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THE EXISTENCE OF GLOBAL ATTRACTOR FOR A SIXTH
ORDER PARABOLIC EQUATION

Changchun Liu!, Aibo Liu?

This paper is concerned with a sizth-order parabolic equation which arises
naturally as a continuum model for the formation of quantum dots and their
faceting. Based on the regularity estimates for the semigroups, iteration tech-
nique and the classical existence theorem of global attractors, we prove that the
sizth order parabolic equation possesses a global attractor in the H" (k > 0) space,
which attracts any bounded subset of H*(Q) in the H"-norm.

Keywords: sixth order nonlinear parabolic equation, existence, attractors.
MSC2010: 35B41, 35K35, 35K55.

1. Introduction

In this paper, we investigate the sixth order nonlinear parabolic equation

(Z—;L = kD% 4+ D*A(u) + vuDu, (x,t) € Qx (0,T), (1)

where Q = (0,1), £k > 0, D = 8%. From the physical consideration, we prefer to
consider a typical case of the potential F'(u), that is F'(u) = —A(u) = u — u?, in
the following form [7]

(1) Flu) = 3 ~ 1)

namely, the well-known double well potential.
The equation (1) is supplemented by the boundary conditions

u’m:(m = D2u|m:0,1 = D4u\w:0,1 =0, (2)
and the initial value condition

u(z,0) = ug(z). (3)

The equation (1) arises naturally as a continuum model for the formation of quantum

dots and their faceting, see [12]. Here u(x,t) denotes the surface slope, and v is

proportional to the deposition rate. The high order derivatives are the result of

the additional regularization energy which is required to form an edge between two
plane surfaces with different orientations.

During the past years, many authors have paid much attention to the other

sixth order thin film equation, such as the existence, uniqueness and regularity of
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the solutions [5, 6, 9]. However, as far as we know, there are few investigations
concerned with the equation (1). Korzec, Evans, Miinch and Wagner [7] studied the
equation (1). New types of stationary solutions of a one-dimensional driven sixth-
order Cahn-Hilliard type equation (1) are derived by an extension of the method of
matched asymptotic expansions that retains exponentially small terms.

The dynamic properties of the equation (1), such as the global asymptotical
behaviors of solutions and existence of global attractors are important. During the
past years, many authors have paid much attention to the attractors of Cahn-Hilliard
equation or thin-film equation (see [1, 2, 3, 8, 17]). In this paper, we are interested
in the existence of global attractors for the problem (1)-(3). The main difficulties for
treating the problem (1)-(3) are caused by the nonlinearity of both the fourth order
diffusive and the convective factors. The method used for treating Cahn-Hilliard
equation seems not applicable to the present situation. We shall use the regularity
estimates for the linear semigroups, combining with the iteration technique and the
classical existence theorem of global attractors, to prove that the problem (1)-(3)
possesses a global attractor in the H* (k > 0) space.

This paper is organized as follows. In section 2, we give some preparations
for our consideration. In section 3, we prove that problem (1)-(3) possesses global
attractors on some affined subspace of H3. Based on this result, we prove the
existence of global attractors for problem (1)-(3) in the H* (k > 0) space.

Throughout this paper we denote L%, LP and H* norm in  simply by ||, |||l
and ||.||gx. The symbols C' and C; with ¢ = 0,1,2,--- will denote positive constants
that may change from line to line even if in the same inequality.

We note the Gagliardo-Nirenberg inequality ([11])

lullg < CID™ullp ullz~,

1:b<1—m>+(1—b)i.

q p n

where

2. Preliminary

Similar to the proof in [4], we have the following results on global existence
and uniqueness of solution to problem (1)-(3).

Lemma 2.1. Assume ug € H3(2). Then the problem (1)-(3) admits a unique
solution u such that

u € C([0,T; L*(Q)) N L([0, T]; H3(92)). (4)
By Lemma 2.1, we can define the operator semigroup {S(¢)}+>0 as
S(tyup = u(t), Yup€ H3(Q), t >0, (5)

where u(t) is the solution of (1)-(3) corresponding to initial value ug. It’s clearly
that the operator semigroup {S(¢)}+>0 is continuous.

The following Lemma 2.2 is the classical existence theorem of global attractor
by R. Temam [16].

Lemma 2.2. Assume that S(t) is the semigroup generated by Eq.(1), and the fol-
lowing conditions hold:
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(i) For any bounded set A C L%*(Q), there exists a time ta > 0 such that
S(t)up € B, Yup € A and t > ta;
(ii) For any bounded set U C L*(Q) and some T > 0 sufficiently large, the set
Ussr S(t)u is compact in X.
"~ Then the w-limit set A = w(B) of B is a global attractor of Eq.(1), and A is

connected providing B is connected.

We give the following theorem

lv|?

Theorem 2.1. Assume ug € H?(Q) and k > max{4, 5.2 ). Then the semiflow
associated with the solution u of the problem (1)-(3) possesses a global attractor <
in the space H3(Q) which attracts all the bounded set in the space H>((2).

In order to consider the global attractor for Eq.(1) in the H* space, we intro-
duce the define as follows
H={uec L*Q) ulpg =0},
H% ={ue H?’(Q) NH, ulpo = D2u|aQ =0}, (6)
H, = {’LL S HG(Q) N H, u|aQ = D2u|ag = D4u|ag = 0}.

In this paper, we let g(u) = D3(u — u3) + %uQ be a nonlinear function and
assume that the linear operator L = kDS : H; — H in (6) is a sectorial opera-
tor, which generates an analytic semigroup e'*, and L induces the fractional power
operators and fractional order spaces as follows

P = (—L)*: Ho — H, a €R,

where H, = D(%%) is the domain of .. By the semigroup theory of linear
operators, Hg C H, is a compact inclusion for any 3 > «. For details of the space
H, see [10].

The space H% is given by H% = the closure of H% in H(Q) and Hy, = H%*nH,
for £ > 1.

Then, we have the following lemma on the existence of global attractor which
is equivalent to Lemma 2.2 and can be found in [13, 14, 15].

Lemma 2.3. Assume that u(t,ug) = S(t)uo (ug € H,t > 0) is a solution of (1)
and S(t) is the semigroup generated by (1). Assume further that H, is the fractional
order space generated by L and

(i) For some o > 0, there is a bounded set B C H,, such that for any ug € Hy,
there exists t,, > 0 such that

u(t,ug) € B, Yt > ty,;

1) There is a B > «, such that for any bounded set U C Hg, there are T > 0
(ii) y 8
and C > 0, such that

u(t, uo)llm, < C, ¥t >T and ug € U.

Then (1) has a global attractor of C H, which attracts any bounded set of H, in
the H,—norm.

For sectorial operators, we also have the following lemma which is important
for this paper and can be founded in [13, 14, 15].
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Lemma 2.4. Assume that L is a sectorial operator which generates an analytic
semigroup T(t) = e'*. If all eigenvalues \ of L satisfy ReX < —\g for some real
number Ao > 0, then for £* (£ = —L) we have

(i) T(t) : H— H, is bounded for all « € R and t > 0;

(i) T(t) LY = LT (t)x, Vo € Hy;

(iii) For each t >0, LT (t) : H — H is bounded, and

12T ()] < Cat™ e,

where some § > 0 and Cy > 0 is a constant depending only on «;
(iv) The Hy,—norm can be defined by ||z|| g, = ||-Z%x| g-

The main result of this paper is given by the following theorem, which provides
the existence of global attractors of Eq.(1) in any kth space HF.
Theorem 2.2. Assume ug € H3(2) and k > max{4, llgfz} Then the semiflow
associated with the solution u of the problem (1)-(3) possesses a global attractor </

in the space H* which attracts all the bounded set of H* in the H*-norm.

3. Proofs of main results

In this section, we prove Theorem 2.1 and Theorem 2.2.

In order to prove Theorem 2.1, we establish some a priori estimates for the
solution u of problem (1)-(3). We always assume that {S(¢)}+>0 is the semigroup
generated by the weak solutions of equation (1) with initial data ug € H3(£2). Then,
the following lemma can be obtained.

Lemma 3.1. There exists a bounded set % whose size depends only on €2, such that
for all the orbits staring from any bounded set B in H3(Q), Jty = to(B) > 0 s.t.
YVt > tg all the orbits will stay in AB.

Proof. It suffices to prove that there is a positive constant C' such that for large ¢,
there holds
()]s < C.

We prove the lemma in the following steps.
Step 1. Let z = kD?u + A(u). Multiplying both sides of the equation (1) by
z and then integrating the resulting relation with respect to x over €2, we have

L ou ! Ly
/ — (kD*u + A(u))dz — / D*zzdx — / —Du’zdz = 0.

After integrating by parts, and using the boundary value conditions,

d Y[k ! v [t
pr ((Du)2 + F(u)> dx —i—/ |D?22dx — / u*Dzdx = 0,
tJo \2 0 2 Jo
using Holder’s inequality, we have

d ['(k 2 L2
— —(Du)*+ F(u) | de + | |D*z|*dx

v [t 1t 2
< — | udz+ - [ (Dz)“dz.
8 0 2 0
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Applying Poincaré’s inequality and Friedrichs’ inequality [4], we conclude

1 1 1 1 1
/ |22 dx < / |Dz|?dx < / |D?z|?dz.
0 T Jo 21 Jo

On the other hand, we have
1
/ |z da
0
1 1 1 f
= / k*(D?u)?dx + / (u — u®)2dx + Qk/ D*u(u — u®)dx
0 0 0
1 1 1
= / k*(D%u)?dx + / (u — u®)2dx — Qk/ Du(Du — 3u?Du)dx
0 0 0

1 1 1 1
= / k2 (D?u)?dx + / (u — u®)2dx — Qk/ (Du)?dz + Gk/ u?(Du)?dz
0 0 0 0

A\

1 1 1 1
/ k2 (D?u)?dx + / (u — u®)2dx — Qk/ (D?u)?dx + Gk/ u?(Du)?dz,
0 0 0 0

hence as k > 4, we have

1 L2 1 1 1
/ |z|?dx > 2/ (D?u)%dx +/ (u — u®)2dx + Gk/ u?(Du)?dz.
0 0 0 0

Again by Poincaré’s inequality, we obtain

1 1 1 4 1
/ utde < / (Du?)%dz = / u?(Du)?dz.
0 T Jo T Jo

Owning to the above inequality, we finally arrive at

d (1 (kz 9 > 3nk? 1
— —(Du)* + F(u) ) dx + / (D*u)*dx
dt J, 5 (D)™ + F( 1 ),

B
2 Jo

2 1
(u —u®)dx + (97rk - |V|> / u?(Du)?dz < 0.
2 0

Hence, as k > max{4,

]2
1872 }7 we get

4 Gowsre)wra [ (b rw)a <.

Therefore,

1 1
/ <k(Du)2 + F(u)) dzr < e_clt/ (k(Dug)2 + F(u0)> dx + @ (7)
0o \2 0o \2 C1
Thus, for initial data in any bounded set B C H3(), there is a uniform time ¢;(B)
depending on B such that for t > ¢1(B) > 0,
20
— 8

20y
Dul]? < ===,
(| Dl S 9)

lu(z, £)]I* <
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By the Sobolev imbedding theorem,
ulloo < C. (10)
Step 2. Multiplying (1) with D*u, and integrating it over 2, we obtain
1d
2dt

Hence,

1 1 1
| D?ul|? + k|| D5ul|? = / (D*u)?dx — / D*u? Dtudz + % / u?Dudz.
0 0 0

Ld
2dt
1 1 1
= / (D4u)2dx—|—/ (1 - 3u*)D3*uD’udx — 18/ uDuD*uD’udx
0 0 0

ID*ull? + k|| D>ul®

1 1
—6/ (Du)?DPudx + ;/ u? D udz.
0 0

Using (10) and the Holder inequality, we have
1d
2 dt
k

1 1 1
5 / (D5u)%dx + C'/ (D3u)*dx + C’/ | DuD*u|?dx
0 0 0

1D ul|* + k|| D>ul?

IN

1
+C / (Du)bdz + C
0

1 1 1
g / (D5u)%dx + C'/ (D3u)*dx + C’/ | Du|*dx
0 0 0

IN

1 1
+c/ | D?u|*dz + c/ (Du)bdz + C.
0 0
By (9) and the Hoélder inequality, we see that
1 1
/ (D3u)?dx = / DuD’udz < C||D%ul|.
0 0

On the other hand, using the Gagliardo-Nirenberg inequality, we have

[romrase(fwsa) ([ora) <c([wore)’

Y 11

/0 "(Duds < C < /O 1(D5u)2daj> ' ( /0 1(Du)2dx> e ( /0 1(D5u>2dw)éi :

11

/Ol(DQu)A‘dx <C (/Ol(p%)%zgc)g </01(Du)2da:> ° <C (/01(D5u)2dx>g

Hence, we obtain
d
ﬁHDZuH2 + C||D%u|* < C. (11)

Applying Poincaré’s inequality, we obtain

d
ID%ull® + G5 D*ul* < Cu, (12)
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which gives

- C.
ID%u)* < =@ Dugl* + . (13)

Thus, for initial data in any bounded set B C %, there is a uniform time ¢2(B)
depending on B such that for ¢ > t3(B),

C.
| D?u(e, t)]* < 27 (14)
Cs
Step 3. Multiplying (1) with D%u, and integrating it over 2, we obtain
1d

1 1
53 | D%ul|* + k|| D%u||* = / (3u? — 1) D*uD udz + 24/ uDuD3uD%
0 0

1 1 1
+36/ (Du)?D*uD%udx + 18/ u(D?u)?Dludx — u/ uDuD%udz.
0 0 0

Using (10), (14) and the Holder inequality, we have
1d

S S Dl + K| Dl

1 1 1
k / (DSu)%dx + C’/ (D*u)%dx + C/ (D3u)?dx
0 0 0

IN

2
1
+C / (D?u)tdz + C.
0
By (14) and the Holder inequality, we see that
1 1
/ (D*u)?dx :/ D*uD%udx < C|| D%
0 0

On the other hand, using the Gagliardo-Nirenberg inequality, we have

/0 " Duyidr < C < /0 1(D6u)2dzx>% < /O 1(D2u)2d:c> ¢
c ( /O 1(D6u)2dac>§ :

IN

Hence, we obtain

d ,
aHD?’uH2 +C||D°u|f* < C.
Applying Poincaré’s inequality, we obtain
d
@HD?’Ullz+C5||D‘°’UH2 < Cs, (15)
which gives
—Cs Cs
ID?u]|* < e~ DPuol|* + o (16)

for t > t3(B).
Adding (8), (9), (14) and (16) together, we obtain

[u(®)]| s < C.
Let to(B) = max{t1(B),t2(B),t3(B)}, then the lemma is proved. O
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The above lemma implies that {S(¢)};>0 has a bounded absorbing set in
H3(Q). In what follows we prove the precompactness of the orbit in H3(€).

Lemma 3.2. For any initial data ug in any bounded set B C H?(Q), there is a
T(B) > 0 such that
Ju()lgs < C, ¥t >T >0,

which turns out that | J,>r u(t) is relatively compact in H3(Q).

Proof. The uniform boundedness of H3(£2) norm of u(t) has been obtained in Lemma
3.1. In what follows we derive the estimate on H*-norm.
From the equation (1) and boundary condition (2), it follows

kDSu 4+ D*(u — u?) + vuDu =0.

r=0,1

It can be replaced by

Dby =0.
z=0,1
Multiplying (1) by D8u and integrating on Q, using the boundary conditions, we

obtain

1d 1 1
5D+ RIDTuE = = [ D% —)DTude ~ 5 [ DD ude.
Using (8), (9), (14), (15) and the Holder inequality, we have
1d
§£||D4UH2 + k|| DTul®
k

1 1 1
< 2/ (D7u)2d:v—i—C/ (D5u)2d:v—|—C/ | DY dx
0 0 0

1 1
+C / (D3u)%dz 4 C / (D*u)tdz + C.
0 0
Similar to above, using the Gagliardo-Nirenberg inequality, we obtain
ld
2dt
On the other hand, integrating (11) between ¢ and ¢ + 1, using (14), we have

1D*ul|? + Crl| Dul|* < Cs. (17)

t+1
/ HDE)UHQdT < HD2u(t)H2 +C<C.
t
Hence, by Poincaré’s inequality, we obtain
t+1 t+1
/ | DYu|?dr < / | D5ul|?dr < C. (18)
¢ t

Owning to (17), (18) and the uniform Gronwall inequality in [16], we get that
|[DYwu|? < C, t >1.

The lemma, is proved. g

Proof of Theorem 2.1. By Lemma 3.1, Lemma 3.2 and Theorem I.1.1 in [16], we

immediately conclude that o7, = w(%), the w-limit set of absorbing set A is a

global attractor in H3(£2). By lemma 3.2, this global attractor is a bounded set in
H3(Q). Thus the proof of Theorem 2.1 is complete. O
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By the a priori estimates of u, we obtain the following corollary:
Corollary 3.1. Assume ug € H3(2). Then we have
lu@)lloo < C, [Dut)loe < C,  [ID*u(t)]lo < C. (19)

Now, we will give the proof of the main result.
Based on [10], it’s well known that the solution u(t, ug) of the problem (1)-(3)
can be written as

u(t, ug) = eug + /0 t LG (u)dr, (20)
where L = kD% and G(u) = Dg(u) = D*(u — v?®) + vuDu. Then, (20) means
u(t,ug) = efug+ /Ot L Dg(w)dr
= etly +/0t(L)ée(t_T)Lg(u)dT. (21)

By Lemma 2.3, in order to prove Theorem 2.2, we first prove the following
lemma.

|v|?
» 1872

Lemma 3.3. Assume k > max{4
exists C > 0 such that

}. Then for any bounded set U C H,, there

llu(t, uo)||m, <C, Vt>0, upeU C Hy, a>0. (22)

Proof. For a = %, this follows from Theorem 2.1, i.e. for any bounded set U C H:
2
there is a constant C' > 0 such that

Hu(t,uo)HHl <O, Vi>0,upeUC H% (23)
2

Then, we only need to prove (22) for any o > % there are four steps for us to
prove it.

Step 1. We prove that for any bounded set U C H,, (% <a< %), there exists
a constant C' > 0 such that

1 )
lu(t, uo)||m, <C, ¥t>0,ugeU, 3 <a< e (24)

In fact, by Lemma 3.2 and (21), we obtain
[[u(t, uo) ||,

t
= e+ [ (L g,
0

IN

t
Clluoli, + [ 1(=Lel = g(a)]r
0

IN

t
Clluoll . +/0 |(=Lyateelt=E - |lg(w)]| ndr. (25)
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We claim that g : H 1 H is bounded. Based on Corollary 3.1 and the

embedding theorem, we obtain
2

oty = [ lotwPds = [ (D%w- )+ Ja?) o
< Cluli, (26)

which means that g : H1 — H is bounded.
2
Hence, it follows from (23), (25) and (26) that

t
lu(t, u)lm. < Cluollm, +C / BT gr
0
< C, Vt>0, upeUCH,, (27)

where = % +a, (0 < <1). Then (24) is proved.
Step 2. We prove that for any bounded set U C H, (% < a < 1), there exists
a constant C' > 0 such that

<a<l. (28)

ol ot
A

lu(t,uo)|lm, <C, Vt>0,up €U,
In fact, by Lemma 3.2 and (21), we obtain

[[u(t, uo) | 1,

t
= e+ [ (L g,
0

IA

t
1 —T
Clul, + [ =D g(u) i

IA

¢
Clluol . + /0 I(=L)e =5 - lg(w)llzz dr. (29)
We claim that g : H, — H 1 is bounded. By the embedding theorem, we have

Hy = W2, Hy — W,

where % <a< %.
Then, we obtain

lotw)lfsy = [ 1Dtz = [ (D =)+ vubu))* do

IN

C/(D4u)2dm+0/(D2u)4dm
Q Q
O(llullf, + llulze), (30)

which means that g : H, — H1 is bounded.
6
Hence, it follows from (23), (29) and (30) that

IA

N

t
|lu(t,w)llg, < Clluolla, + C'/ %0 dr
0
< C, Vt>0, upeUC H,. (31)
Then, (28) is proved.
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Step 3. We prove that for any bounded set U C H, (1 < a < %), there exists
a constant C' > 0, such that

7
Ju(t.wo) [, <C, V20, up€UC Hoy 1S a< . (32)

In fact, by Lemma 3.2 and (20), we obtain

[[u(t, uo) | 1,

t
= Jetuo+ [ DR g ara,
0
t 1
< Cllul, + [ I-L3 e ) r

< Cluol, + [ N2 4] gl dr 33

We claim that g : H, — Hi1 is bounded for 1 < a < %. Based on the
3
embedding theorem, we have

H, — W5%(Q), H,— W>4(Q),

where % <a<l.
By Corollary 3.1, we obtain

IN

IA N

lg() 17,

%

/Q |D (D*(u — u?) + vuDu)) |*dz

(11 = 3u?||D%ul + [u|| Dul| D*u| + |u|| D?u|| D*u| + | Dul| D*u[?)* da
Q
|

CIDull* + || D*ul3)
C(llullzr, + llullf,), (34)

which means that g : Hy, — H1 is bounded.
3
Hence, it follows from (33) and (34) that

where 8 = o —

t
llu(t,wo)llg, < C'HuoHHa-i—C/ T Pe 07 dr
0
< C, Vt>0, upeUCH,, (35)

%, (0 < <1). Then (32) is proved.

Step 4. We prove that for any bounded set U C H, (% a < %), there exists
a constant C' > 0, such that

7
lu(t, up)||g, < C, Vt>0, up € U C Hg, 6 <a<

(36)
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In fact, by Lemma 3.2 and (20), we obtain

[[u(t, uo) | 1,

t
= e+ [ (LD g,
0
t
< Clluoln, + [ -t (s
0

t
1 —T
< Clual, + [ 1D He =) gt ar. (37

We claim that ¢ : H, — Hi1 is bounded for 1 < a < %. Based on the
2

embedding theorem, we have
Hy = W%3(Q), H,— W*Y(Q), H,— W5(Q),

where 1 < a < %.
By Lemma 3.2 and Corollary 3.1, we obtain

laCu)

= /Q |D?[D*(u — u®) + vuDu)]|*dx

< C/(|D6U|+|u||DUHD5u|+|U||D2u|D4U|+|U||D3u|2
Q
+|Du|2D4u + |Du|\D2u||D3u| + |D2u|3)2dx
< C/ (|D6u|2 + |D3u|4 + |D2u|6)daj
Q
< C(lfullz, + llullf, + lull%,), (38)

which means that g : H, — H3 is bounded.
4
Hence, it follows from (37) and (38) that

t
lu(t,uo)lm, < Cluollm, +C / 7B dr
0

< C, Vt>0, upeUCH,, (39)

where 8 =a — 3, (0 <8 < 1). Then (36) is proved.

In the same method as in the proof of (36), by iteration we can prove that for
any bounded set U C H,(a > 0) there exists a constant C' > 0 such that (22) holds,
i.e. for all @ > 0 the semigroup S(¢) generated by problem (1)-(3) is uniformly

compact in H,. The lemma is proved. [l
Lemma 3.4. Assume k > max{4, 1';'; }. Then for any bounded set U C H, (a0 > 0)
there exists T' > 0 and a constant C' > 0 independent of ug, such that

Hu(t, UO)HHa <C, Vt>T,upeUC H,. (40)

Proof. For a = %, this follows from Theorem 2.1. Then, we prove (40) for any o > %
We prove the lemma in the following steps:

Step 1. We prove that for any % <a< %, the problem (1)-(3) has a bounded
absorbing set in H,.
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By (21), we have

t
u(t, ug) = e D Eu(T, ug) +/ (—L)%e(t_T)Lg(u)dT. (41)
T
Assume B is the bounded absorbing set of the problem (1)-(3) and B satisfies B C
H 1. In addition, we also assume the time tg > 0 such that

u(t,up) € B, Vt>tog,up € U C Hy,ax >

N |

Note that s
[ < Ce™ ™,
where A1 > 0 is the first eigenvalue of the equation
—Au = Au,
{2 (12)
on -
Then for any given 7' > 0 and ug € U C Hy(a > %), we can obtain

Jim ([0 (T, o) |, = 0. (43)
—00

Adding (30) and (41) together, by Lemma 3.2, we get

[[u(t, wo)l| .,
< et u(to, uo) m, + tt I(=L)s*ee DL g(u)| ndr
0
< et u(to, uo) |, + C t I(~L)5 e =D ||dr
i
< el u(to, uo) |, + C/o 76 e 0T s
< [l u(to, uo) |, + C, (44)

where C' > 0 is a constant independent of ug. Then by (43) and (44), we have that
(40) holds for all § < o < 2.

Step 2. We can use the same method as the above step to prove that for any
% <a<landforany 1 <a< %, the problem (1)-(3) has a bounded absorbing set
in H,. By the iteration method, we can obtain that (40) holds for all a > 3. O

Now, we give the proof of Theorem 2.2.

Proof of Theorem 2.2. Combining Lemma 3.3 with Lemma 3.4, we have completed
the proof of Theorem 2.2. O

4. Conclusions

The dynamic properties of the higher order equation, such as the global asymp-
totical behaviors of solutions and existence of global attractors are important. In
this paper, we investigate the sixth order nonlinear parabolic equation which arises
naturally as a continuum model for the formation of quantum dots and their faceting.
The main difficulties for treating the problem are caused by the nonlinearity of both
the fourth order diffusive and the convective factors. The method used for treating
Cahn-Hilliard equation seems not applicable to the present situation. Based on the
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regularity estimates for the semigroups, iteration technique and the classical exis-
tence theorem of global attractors, we prove that the sixth order parabolic equation
possesses a global attractor in the H* (k > 0) space.
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