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Electronic Nose is widely used in environmental monitor because of its 

ability to recognize and discriminate between a different nature of gases and odors. 

In this paper, we developed an electronic nose based on a smart MOX sensor array 

for detect and identify seven different gases. These gas sensors characterized by 

nanostructure hierarchical/doped, this structure now by the very high sensitivity and 
low response time, these gas sensors are improved, on the side of linearity response 

and temperature dependence, using ANN models. We used in Electronic nose a 

pattern recognition based on artificial neural network, to discriminates qualitatively 

and quantitatively seven different gases on fast response. 
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1. Introduction 

Electronic nose (e-nose) is an instrument designed for mimicking the 

mammalian sensory system, so it’s used to detect and identify different gases 

mixtures. The importance of e-nose is presently the subject of emergent research 

for many applications [1]. Typically, an e-nose system consists of functional 

components are: a multi-sensor array, an information-processing unit, software 

with digital pattern-recognition algorithms, and reference-library databases. 

The implementation of the gas sensor in the environment is difficult 

because of sensor problems (such as sensitivity and reliability) [1]. smart sensor 

and electronic noses can be used to produce reliable results. 

Artificial Neural Networks (ANNs) are widely used to model complex 

systems because of the multi-variability and strong nonlinearity [4]. ANNs are 

very efficient in solving problems in the dynamic matter and offer the advantages 

of simple implementation and less computing time compared with other numerical 

models [5]. 
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2. Materials and Methods 

In this paper, we have designed an electronic nose based on seven MOX 

gas sensors (S1, S2, S3, S4, S5, S6 and S7). The diagram of our electronic nose 

was presented in Figure 1. 

We used ANNs to design a smart model for each gas sensor, this smart 

model contains two sub models (a compensator and a corrector) with the aim of 

improving the selectivity and eliminating the environmental effects (taking into 

account the nonlinearity response, depending on temperature in a dynamic 

environment, as well as dependence on the gas meter.). Then we design a selector 

module whose specific role is to determine the nature of gas detected and its 

concentration. The MATLAB interface was used during the design phase and 

optimization. 

 
Fig 1. The electronic nose diagram 

3. Electronic Nose Data 

In the last few years, a large amount of research has focused on oxide 

nanostructure fabrication and control procedures. In order to improve sensor 

performance. Oxide nanostructures are promising gas sensor materials compared 

with commercial gas sensors, due to their highest both gas response and response 

speed simultaneously and substantially. Because of the fast gas diffusion to the 

entire detection surfaces via the porous structures. In fact, the method of 

producing the sensing film can improve the porosity of the material, which will 

lead to better performance in the gas detection behaviors of sensors [6]. 
 

Table 1 

Representation of gas sensor array [6-11,2]. 

Sensors Targeted gas Synonyms 

Co-doped SnO2 nanofibers sensor H2 S1 

Co-doped ZnO electrospun nanofibers  acetone S2 
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Ni-doped ZnO electrospun nanofibers  C2H2 S3 

Vanadium dioxide nanostructured films  CH4 S4 

Quasi-molecular-imprinting SnO2 nanoparticles  
CO 

S5 

Porous corundum-type In2O3nanosheets 
NO2 S6 

Semiconducting copper oxide nanospheroids  
NH3 S7 

 

For these reasons, our sensor array used in e-nose system consists of seven 

nanostructures gas sensors (S1, S2, S3, S4, S5, S6, S7) can successfully 

distinguish (H2, acetone, C2H2, CH4, CO, NO2, NH3) successively even in a mixed 

gas, with highest response and quick response/recovery (table 1) [6-11,2]. 
 

a. Sensors Characteristics 

Figure. 2 show the experimental responses of gas sensors to different 

concentrations of target gas. 

Figure. 3 show the experimental responses of gas sensors at different 

operating temperatures. 

According to experimental results [6-11,2], All of these gas sensors used 

to detect the gas concentration have a very high response and selectivity, but 

nonlinear sensitivity (Figure 2); and are strongly dependent on the temperature of 

the environment (Figure 3). 

We have improved the responses of gas sensors used in electronic nose by 

designed a smart model for each gas sensor, this smart model consists of two sub-

models: compensator and corrector. We followed the same steps and the same 

procedure used for improving the characteristics of the gas sensor S3 (Ni-doped 

ZnO electrospun nanofibers) to improve the other sensors, this improvement 

concerned the linearity and dependence in temperature. 
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Fig. 2. Experimental responses of gas sensors (S1, S2, S3, S4, S5, S6, S7) to different 

concentrations of target gas (H2, Acetone, C2H2, CH4, CO, NO2, NH3). 

 

 
Fig. 3. Experimental responses of gas sensors (S1, S2, S3, S4, S5, S6, S7) at different operating 

temperatures. of (H2, C2H2 , CO, NO2, NH3) respectively. 

 

S3 (Ni-doped ZnO electrospun nanofibers) is one of the seven gas sensors 

used in our e-nose. According to experimental results [9], this sensor achieves the 

highest response with very short response/recovery times and good selectivity. 

b. Compensator 

The principal method of detection by MOX gas sensors are depending to 

variation of temperature, but this effect is not suitable in output response. For this, 

the design of a compensator is necessary to eliminate the temperature dependence. 
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Artificial neural networks (ANNs) have emerged as a highly effective 

learning technique suitable to perform complex, nonlinear, and dynamic tasks 

with a high degree of accuracy. ANNs models are much faster than 

physics/electro-mechanical models and have a higher accuracy than analytical and 

empirical models. And they are easy to develop for a new device or technology 

[5]. 

The design of the ANN compensator for S3 gas sensor requires the 

determination of database, selecting the network architecture and finding the 

numbers of layers and neurons in each layer. However, the number of neurons in 

the input and output layers is the same number of inputs and the number of 

outputs respectively of the system to be modeled. 

Based on experimental results from [9], a database created and arranged as 

(T, Rs) inputs, and (Rc) as output response, where: 

T: Absolute temperature. Rs: Sensor's output response. Rc: Compensator's 

output response. 

To find the optimal parameters of ANNs architecture, we divide the 

available database into two groups (training data and test data). Then we train 

parameters using the training data set with MLP algorithm (backpropagation 

error). The test data used to test and validate the model. 

 

During this research, the ANN compensator of S3 architecture was tested 

with a different number of hidden layers, neurons by layer and iteration algorithm 

consists of evaluating the total error. After many tests of different ANN models. 

The architecture optimized, which presents the minimum error, summarized in 

Table 2; which show that the ANN model has the 3-5-1 structure. Changing the 

number of neurons in the hidden layer or the number of layers did not result in 

correct architecture. 

Table 2 

The compensator's optimized architecture. 
 

Property Characteristic 

Database Training base 132 

 Test base 126 

Architecture 3-5-1 Feed-forward MLP 

Activation functions Logsig-Logsig- linear 

Training rule Retropropagation error 

Training MSE <  e-13 
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Compensator Test  
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Fig.4. Compensator response. 

 

We designed an ANN-based compensator for the S3 gas sensor. To 

illustrate the effect of this compensator we change temperature, and then we note 

the variation of the compensator’s output. Figure 4 shows that the ANNs 

compensator compensate correctly the sensor’s response (the response is free 

from the variations of temperature). 

c. Corrector 

Table 3 

The corrector's optimized architecture. 

property Characteristic 

Database Training base 600 

 Test base 540 

Architecture 1 Feed-forward MLP 

Activation functions Linear 

Training rule Retropropagation error 

Training MSE   10-9 

 

We design the corrector based on ANNs to linearize the sensor response. 

The database is arranged as (Rc, C) inputs, and (Rlin) as output, where:  

Rc: compensator's output response. 

C: gas concentration. 

Rlin: Corrector's output response. 

The generation of database (training base and test base) is similar to the 

compensator model. However, in the corrector, the compensator's output response 
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Rc and gas concentration C are taken as inputs, and the corrector's output response 

Rlin is taken as the output.  

Because the compensator's response is free from variations of temperature, 

so the architecture of corrector is optimized too simple, accurate and present the 

minimum error 10-9 given after 4 iterations (Table 3). 

Corrector Test  

We designed an ANN-based corrector for S3 sensor. To illustrate the 

effect of this corrector, we change concentration, and then we note the variation of 

the corrector’s output. Fig.5 shows that the corrector linearizes correctly the 

sensor’s output (the response is linear with concentration increasing). 

 

 
Fig.5. Corrector response of S3 gas sensor to C2H2 gas variations. 

4. Improvement of other gas sensors 

With the same procedure used to improve S3 gas sensor characteristics, 

the other gas sensors were improved. 

In this step, we choose to apply a new technique for classifying the gas 

sensor data in the gas sensor improvement step. then the response of seven gas 

sensors will be diverged and separated, so the classification of the gas sensor data 

will be easy and accurate for the next step. 

Figure 6. Shows the linearization of all gas sensor responses used in the 

electronic nose (the Correctors responses of seven gas sensors). These responses 
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obtained after compensation of temperature of this gas sensors. 

The highest response, as shown in Figure 6, of all gas sensors is less than 

610, for gaseous concentrations, decreasing from 2000 ppm, although there are 

some gas sensors with a higher output response at 810 (S1, S2). This is due to the 

classification and divergence effect in the response of sensors in the improvement 

step to avoid intersections between the curves, but the output responses after 

improvement, for gas sensors, still equal or greater than the realresponse of the 

gas sensor without improvement. Thus, the response of the electronic nose 

becomes higher. 

 

Fig.6. Linearization responses of seven gas sensors used in e-nose (responses of all Correctors 

of gas sensors) 

5. Selector 

To correctly select the nature of the gas detected by the sensors, we 

designed the selector which is the latest model designed for our electronic nose to 

select seven different gas natures summarized in the table 4. 
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Table 4 

Response and their matched gases 

Gas Response (Ng) 

H2  

CO 

C2H2 

NH3 

CH4 

CH3COCH3 

NO2 

1 

2 

3 

4 

5 

6 

7 

 

The database of ANN selector arranged as (Rlin1, Rlin2, Rlin3, Rlin4, 

Rlin5, Rlin6, Rlin7, Ng, and Cg) where:  

Rlin1: corrector response of S1 gas sensor.  

Rlin2: corrector response of S2 gas sensor.  

Rlin3: corrector response of S3 gas sensor.  

Rlin4: corrector response of S4 gas sensor.  

Rlin5: corrector response of S5 gas sensor.  

Rlin6: corrector response of S6 gas sensor.  

Rlin7: corrector response of S7 gas sensor.  

Ng: first output response of selector (gas number). 

Cg: second output response of selector (gas concentration). 

The generation of training base and test base is similar to that of the other 

models. However, in the selector, the (Rlin1, Rlin2, Rlin3, Rlin4, Rlin5, Rlin6, 

Rlin7) are taken as inputs, and the selector outputs response Ng and Cg are taken 

as outputs. 
Table 5 

The optimized parameters of Selector. 

Property Characteristic 

Database Training base 1400 

 Test base 1260 

Architecture 12-10-15-1 Feed-forward MLP 

Activation functions Logsig-Logsig- Logsig-linear 

Training rule Retropropagation error 

Training MSE <10-5 

Iteration number 1000 

 

After many tests and training of different ANN models of selector. The 

architecture optimized and that produce the minimum error summarized in Table 

5. 
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Selector Test  

We designed a selector based on artificial neural networks for electronic 

nose. To demonstrate the effect of this selector we change the corrector’s 

responses, and we note the variation of the selector’s response. Fig. 7 shows that 

the selector selects correctly the gases (each gas Nature presents on special value 

from (1 to 7)) and the output concentration is accurate. 

 

 
 

 
Fig. 7. Selector selectivity feature effect: number of gases detected (a), the concentration of 

gases detected (b). 
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The response time of electronic nose equal to the maximum response 

times of gas sensors (from S1 to S7). The responses time of gas sensors in our 

sensor array are summarized in table 6. We note that: (S1-S6) sensors have fast 

response less than 0.5 min, S7 sensor has 2.5 min (it’s a fast response compared to 

other NH3 gas sensor [2]). Thus, our electronic nose has 2.5 min response time. 

Note that we can design an electronic nose very fast by six gas sensors (S1-S6) 

with faster response time equal to 26 s. 
Table 6 

Time response of gas sensors  

Gas sensor Response time 

S1 2 s (very fast response) 

S2 6 s (fast response) 

S3 5s (fast response) 

S4 2.5 min 

S5 12.266 s (decreasing with increasing concentration) 

S6 5 s  (fast response) 
S7 26 s  (fast response) 

6. Conclusions 

We design in this paper an electronic nose based on nanostructures MOX 

sensor array for detect and identify seven different gases (H2, C2H2, CH4, 

CH3OCH3, CO, NO2, and NH3). These gas sensors characterized by hierarchical 

/doped nanostructure, the combines between hierarchical and doped nanostructure 

give to gas sensor a very high sensitivity and fast response better than commercial 

sensors. For improving the characteristics of gas sensors, we design smart sensors 

using models based on artificial neural networks and in the same time, we 

classified the database of gas sensors, and we wire all the smart sensors with the 

selector module for increasing the selectivity. We used in Electronic nose a 

pattern recognition based on artificial neural network, which discriminates 

qualitatively and quantitatively seven gases tested between 0 and 2500 ppm, with 

fast response. 
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