = u0D1⊕u1D2⊕u2D1⊕ ...⊕utD2. Since D1 = C1+ < j(x) > and D2 = C2+ <
j(x) >, we have Q1 = Q′

1+ < j(x) >. Similarly, Q2 = Q′
2+ < j(x) >

(6) By Theorem 2.2,

Q⊥
1 = u0D

⊥
1 ⊕ u1D

⊥
2 ⊕ u2D

⊥
1 ⊕ ...⊕ utD

⊥
2 and Q⊥

2 = u0D
⊥
2 ⊕ u1D

⊥
1 ⊕ u2D

⊥
2 ⊕ ...⊕ utD

⊥
1 .

Note that D⊥
1 = C2 and D⊥

2 = C1. It follows that Q⊥
1 = Q′

2 and Q⊥
2 = Q′

1. To prove the
last claim, we can use (5) and the equations Q⊥

1 = Q′
2 and Q⊥

2 = Q′
1.

(7) By Theorem 2.7, Q′
1 ∩Q′

2 =< p2(x)q2(x) >=< a2(x)b2(x) >=< 0 > and
Q′

1 +Q′
2 =< p2(x) + q2(x)− p2(x)q2(x) >=< a2(x) + b2(x)− a2(x)b2(x) >=

< 1− j(x) >. So the proof is complete. �

3.3.

Case III. If p + 1 = 8r and r is odd, then two QR-codes of type 4
p+1
2 and two

QR-codes of type 4
p−1
2 over Z4, have generating idempotents e1(x) + 2e2(x), 2e1(x) + e2(x)

and 1 + 2e1(x) + 3e2(x), 1 + 3e1(x) + 2e2(x), respectively.

3.4.

Case VI. If p + 1 = 8r and r is even, then two QR-codes of type 4
p+1
2 and the two

QR-codes of type 4
p−1
2 over Z4, have generating idempotents 3e1(x), 3e2(x) and 1 + e2(x),

1 + e1(x), respectively.

Theorem 3.2. Let the situation be as in Definition 3.1. If p ≡ −1 (mod 8), then the
following hold:
(1) Q1 and Q′

1 are equivalent to Q2 and Q′
2, respectively;

(2) Q1 ∩Q2 =< 3j(x) > and Q1 +Q2 = Rp;

(3) |Q1| = 4
(p+1)(t+1)

2 = |Q2|;
(4) |Q′

1| = 4
(p−1)(t+1)

2 = |Q′
2|;

(5) Q1 = Q′
1+ < 3j(x) > and Q2 = Q′

2+ < 3j(x) > ;
(6) Q′

1 and Q′
2 are self-orthogonal and Q⊥

1 = Q′
1 and Q⊥

2 = Q′
2;

(7) Q′
1 ∩Q′

2 =< 0 > and Q′
1 +Q′

2 =< 1 + j(x) >.

Proof. The proof of the theorem is similar to that for the cases I and II of this section. �
Corollary 3.1. If p ≡ ±1 (mod 8), there are no Euclidean self-dual QR-codes of length p
over R.

Proof. Since Di and Ci are not Euclidean self-dual codes over Z4, then by theorem 2.2, there
are no Euclidean self-dual QR-codes of length p over R. �
Remark 3.1. Let Di be the quadratic residue code of length p over Z4 with i = 1, 2. There
exist different QR-extended codes over Z4 as follows:
(1) Di = {(c0, c1, ..., cp−1,−Σp−1

i=0 ci)| (c0, c1, ..., cp−1) ∈ Di};
(2) D̂i = {(c0, c1, ..., cp−1,Σ

p−1
i=0 ci)| (c0, c1, ..., cp−1) ∈ Di}.
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We can consider extending quadratic residue codes over R in such a way that exten-
sions are self-dual or dual to each other.

Definition 3.2. The extended codes Qi and Q̂i over R are formed by adding the same
columns that are used to extend codes over Z4.

Theorem 3.3. If p ≡ ±1 (mod 8), then

Qi = u0D1 ⊕ u1D2 ⊕ ...⊕ utD2.

If p ≡ 1 (mod 8), then

Q̂i = u0D̂1 ⊕ u1D̂2 ⊕ ...⊕ utD̂2,

where i = 1, 2.

Proof. The proof is obvious from the definition of the extended codes over R. �

Theorem 3.4. If p ≡ 1 (mod 8), then the dual of Q1 and Q2 are Q̂2 and Q̂1, respectively.
If p ≡ −1 (mod 8), then Qi is self-dual code, with i = 1, 2.

Proof. By [[18], Proposition 11.13 ], if p ≡ 1 (mod 8), then the dual of D1 and D2 are D̂2

and D̂1, respectively and if p ≡ −1 (mod 8), then Di is self-dual code, with i = 1, 2. So if
p ≡ 1 (mod 8), then

Q1

⊥
= u0D1

⊥ ⊕ u1D2
⊥ ⊕ ...⊕ utD2

⊥
= u0D̂2 ⊕ u1D̂1 ⊕ ...⊕ utD̂1 = Q̂2.

We can prove the last statment in a very similar way to the one which was used above.
�

In continue, we study Hermitian self-dual codes over the ring R and give some results
about them.

Theorem 3.5. Let t be an odd number. The following hold:
(1) If p ≡ 1 (mod 8), then

Q⊥H
1 = Q′

1 and Q⊥H
2 = Q′

2;

(2) If p ≡ −1 (mod 8) , then

Q⊥H
1 = Q′

2 and Q⊥H
2 = Q′

1.

Proof. (1) If p ≡ 1 (mod 8), then D⊥
1 = C2 and D⊥

2 = C1, then by Theorem 2.4,

Q⊥H
1 = u0D

⊥
2 ⊕ u1D

⊥
1 ⊕ u2D

⊥
2 ⊕ ...⊕ utD

⊥
1 = Q′

1

and

Q⊥H
2 = u0D

⊥
1 ⊕ u1D

⊥
2 ⊕ u2D

⊥
1 ⊕ ...⊕ utD

⊥
2 = Q′

2.

(2) If p ≡ −1 (mod 8), then D⊥
1 = C1 and D⊥

2 = C2. We use similar way to the one used in
proof of (1). �

We propose using Theorem 3.5 to construct eight Hermitian self-dual codes of length
p over the ring R.

Theorem 3.6. Let t be an odd number. If p ≡ 1 (mod 8), there are four Hermitian self-dual
codes over R as follows:
E1 = u0D1 ⊕ u1C2 ⊕ u2D1 ⊕ ...⊕ utC2;
E2 = u0C2 ⊕ u1D1 ⊕ u2C2 ⊕ ...⊕ utD1;
E3 = u0D2 ⊕ u1C1 ⊕ u2D2 ⊕ ...⊕ utC1;
E4 = u0C1 ⊕ u1D2 ⊕ u2C1 ⊕ ...⊕ utD2.
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Proof. If p ≡ 1 (mod 8), D⊥
1 = C2 and D⊥

2 = C1. So we can prove this theorem in a very
similar way to the one which was used in Theorem 3.5. �

There is another construction in QR-codes over R in addition to that introduced in
Theorem 3.6, where t is an odd number and p ≡ −1 (mod 8).

Theorem 3.7. Let t be an odd number. If p ≡ −1 (mod 8), there are four Hermitian
self-dual codes over R as follows:
E5 = u0D1 ⊕ u1C1 ⊕ u2D1 ⊕ ...⊕ utC1;
E6 = u0C1 ⊕ u1D1 ⊕ u2C1 ⊕ ...⊕ utD1;
E7 = u0D2 ⊕ u1C2 ⊕ u2D2 ⊕ ...⊕ utC2;
E8 = u0C2 ⊕ u1D2 ⊕ u2C2 ⊕ ...⊕ utD2.

Proof. Since D⊥
1 = C1 and D⊥

2 = C2, then this follows from Theorem 2.5.
�

Corollary 3.2. If p ≡ 1 (mod 8), then E1 and E2 are equivalent to E3 and E4, respectively
and if p ≡ −1 (mod 8), then E5 and E6 are equivalent to E7 and E8, respectively.

Proof. We use similar way to that used in the proof of Theorem 3.1. �

4. Examples of Hermitian self-dual codes over R

In this section, we study an example of Hermitian cyclic self-dual code of length 3
over R, where t = 1, 2. We also investigate an example of Hermitian self-dual families of
quadratic residue codes of length 17 over R = Z4 + u1Z4.

Example 4.1. Let t = 1 and R = Z4 + u1Z4. Over Z4, we have

x3 − 1 = (3 + x)(1 + x+ x2) = g1(x)g2(x).

There are nine Hermitian cyclic self-dual codes of length 3 over R. For example the code
C =< 2u0g1 +u1(2+ g2) > is Hermitian cyclic self-dual code of length 3 and type 4124 over
R and its Gray image corresponds to a (6, 64, 2) linear code over Z4 and [12, 6, 2] linear code
over F2. So the Gray image C corresponds to a (8, 64, 4) linear code over Z4 and [16, 6, 4]
linear code over F2. Let t = 2 and R′ = u0Z4 + u1Z4 + u2Z4. There are nine Hermitian
cyclic self-dual codes of length 3 over R′. To obtain these codes we can simply add 2u2 to
the generators of the Hermitian cyclic self-dual codes over R. There is only one Euclidean
cyclic self-dual code of length 3 over R. It is C =< 2 >.

Example 4.2. Let R = Z4+u1Z4 and p = 17. Let e1(x) = x+x2+x4+x8+x9+x13+x15+x16

and e2(x) = x3 + x5 + x6 + x7 + x10 + x11 + x12 + x14. Then QR-codes Q1 and Q′
1 are

generated by p1(x) = u0(1 + e1(x)) + u1(1 + e2(x)) and p2(x) = u0(3e2(x)) + u1(3e1(x)) in
R[X]

<X17−1> , respectively. By Theorem 3.6, Ei is a Hermitian self-dual code of length 17 over

R, with 1 ≤ i ≤ 4. So its Gray image corresponds to a (34, 417, 5) linear code over Z4 and
(68, 234, 5) non-linear code over F2 and dE(Ei) = dL(Ei) = 7. The Lee and Euclidean and
Hamming weight distribution of Ei are given as follows:
WL(z) = 1+136z7+476z8+578z9+2788z10+4760z11+13328z12+14008z13+30804z14+
50864z15 + 102510z16 + 245856z17 + 636497z18 + ...
WE(z) = 1 + 136z7 + 340z8 + 170z9 + 544z10 + 544z11 + 1258z12 + 1768z13 + 4760z14 +
28152z15 + 38148z16 + 53756z17 + 105400z18 + ...
WH(z) = 1 + 34z5 + 136z6 + 748z7 + 3502z8 + 8449z9 + 21760z10 + 45220z11 + 67524z12 +
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153102z13 + 356320z14 + 1453568z15 + 5404589z16 + 17024568z17 + 49412064z18 + ....

5. Quantum codes from quadratic residue codes over R

Let q be a prime power. A q-ary quantum code of length n ia a subspace of Cqn .
The following theorem gives a condition on the existence of quantum codes over Fqk which
obtain from linear codes over finite chain ring with residue field Fqk .

Theorem 5.1. [[7], Corollary 5.4] Let R be a finite chain ring with maximal ideal < γ >,
nilpotency index e, and residue field R

<γ> = Fqk and let C1 and C2 be two linear codes

over R of length n such that C1 ⊂ C2 with |C1| = K1 and |C2| = K2. Then there exists
an ((qk(e−1)n, K2

K1
, d)) quantum code over Fqk with minimum distance d = min{dhom(C2 \

C1), dhom(C⊥
1 )}.

Theorem 5.2. Let p ≡ −1 (mod 8). Then there exists an ((2(t+ 1)p, 22(t+1), d)) quantum
code over F2, with minimum distance d = min{dL(Q1 \ Q⊥

1 ), dL(Q1)}. Moreover, there
exists an ((2(t+ 1)p, 1, dL(Q

′
1))) quantum code over F2.

Proof. By Theorem 3.2, if p ≡ −1 (mod 8), Q′
1 and Q′

2 are self-orthogonal and Q′⊥
1 = Q1

and Q′⊥
2 = Q2. So Q

⊥
i = Q′

i ⊆ Q′⊥
i = Qi, where i = 1, 2. Then ϕ′(Qi)

⊥ = ϕ′(Q⊥
i ) ⊆ ϕ′(Qi).

Then by Corollary 5.1, there exists an ((2(t + 1)p, 22(t+1), d)) quantum code over F2, with
minimum distance d = min{dL(Q1\Q⊥

1 ), dL(Q1)}. On the other hand, ϕ′(Q′
i)

⊥ = ϕ′(Q′⊥
i ) =

ϕ′(Qi), where i = 1, 2. Then by Theorem 5.1, there exists an ((2(t + 1)p, 1, dL(Q
′
1))) over

F2.
�

Theorem 5.3. Let p ≡ 1 (mod 8). Then there exists an ((2(t + 1)p, 22(t+1), d)) quantum
code over F2, with minimum distance d = min{dL(Q1 \ Q⊥

2 ), dL(Q2)}. Moreover, there
exists an ((2(t+ 1)p, 1, dL(Q

′
2))) quantum code over F2.

Proof. By Theorem 3.1, if p ≡ 1 (mod 8), then Q′
i ⊆ Qi and Q′⊥

1 = Q2 and Q′⊥
2 = Q1,

where i = 1, 2. So Q⊥
1 ⊆ Q2 and Q⊥

2 ⊆ Q1. Then ϕ′(Q1)
⊥ = ϕ′(Q⊥

1 ) ⊆ ϕ′(Q2) and
ϕ′(Q2)

⊥ = ϕ′(Q⊥
2 ) ⊆ ϕ′(Q1). Then by Theorem 5.1, there exists an ((2(t + 1)p, 22(t+1), d))

quantum code over F2, with minimum distance d = min{dL(Q1 \ Q⊥
2 ), dL(Q2)}. On the

other hand, since ϕ′(Q′
1)

⊥ = ϕ′(Q′⊥
1 ) = ϕ′(Q2) and ϕ

′(Q′
2)

⊥ = ϕ′(Q′⊥
2 ) = ϕ′(Q1), it follows

there exists an ((2(t+ 1)p, 1, dL(Q
′
2))) quantum code over F2. �

Table 1 presents some ((n,K, d)) quantum codes derived from quadratic residue codes
over Z4 + u1Z4 using Theorems 5.2 and 5.3.

TABLE 1. ((n,K, d))2 quantum codes derived from quadratic residue codes over Z4 + u1Z4

Length ((n,K, d))2
7 ((28, 24, 4))2
7 ((28, 1, 6))2
17 ((68, 24, 7))2
17 ((68, 1, 8))2
23 ((92, 24, 10))2
23 ((92, 1, 12))2
31 ((124, 24, 11))2
31 ((124, 1, 12))2
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6. Conclusions

We studied the structure of linear, cyclic and, especially, quadratic residue codes over
the ring R = Z4 + u1Z4 + ... + utZ4, where t ≥ 1. Moreover, we gave general properties of
Euclidean and Hermitian linear self-dual codes over R and obtained a method to construct
quantum codes over F2 from Gray images of quadratic residue codes over the ring R.
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