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ANN TECHNIQUE FOR ELECTRONIC NOSE BASED ON
SMART SENSORS ARRAY

Samia KHALDI*, Zohir DIBI?

Electronic Nose is widely used in environmental monitor because of its
ability to recognize and discriminate between a different nature of gases and odors.
In this paper, we developed an electronic nose based on a smart MOX sensor array
for detect and identify seven different gases. These gas sensors characterized by
nanostructure hierarchical/doped, this structure now by the very high sensitivity and
low response time, these gas sensors are improved, on the side of linearity response
and temperature dependence, using ANN models. We used in Electronic nose a
pattern recognition based on artificial neural network, to discriminates qualitatively
and quantitatively seven different gases on fast response.
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1. Introduction

Electronic nose (e-nose) is an instrument designed for mimicking the
mammalian sensory system, so it’s used to detect and identify different gases
mixtures. The importance of e-nose is presently the subject of emergent research
for many applications [1]. Typically, an e-nose system consists of functional
components are: a multi-sensor array, an information-processing unit, software
with digital pattern-recognition algorithms, and reference-library databases.

The implementation of the gas sensor in the environment is difficult
because of sensor problems (such as sensitivity and reliability) [1]. smart sensor
and electronic noses can be used to produce reliable results.

Artificial Neural Networks (ANNSs) are widely used to model complex
systems because of the multi-variability and strong nonlinearity [4]. ANNs are
very efficient in solving problems in the dynamic matter and offer the advantages
of simple implementation and less computing time compared with other numerical
models [5].
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2. Materials and Methods

In this paper, we have designed an electronic nose based on seven MOX
gas sensors (S1, S2, S3, S4, S5, S6 and S7). The diagram of our electronic nose
was presented in Figure 1.

We used ANNSs to design a smart model for each gas sensor, this smart
model contains two sub models (a compensator and a corrector) with the aim of
improving the selectivity and eliminating the environmental effects (taking into
account the nonlinearity response, depending on temperature in a dynamic
environment, as well as dependence on the gas meter.). Then we design a selector
module whose specific role is to determine the nature of gas detected and its
concentration. The MATLAB interface was used during the design phase and
optimization.
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Fig 1. The electronic nose diagram

3. Electronic Nose Data

In the last few years, a large amount of research has focused on oxide
nanostructure fabrication and control procedures. In order to improve sensor
performance. Oxide nanostructures are promising gas sensor materials compared
with commercial gas sensors, due to their highest both gas response and response
speed simultaneously and substantially. Because of the fast gas diffusion to the
entire detection surfaces via the porous structures. In fact, the method of
producing the sensing film can improve the porosity of the material, which will
lead to better performance in the gas detection behaviors of sensors [6].

Table 1
Representation of gas sensor array [6-11,2].
Sensors Targeted gas Synonyms
Co-doped SnO; nanofibers sensor H. S1

Co-doped ZnO electrospun nanofibers acetone S2
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Ni-doped ZnO electrospun nanofibers CH, S3
Vanadium dioxide nanostructured films CH, S4
Quasi-molecular-imprinting SnO, nanoparticles co S5
Porous corundum-type In,Osnanosheets NO; S6
Semiconducting copper oxide nanospheroids NH, S7

For these reasons, our sensor array used in e-nose system consists of seven
nanostructures gas sensors (S1, S2, S3, S4, S5, S6, S7) can successfully
distinguish (H,, acetone, C,H,, CH,4, CO, NO,, NH3) successively even in a mixed
gas, with highest response and quick response/recovery (table 1) [6-11,2].

a. Sensors Characteristics

Figure. 2 show the experimental responses of gas sensors to different
concentrations of target gas.

Figure. 3 show the experimental responses of gas sensors at different
operating temperatures.

According to experimental results [6-11,2], All of these gas sensors used
to detect the gas concentration have a very high response and selectivity, but
nonlinear sensitivity (Figure 2); and are strongly dependent on the temperature of
the environment (Figure 3).

We have improved the responses of gas sensors used in electronic nose by
designed a smart model for each gas sensor, this smart model consists of two sub-
models: compensator and corrector. We followed the same steps and the same
procedure used for improving the characteristics of the gas sensor S3 (Ni-doped
ZnO electrospun nanofibers) to improve the other sensors, this improvement
concerned the linearity and dependence in temperature.
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Fig. 2. Experimental responses of gas sensors (S1, S2, S3, S4, S5, S6, S7) to different
concentrations of target gas (H,, Acetone, C,H,, CH4 CO, NO,, NHj).
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Fig. 3. Experimental responses of gas sensors (S1, S2, S3, S4, S5, S6, S7) at different operating
temperatures. of (H,, C,H, , CO, NO,, NHs) respectively.

S3 (Ni-doped ZnO electrospun nanofibers) is one of the seven gas sensors
used in our e-nose. According to experimental results [9], this sensor achieves the
highest response with very short response/recovery times and good selectivity.

b. Compensator

The principal method of detection by MOX gas sensors are depending to
variation of temperature, but this effect is not suitable in output response. For this,
the design of a compensator is necessary to eliminate the temperature dependence.
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Artificial neural networks (ANNs) have emerged as a highly effective
learning technique suitable to perform complex, nonlinear, and dynamic tasks
with a high degree of accuracy. ANNs models are much faster than
physics/electro-mechanical models and have a higher accuracy than analytical and
empirical models. And they are easy to develop for a new device or technology

[5].

The design of the ANN compensator for S3 gas sensor requires the
determination of database, selecting the network architecture and finding the
numbers of layers and neurons in each layer. However, the number of neurons in
the input and output layers is the same number of inputs and the number of
outputs respectively of the system to be modeled.

Based on experimental results from [9], a database created and arranged as
(T, Rs) inputs, and (Rc) as output response, where:

T: Absolute temperature. Rs: Sensor's output response. Rc: Compensator's
output response.

To find the optimal parameters of ANNSs architecture, we divide the
available database into two groups (training data and test data). Then we train
parameters using the training data set with MLP algorithm (backpropagation
error). The test data used to test and validate the model.

During this research, the ANN compensator of S3 architecture was tested
with a different number of hidden layers, neurons by layer and iteration algorithm
consists of evaluating the total error. After many tests of different ANN models.
The architecture optimized, which presents the minimum error, summarized in
Table 2; which show that the ANN model has the 3-5-1 structure. Changing the
number of neurons in the hidden layer or the number of layers did not result in
correct architecture.

Table 2

The compensator's optimized architecture.

Property Characteristic
Database Training base 132
Test base 126
Architecture 3-5-1 Feed-forward MLP
Activation functions Logsig-Logsig- linear
Training rule Retropropagation error

Training MSE < e-13
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We designed an ANN-based compensator for the S3 gas sensor. To
illustrate the effect of this compensator we change temperature, and then we note
the variation of the compensator’s output. Figure 4 shows that the ANNs
compensator compensate correctly the sensor’s response (the response is free
from the variations of temperature).

c. Corrector

The corrector's optimized architecture.

property Characteristic

Database Training base 600
Test base 540

Architecture 1 Feed-forward MLP

Activation functions Linear

Training rule Retropropagation error

Training MSE 10°

Table 3

We design the corrector based on ANNSs to linearize the sensor response.

The database is arranged as (Rc, C) inputs, and (Rlin) as output, where:

Rc: compensator's output response.

C: gas concentration.

Rlin: Corrector's output response.
The generation of database (training base and test base) is similar to the
compensator model. However, in the corrector, the compensator's output response
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Rc and gas concentration C are taken as inputs, and the corrector's output response
Rlin is taken as the output.

Because the compensator's response is free from variations of temperature,
so the architecture of corrector is optimized too simple, accurate and present the
minimum error 10-9 given after 4 iterations (Table 3).

Corrector Test

We designed an ANN-based corrector for S3 sensor. To illustrate the
effect of this corrector, we change concentration, and then we note the variation of
the corrector’s output. Fig.5 shows that the corrector linearizes correctly the
sensor’s output (the response is linear with concentration increasing).
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Fig.5. Corrector response of S3 gas sensor to C,H, gas variations.

4. Improvement of other gas sensors

With the same procedure used to improve S3 gas sensor characteristics,
the other gas sensors were improved.

In this step, we choose to apply a new technique for classifying the gas
sensor data in the gas sensor improvement step. then the response of seven gas
sensors will be diverged and separated, so the classification of the gas sensor data
will be easy and accurate for the next step.

Figure 6. Shows the linearization of all gas sensor responses used in the
electronic nose (the Correctors responses of seven gas sensors). These responses
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obtained after compensation of temperature of this gas sensors.

The highest response, as shown in Figure 6, of all gas sensors is less than
610, for gaseous concentrations, decreasing from 2000 ppm, although there are
some gas sensors with a higher output response at 810 (S1, S2). This is due to the
classification and divergence effect in the response of sensors in the improvement
step to avoid intersections between the curves, but the output responses after
improvement, for gas sensors, still equal or greater than the realresponse of the
gas sensor without improvement. Thus, the response of the electronic nose
becomes higher.
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Fig.6. Linearization responses of seven gas sensors used in e-nose (responses of all Correctors
of gas sensors)

5. Selector

To correctly select the nature of the gas detected by the sensors, we
designed the selector which is the latest model designed for our electronic nose to
select seven different gas natures summarized in the table 4.
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Table 4
Response and their matched gases
Gas Response (Ng)
H, 1
Cco
CoH,
NH;
CH,
CH3;COCH;
NO,

~No oabhwN

The database of ANN selector arranged as (Rlinl, Rlin2, Rlin3, Rlin4,
Rlin5, RlinG, RIlin7, Ng, and Cg) where:

Rlinl: corrector response of S1 gas sensor.

RIlin2: corrector response of S2 gas sensor.

RI1in3: corrector response of S3 gas sensor.

Rlin4: corrector response of S4 gas sensor.

RIlin5: corrector response of S5 gas sensor.

RI1in6: corrector response of S6 gas sensor.

RIlin7: corrector response of S7 gas sensor.

Ng: first output response of selector (gas number).

Cg: second output response of selector (gas concentration).

The generation of training base and test base is similar to that of the other
models. However, in the selector, the (Rlinl, Rlin2, Rlin3, Rlin4, Rlin5, RIinG,
Rlin7) are taken as inputs, and the selector outputs response Ng and Cg are taken
as outputs.

Table 5
The optimized parameters of Selector.

Property Characteristic
Database Training base 1400

Test base 1260
Architecture 12-10-15-1 Feed-forward MLP
Activation functions Logsig-Logsig- Logsig-linear
Training rule Retropropagation error
Training MSE <10®
Iteration number 1000

After many tests and training of different ANN models of selector. The
architecture optimized and that produce the minimum error summarized in Table
5.
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Selector Test

We designed a selector based on artificial neural networks for electronic
nose. To demonstrate the effect of this selector we change the corrector’s
responses, and we note the variation of the selector’s response. Fig. 7 shows that
the selector selects correctly the gases (each gas Nature presents on special value
from (1 to 7)) and the output concentration is accurate.
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Fig. 7. Selector selectivity feature effect: number of gases detected (a), the concentration of
gases detected (b).
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The response time of electronic nose equal to the maximum response
times of gas sensors (from S1 to S7). The responses time of gas sensors in our
sensor array are summarized in table 6. We note that: (S1-S6) sensors have fast
response less than 0.5 min, S7 sensor has 2.5 min (it’s a fast response compared to
other NHj3 gas sensor [2]). Thus, our electronic nose has 2.5 min response time.
Note that we can design an electronic nose very fast by six gas sensors (S1-S6)
with faster response time equal to 26 s.

Table 6
Time response of gas sensors
Gas sensor Response time
S1 2 s (very fast response)
S2 6 s (fast response)
S3 5s (fast response)
S4 2.5 min
S5 12.266 s (decreasing with increasing concentration)
S6 5 s (fast response)
S7 26 s (fast response)

6. Conclusions

We design in this paper an electronic nose based on nanostructures MOX
sensor array for detect and identify seven different gases (H,, CyHj, CHy,
CH30CH3;, CO, NO,, and NH3). These gas sensors characterized by hierarchical
/doped nanostructure, the combines between hierarchical and doped nanostructure
give to gas sensor a very high sensitivity and fast response better than commercial
sensors. For improving the characteristics of gas sensors, we design smart sensors
using models based on artificial neural networks and in the same time, we
classified the database of gas sensors, and we wire all the smart sensors with the
selector module for increasing the selectivity. We used in Electronic nose a
pattern recognition based on artificial neural network, which discriminates
qualitatively and quantitatively seven gases tested between 0 and 2500 ppm, with
fast response.
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