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THE EXISTENCE OF GLOBAL ATTRACTOR FOR A SIXTH

ORDER PARABOLIC EQUATION

Changchun Liu1, Aibo Liu2

This paper is concerned with a sixth-order parabolic equation which arises
naturally as a continuum model for the formation of quantum dots and their
faceting. Based on the regularity estimates for the semigroups, iteration tech-
nique and the classical existence theorem of global attractors, we prove that the
sixth order parabolic equation possesses a global attractor in the Hk (k ≥ 0) space,
which attracts any bounded subset of Hk(Ω) in the Hk-norm.
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1. Introduction

In this paper, we investigate the sixth order nonlinear parabolic equation

∂u

∂t
= kD6u+D4A(u) + νuDu, (x, t) ∈ Ω× (0, T ), (1)

where Ω = (0, 1), k > 0, D = ∂
∂x . From the physical consideration, we prefer to

consider a typical case of the potential F (u), that is F ′(u) = −A(u) = u − u3, in
the following form [7]

(H1) F (u) =
1

4
(u2 − 1)2,

namely, the well-known double well potential.
The equation (1) is supplemented by the boundary conditions

u|x=0,1 = D2u|x=0,1 = D4u|x=0,1 = 0, (2)

and the initial value condition

u(x, 0) = u0(x). (3)

The equation (1) arises naturally as a continuum model for the formation of quantum
dots and their faceting, see [12]. Here u(x, t) denotes the surface slope, and ν is
proportional to the deposition rate. The high order derivatives are the result of
the additional regularization energy which is required to form an edge between two
plane surfaces with different orientations.

During the past years, many authors have paid much attention to the other
sixth order thin film equation, such as the existence, uniqueness and regularity of
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the solutions [5, 6, 9]. However, as far as we know, there are few investigations
concerned with the equation (1). Korzec, Evans, Münch and Wagner [7] studied the
equation (1). New types of stationary solutions of a one-dimensional driven sixth-
order Cahn-Hilliard type equation (1) are derived by an extension of the method of
matched asymptotic expansions that retains exponentially small terms.

The dynamic properties of the equation (1), such as the global asymptotical
behaviors of solutions and existence of global attractors are important. During the
past years, many authors have paid much attention to the attractors of Cahn-Hilliard
equation or thin-film equation (see [1, 2, 3, 8, 17]). In this paper, we are interested
in the existence of global attractors for the problem (1)-(3). The main difficulties for
treating the problem (1)-(3) are caused by the nonlinearity of both the fourth order
diffusive and the convective factors. The method used for treating Cahn-Hilliard
equation seems not applicable to the present situation. We shall use the regularity
estimates for the linear semigroups, combining with the iteration technique and the
classical existence theorem of global attractors, to prove that the problem (1)-(3)
possesses a global attractor in the Hk (k ≥ 0) space.

This paper is organized as follows. In section 2, we give some preparations
for our consideration. In section 3, we prove that problem (1)-(3) possesses global
attractors on some affined subspace of H3. Based on this result, we prove the
existence of global attractors for problem (1)-(3) in the Hk (k ≥ 0) space.

Throughout this paper we denote L2, Lp and Hk norm in Ω simply by ∥.∥, ∥.∥p
and ∥.∥Hk . The symbols C and Ci with i = 0, 1, 2, · · · will denote positive constants
that may change from line to line even if in the same inequality.

We note the Gagliardo-Nirenberg inequality ([11])

∥u∥q ≤ C∥Dmu∥bp∥u∥1−b
r ,

where
1

q
= b

(
1

p
− m

n

)
+ (1− b)

1

r
.

2. Preliminary

Similar to the proof in [4], we have the following results on global existence
and uniqueness of solution to problem (1)-(3).

Lemma 2.1. Assume u0 ∈ H3(Ω). Then the problem (1)-(3) admits a unique
solution u such that

u ∈ C([0, T ];L2(Ω)) ∩ L∞([0, T ];H3(Ω)). (4)

By Lemma 2.1, we can define the operator semigroup {S(t)}t≥0 as

S(t)u0 = u(t), ∀u0 ∈ H3(Ω), t ≥ 0, (5)

where u(t) is the solution of (1)-(3) corresponding to initial value u0. It’s clearly
that the operator semigroup {S(t)}t≥0 is continuous.

The following Lemma 2.2 is the classical existence theorem of global attractor
by R. Temam [16].

Lemma 2.2. Assume that S(t) is the semigroup generated by Eq.(1), and the fol-
lowing conditions hold:
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(i) For any bounded set A ⊂ L2(Ω), there exists a time tA ≥ 0 such that
S(t)u0 ∈ B, ∀u0 ∈ A and t > tA;

(ii) For any bounded set U ⊂ L2(Ω) and some T > 0 sufficiently large, the set∪
t≥T S(t)u is compact in X.

Then the ω-limit set A = ω(B) of B is a global attractor of Eq.(1), and A is
connected providing B is connected.

We give the following theorem

Theorem 2.1. Assume u0 ∈ H3(Ω) and k ≥ max{4, |ν|2
18π2 }. Then the semiflow

associated with the solution u of the problem (1)-(3) possesses a global attractor A
in the space H3(Ω) which attracts all the bounded set in the space H3(Ω).

In order to consider the global attractor for Eq.(1) in the Hk space, we intro-
duce the define as follows

H = {u ∈ L2(Ω) u|∂Ω = 0},
H 1

2
= {u ∈ H3(Ω) ∩H, u|∂Ω = D2u|∂Ω = 0},

H1 = {u ∈ H6(Ω) ∩H, u|∂Ω = D2u|∂Ω = D4u|∂Ω = 0}.
(6)

In this paper, we let g(u) = D3(u − u3) + ν
2u

2 be a nonlinear function and

assume that the linear operator L = kD6 : H1 → H in (6) is a sectorial opera-
tor, which generates an analytic semigroup etL, and L induces the fractional power
operators and fractional order spaces as follows

L α = (−L)α : Hα → H, α ∈ R,

where Hα = D(L α) is the domain of L α. By the semigroup theory of linear
operators, Hβ ⊂ Hα is a compact inclusion for any β > α. For details of the space
Hα see [10].

The spaceH 1
6
is given byH 1

6
= the closure ofH 1

2
inH1(Ω) andHk = H6k∩H1

for k ≥ 1.
Then, we have the following lemma on the existence of global attractor which

is equivalent to Lemma 2.2 and can be found in [13, 14, 15].

Lemma 2.3. Assume that u(t, u0) = S(t)u0 (u0 ∈ H, t ≥ 0) is a solution of (1)
and S(t) is the semigroup generated by (1). Assume further that Hα is the fractional
order space generated by L and

(i) For some α ≥ 0, there is a bounded set B ⊂ Hα, such that for any u0 ∈ Hα,
there exists tu0 ≥ 0 such that

u(t, u0) ∈ B, ∀ t > tu0 ;

(ii) There is a β > α, such that for any bounded set U ⊂ Hβ, there are T > 0
and C > 0, such that

∥u(t, u0)∥Hβ
≤ C, ∀t > T and u0 ∈ U.

Then (1) has a global attractor A ⊂ Hα which attracts any bounded set of Hα in
the Hα−norm.

For sectorial operators, we also have the following lemma which is important
for this paper and can be founded in [13, 14, 15].
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Lemma 2.4. Assume that L is a sectorial operator which generates an analytic
semigroup T (t) = etL. If all eigenvalues λ of L satisfy Reλ < −λ0 for some real
number λ0 > 0, then for L α (L = −L) we have

(i) T (t) : H → Hα is bounded for all α ∈ R and t > 0;
(ii) T (t)L αx = L T (t)x, ∀x ∈ Hα;
(iii) For each t > 0, L αT (t) : H → H is bounded, and

∥L αT (t)∥ ≤ Cαt
−αe−δt,

where some δ > 0 and Cα > 0 is a constant depending only on α;
(iv) The Hα−norm can be defined by ∥x∥Hα = ∥L αx∥H .

The main result of this paper is given by the following theorem, which provides
the existence of global attractors of Eq.(1) in any kth space Hk.

Theorem 2.2. Assume u0 ∈ H3(Ω) and k ≥ max{4, |ν|2
18π2 }. Then the semiflow

associated with the solution u of the problem (1)-(3) possesses a global attractor A
in the space Hk which attracts all the bounded set of Hk in the Hk-norm.

3. Proofs of main results

In this section, we prove Theorem 2.1 and Theorem 2.2.
In order to prove Theorem 2.1, we establish some a priori estimates for the

solution u of problem (1)-(3). We always assume that {S(t)}t≥0 is the semigroup
generated by the weak solutions of equation (1) with initial data u0 ∈ H3(Ω). Then,
the following lemma can be obtained.

Lemma 3.1. There exists a bounded set B whose size depends only on Ω, such that
for all the orbits staring from any bounded set B in H3(Ω), ∃t0 = t0(B) ≥ 0 s.t.
∀t ≥ t0 all the orbits will stay in B.

Proof. It suffices to prove that there is a positive constant C such that for large t,
there holds

∥u(t)∥H3 ≤ C.

We prove the lemma in the following steps.
Step 1. Let z = kD2u + A(u). Multiplying both sides of the equation (1) by

z and then integrating the resulting relation with respect to x over Ω, we have∫ 1

0

∂u

∂t
(kD2u+A(u))dx−

∫ 1

0
D4zzdx−

∫ 1

0

ν

2
Du2zdx = 0.

After integrating by parts, and using the boundary value conditions,

d

dt

∫ 1

0

(
k

2
(Du)2 + F (u)

)
dx+

∫ 1

0
|D2z|2dx− ν

2

∫ 1

0
u2Dzdx = 0,

using Hölder’s inequality, we have

d

dt

∫ 1

0

(
k

2
(Du)2 + F (u)

)
dx+

∫ 1

0
|D2z|2dx

≤ |ν|2

8

∫ 1

0
u4dx+

1

2

∫ 1

0
(Dz)2dx.
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Applying Poincaré’s inequality and Friedrichs’ inequality [4], we conclude∫ 1

0
|z|2dx ≤ 1

π

∫ 1

0
|Dz|2dx ≤ 1

2π

∫ 1

0
|D2z|2dx.

On the other hand, we have∫ 1

0
|z|2dx

=

∫ 1

0
k2(D2u)2dx+

∫ 1

0
(u− u3)2dx+ 2k

∫ 1

0
D2u(u− u3)dx

=

∫ 1

0
k2(D2u)2dx+

∫ 1

0
(u− u3)2dx− 2k

∫ 1

0
Du(Du− 3u2Du)dx

=

∫ 1

0
k2(D2u)2dx+

∫ 1

0
(u− u3)2dx− 2k

∫ 1

0
(Du)2dx+ 6k

∫ 1

0
u2(Du)2dx

≥
∫ 1

0
k2(D2u)2dx+

∫ 1

0
(u− u3)2dx− 2k

∫ 1

0
(D2u)2dx+ 6k

∫ 1

0
u2(Du)2dx,

hence as k ≥ 4, we have∫ 1

0
|z|2dx ≥ k2

2

∫ 1

0
(D2u)2dx+

∫ 1

0
(u− u3)2dx+ 6k

∫ 1

0
u2(Du)2dx.

Again by Poincaré’s inequality, we obtain∫ 1

0
u4dx ≤ 1

π

∫ 1

0
(Du2)2dx =

4

π

∫ 1

0
u2(Du)2dx.

Owning to the above inequality, we finally arrive at

d

dt

∫ 1

0

(
k

2
(Du)2 + F (u)

)
dx+

3πk2

4

∫ 1

0
(D2u)2dx

+
3π

2

∫ 1

0
(u− u3)2dx+

(
9πk − |ν|2

2π

)∫ 1

0
u2(Du)2dx ≤ 0.

Hence, as k ≥ max{4, |ν|2
18π2 }, we get

d

dt

∫ 1

0

(
k

2
(Du)2 + F (u)

)
dx+ C1

∫ 1

0

(
k

2
(Du)2 + F (u)

)
dx ≤ C2.

Therefore,∫ 1

0

(
k

2
(Du)2 + F (u)

)
dx ≤ e−C1t

∫ 1

0

(
k

2
(Du0)

2 + F (u0)

)
dx+

C2

C1
. (7)

Thus, for initial data in any bounded set B ⊂ H3(Ω), there is a uniform time t1(B)
depending on B such that for t ≥ t1(B) ≥ 0,

∥u(x, t)∥2 ≤ 2C2

kC1
, (8)

∥Du∥2 ≤ 2C2

kC1
. (9)
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By the Sobolev imbedding theorem,

∥u∥∞ ≤ C. (10)

Step 2. Multiplying (1) with D4u, and integrating it over Ω, we obtain

1

2

d

dt
∥D2u∥2 + k∥D5u∥2 =

∫ 1

0
(D4u)2dx−

∫ 1

0
D4u3D4udx+

ν

2

∫ 1

0
u2D5udx.

Hence,

1

2

d

dt
∥D2u∥2 + k∥D5u∥2

=

∫ 1

0
(D4u)2dx+

∫ 1

0
(1− 3u2)D3uD5udx− 18

∫ 1

0
uDuD2uD5udx

−6

∫ 1

0
(Du)3D5udx+

ν

2

∫ 1

0
u2D5udx.

Using (10) and the Hölder inequality, we have

1

2

d

dt
∥D2u∥2 + k∥D5u∥2

≤ k

2

∫ 1

0
(D5u)2dx+ C

∫ 1

0
(D3u)2dx+ C

∫ 1

0
|DuD2u|2dx

+C

∫ 1

0
(Du)6dx+ C

≤ k

2

∫ 1

0
(D5u)2dx+ C

∫ 1

0
(D3u)2dx+ C

∫ 1

0
|Du|4dx

+C

∫ 1

0
|D2u|4dx+ C

∫ 1

0
(Du)6dx+ C.

By (9) and the Hölder inequality, we see that∫ 1

0
(D3u)2dx =

∫ 1

0
DuD5udx ≤ C∥D5u∥.

On the other hand, using the Gagliardo-Nirenberg inequality, we have∫ 1

0
(Du)4dx ≤ C

(∫ 1

0
(D5u)2dx

) 1
8
(∫ 1

0
(Du)2dx

) 15
8

≤ C

(∫ 1

0
(D5u)2dx

) 1
8

,

∫ 1

0
(Du)6dx ≤ C

(∫ 1

0
(D5u)2dx

) 1
4
(∫ 1

0
(Du)2dx

) 11
4

≤ C

(∫ 1

0
(D5u)2dx

) 1
4

,

∫ 1

0
(D2u)4dx ≤ C

(∫ 1

0
(D5u)2dx

) 5
8
(∫ 1

0
(Du)2dx

) 11
8

≤ C

(∫ 1

0
(D5u)2dx

) 5
8

.

Hence, we obtain
d

dt
∥D2u∥2 + C∥D5u∥2 ≤ C. (11)

Applying Poincaré’s inequality, we obtain

d

dt
∥D2u∥2 + C3∥D2u∥2 ≤ C4, (12)
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which gives

∥D2u∥2 ≤ e−C3t∥D2u0∥2 +
C4

C3
. (13)

Thus, for initial data in any bounded set B ⊂ Uκ, there is a uniform time t2(B)
depending on B such that for t ≥ t2(B),

∥D2u(x, t)∥2 ≤ 2
C4

C3
. (14)

Step 3. Multiplying (1) with D6u, and integrating it over Ω, we obtain

1

2

d

dt
∥D3u∥2 + k∥D6u∥2 =

∫ 1

0
(3u2 − 1)D4uD6udx+ 24

∫ 1

0
uDuD3uD6u

+36

∫ 1

0
(Du)2D2uD6udx+ 18

∫ 1

0
u(D2u)2D6udx− ν

∫ 1

0
uDuD6udx.

Using (10), (14) and the Hölder inequality, we have

1

2

d

dt
∥D3u∥2 + k∥D6u∥2

≤ k

2

∫ 1

0
(D6u)2dx+ C

∫ 1

0
(D4u)2dx+ C

∫ 1

0
(D3u)2dx

+C

∫ 1

0
(D2u)4dx+ C.

By (14) and the Hölder inequality, we see that∫ 1

0
(D4u)2dx =

∫ 1

0
D2uD6udx ≤ C∥D6u∥.

On the other hand, using the Gagliardo-Nirenberg inequality, we have∫ 1

0
(D2u)4dx ≤ C

(∫ 1

0
(D6u)2dx

) 5
8
(∫ 1

0
(D2u)2dx

) 11
8

≤ C

(∫ 1

0
(D6u)2dx

) 5
8

.

Hence, we obtain
d

dt
∥D3u∥2 + C∥D6u∥2 ≤ C.

Applying Poincaré’s inequality, we obtain

d

dt
∥D3u∥2 + C5∥D3u∥2 ≤ C6, (15)

which gives

∥D3u∥2 ≤ e−C5t∥D3u0∥2 +
C6

C5
, (16)

for t ≥ t3(B).
Adding (8), (9), (14) and (16) together, we obtain

∥u(t)∥H3 ≤ C.

Let t0(B) = max{t1(B), t2(B), t3(B)}, then the lemma is proved. �
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The above lemma implies that {S(t)}t≥0 has a bounded absorbing set in
H3(Ω). In what follows we prove the precompactness of the orbit in H3(Ω).

Lemma 3.2. For any initial data u0 in any bounded set B ⊂ H3(Ω), there is a
T (B) > 0 such that

∥u(t)∥H4 ≤ C, ∀t ≥ T > 0,

which turns out that
∪

t≥T u(t) is relatively compact in H3(Ω).

Proof. The uniform boundedness ofH3(Ω) norm of u(t) has been obtained in Lemma
3.1. In what follows we derive the estimate on H4-norm.

From the equation (1) and boundary condition (2), it follows

kD6u+D4(u− u3) + νuDu
∣∣∣
x=0,1

= 0.

It can be replaced by

D6u
∣∣∣
x=0,1

= 0.

Multiplying (1) by D8u and integrating on Ω, using the boundary conditions, we
obtain

1

2

d

dt
∥D4u∥2 + k∥D7u∥2 = −

∫ 1

0
D5(u− u3)D7udx− ν

2

∫ 1

0
D2u2D7udx.

Using (8), (9), (14), (15) and the Hölder inequality, we have

1

2

d

dt
∥D4u∥2 + k∥D7u∥2

≤ k

2

∫ 1

0
(D7u)2dx+ C

∫ 1

0
(D5u)2dx+ C

∫ 1

0
|D4u|2dx

+C

∫ 1

0
(D3u)2dx+ C

∫ 1

0
(D2u)4dx+ C.

Similar to above, using the Gagliardo-Nirenberg inequality, we obtain

1

2

d

dt
∥D4u∥2 + C7∥D7u∥2 ≤ C8. (17)

On the other hand, integrating (11) between t and t+ 1, using (14), we have∫ t+1

t
∥D5u∥2dτ ≤ ∥D2u(t)∥2 + C ≤ C.

Hence, by Poincaré’s inequality, we obtain∫ t+1

t
∥D4u∥2dτ ≤

∫ t+1

t
∥D5u∥2dτ ≤ C. (18)

Owning to (17), (18) and the uniform Gronwall inequality in [16], we get that

∥D4u∥2 ≤ C, t ≥ 1.

The lemma is proved. �
Proof of Theorem 2.1. By Lemma 3.1, Lemma 3.2 and Theorem I.1.1 in [16], we
immediately conclude that Aκ = ω(B), the ω-limit set of absorbing set B is a
global attractor in H3(Ω). By lemma 3.2, this global attractor is a bounded set in
H3(Ω). Thus the proof of Theorem 2.1 is complete. �
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By the a priori estimates of u, we obtain the following corollary:

Corollary 3.1. Assume u0 ∈ H3(Ω). Then we have

∥u(t)∥∞ ≤ C, ∥Du(t)∥∞ ≤ C, ∥D2u(t)∥∞ ≤ C. (19)

Now, we will give the proof of the main result.
Based on [10], it’s well known that the solution u(t, u0) of the problem (1)-(3)

can be written as

u(t, u0) = etLu0 +

∫ t

0
e(t−τ)LG(u)dτ, (20)

where L = kD6 and G(u) = Dg(u) = D4(u− u3) + νuDu. Then, (20) means

u(t, u0) = etLu0 +

∫ t

0
e(t−τ)LDg(u)dτ

= etLu0 +

∫ t

0
(−L)

1
6 e(t−τ)Lg(u)dτ. (21)

By Lemma 2.3, in order to prove Theorem 2.2, we first prove the following
lemma.

Lemma 3.3. Assume k ≥ max{4, |ν|2
18π2 }. Then for any bounded set U ⊂ Hα, there

exists C > 0 such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα, α ≥ 0. (22)

Proof. For α = 1
2 , this follows from Theorem 2.1, i.e. for any bounded set U ⊂ H 1

2

there is a constant C > 0 such that

∥u(t, u0)∥H 1
2

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H 1
2
. (23)

Then, we only need to prove (22) for any α ≥ 1
2 . there are four steps for us to

prove it.
Step 1. We prove that for any bounded set U ⊂ Hα (12 ≤ α < 5

6), there exists
a constant C > 0 such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U,
1

2
≤ α <

5

6
. (24)

In fact, by Lemma 3.2 and (21), we obtain

∥u(t, u0)∥Hα

= ∥etLu0 +
∫ t

0
(−L)

1
6 e(t−τ)Lg(u)dτ∥Hα

≤ C∥u0∥Hα +

∫ t

0
∥(−L)

1
6
+αe(t−τ)Lg(u)∥Hdτ

≤ C∥u0∥Hα +

∫ t

0
∥(−L)

1
6
+αe(t−τ)L∥ · ∥g(u)∥Hdτ. (25)
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We claim that g : H 1
2
→ H is bounded. Based on Corollary 3.1 and the

embedding theorem, we obtain

∥g(u)∥2H =

∫
Ω
|g(u)|2dx =

∫
Ω

(
D3(u− u3) +

ν

2
u2

)2
dx

≤ C∥u∥2H 1
2

, (26)

which means that g : H 1
2
→ H is bounded.

Hence, it follows from (23), (25) and (26) that

∥u(t, u0)∥Hα ≤ C∥u0∥Hα + C

∫ t

0
τ−βe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα, (27)

where β = 1
6 + α, (0 < β < 1). Then (24) is proved.

Step 2. We prove that for any bounded set U ⊂ Hα (56 ≤ α < 1), there exists
a constant C > 0 such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U,
5

6
≤ α < 1. (28)

In fact, by Lemma 3.2 and (21), we obtain

∥u(t, u0)∥Hα

= ∥etLu0 +
∫ t

0
(−L)

1
6 e(t−τ)Lg(u)dτ∥Hα

≤ C∥u0∥Hα +

∫ t

0
∥(−L)

1
6
+αe(t−τ)Lg(u)∥Hdτ

≤ C∥u0∥Hα +

∫ t

0
∥(−L)αe(t−τ)L∥ · ∥g(u)∥H 1

6

dτ. (29)

We claim that g : Hα → H 1
6
is bounded. By the embedding theorem, we have

Hα ↪→ W 4,2, Hα ↪→ W 2,4,

where 1
2 ≤ α < 5

6 .
Then, we obtain

∥g(u)∥2H 1
6

=

∫
Ω
|Dg(u)|2dx =

∫
Ω

(
D4(u− u3) + νuDu)

)2
dx

≤ C

∫
Ω
(D4u)2dx+ C

∫
Ω
(D2u)4dx

≤ C(∥u∥2Hα
+ ∥u∥4Hα), (30)

which means that g : Hα → H 1
6
is bounded.

Hence, it follows from (23), (29) and (30) that

∥u(t, u0)∥Hα ≤ C∥u0∥Hα + C

∫ t

0
τ−αe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα. (31)

Then, (28) is proved.
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Step 3. We prove that for any bounded set U ⊂ Hα (1 ≤ α < 7
6), there exists

a constant C > 0, such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα, 1 ≤ α <
7

6
. (32)

In fact, by Lemma 3.2 and (20), we obtain

∥u(t, u0)∥Hα

= ∥etLu0 +
∫ t

0
(−L)

1
6 e(t−τ)Lg(u)dτ∥Hα

≤ C∥u0∥Hα +

∫ t

0
∥(−L)

1
6
+αe(t−τ)Lg(u)∥Hdτ

≤ C∥u0∥Hα +

∫ t

0
∥(−L)α−

1
6 e(t−τ)L∥ · ∥g(u)∥H 1

3

dτ. (33)

We claim that g : Hα → H 1
3
is bounded for 1 ≤ α < 7

6 . Based on the

embedding theorem, we have

Hα ↪→ W 5,2(Ω), Hα ↪→ W 3,4(Ω),

where 5
6 ≤ α < 1.
By Corollary 3.1, we obtain

∥g(u)∥2H 1
3

=

∫
Ω
|D

(
D4(u− u3) + νuDu)

)
|2dx

≤ C

∫
Ω

(
|1− 3u2||D5u|+ |u||Du||D4u|+ |u||D2u||D3u|+ |Du||D2u|2

)2
dx

≤ C(∥D5u∥2 + ∥D3u∥44)
≤ C(∥u∥4Hα

+ ∥u∥2Hα
), (34)

which means that g : Hα → H 1
3
is bounded.

Hence, it follows from (33) and (34) that

∥u(t, u0)∥Hα ≤ C∥u0∥Hα + C

∫ t

0
τ−βe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα, (35)

where β = α− 1
6 , (0 < β < 1). Then (32) is proved.

Step 4. We prove that for any bounded set U ⊂ Hα (76 ≤ α < 4
3), there exists

a constant C > 0, such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα,
7

6
≤ α <

4

3
. (36)
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In fact, by Lemma 3.2 and (20), we obtain

∥u(t, u0)∥Hα

= ∥etLu0 +
∫ t

0
(−L)

1
6 e(t−τ)Lg(u)dτ∥Hα

≤ C∥u0∥Hα +

∫ t

0
∥(−L)

1
6
+αe(t−τ)Lg(u)∥Hdτ

≤ C∥u0∥Hα +

∫ t

0
∥(−L)α−

1
3 e(t−τ)L∥ · ∥g(u)∥H 1

2

dτ. (37)

We claim that g : Hα → H 1
2
is bounded for 1 ≤ α < 7

6 . Based on the

embedding theorem, we have

Hα ↪→ W 6,2(Ω), Hα ↪→ W 3,4(Ω), Hα ↪→ W 2,6(Ω),

where 1 ≤ α < 7
6 .

By Lemma 3.2 and Corollary 3.1, we obtain

∥g(u)∥2H 1
2

=

∫
Ω
|D2[D4(u− u3) + νuDu)]|2dx

≤ C

∫
Ω
(|D6u|+ |u||Du||D5u|+ |u||D2u||D4u|+ |u||D3u|2

+|Du|2D4u+ |Du||D2u||D3u|+ |D2u|3)2dx

≤ C

∫
Ω
(|D6u|2 + |D3u|4 + |D2u|6)dx

≤ C(∥u∥2Hα
+ ∥u∥4Hα

+ ∥u∥6Hα
), (38)

which means that g : Hα → H 3
4
is bounded.

Hence, it follows from (37) and (38) that

∥u(t, u0)∥Hα ≤ C∥u0∥Hα + C

∫ t

0
τ−βe−δτdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα, (39)

where β = α− 1
3 , (0 < β < 1). Then (36) is proved.

In the same method as in the proof of (36), by iteration we can prove that for
any bounded set U ⊂ Hα(α > 0) there exists a constant C > 0 such that (22) holds,
i.e. for all α ≥ 0 the semigroup S(t) generated by problem (1)-(3) is uniformly
compact in Hα. The lemma is proved. �

Lemma 3.4. Assume k ≥ max{4, |ν|2
18π2 }. Then for any bounded set U ⊂ Hα (α ≥ 0)

there exists T > 0 and a constant C > 0 independent of u0, such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ T, u0 ∈ U ⊂ Hα. (40)

Proof. For α = 1
2 , this follows from Theorem 2.1. Then, we prove (40) for any α > 1

2 .
We prove the lemma in the following steps:

Step 1. We prove that for any 1
2 ≤ α < 5

6 , the problem (1)-(3) has a bounded
absorbing set in Hα.



The existence of global attractor 127

By (21), we have

u(t, u0) = e(t−T )Lu(T, u0) +

∫ t

T
(−L)

1
6 e(t−T )Lg(u)dτ. (41)

Assume B is the bounded absorbing set of the problem (1)-(3) and B satisfies B ⊂
H 1

2
. In addition, we also assume the time t0 > 0 such that

u(t, u0) ∈ B, ∀t > t0, u0 ∈ U ⊂ Hα, α ≥ 1

2
.

Note that
∥etL∥ ≤ Ce−λ3

1t,

where λ1 > 0 is the first eigenvalue of the equation{
−∆u = λu,
∂u
∂n = 0.

(42)

Then for any given T > 0 and u0 ∈ U ⊂ Hα(α ≥ 1
2), we can obtain

lim
t→∞

∥e(t−T )Lu(T, u0)∥Hα = 0. (43)

Adding (30) and (41) together, by Lemma 3.2, we get

∥u(t, u0)∥Hα

≤ ∥e(t−t0)Lu(t0, u0)∥Hα +

∫ t

t0

∥(−L)
1
6
+αe(t−T )L∥ · ∥g(u)∥Hdτ

≤ ∥e(t−t0)Lu(t0, u0)∥Hα + C

∫ t

t0

∥(−L)
1
6
+αe(t−T )L∥dτ

≤ ∥e(t−t0)Lu(t0, u0)∥Hα + C

∫ T−t0

0
τ−

1
6
−αe−δτdτ

≤ ∥e(t−t0)Lu(t0, u0)∥Hα + C, (44)

where C > 0 is a constant independent of u0. Then by (43) and (44), we have that
(40) holds for all 1

2 ≤ α < 5
6 .

Step 2. We can use the same method as the above step to prove that for any
5
6 < α < 1 and for any 1 < α < 7

6 , the problem (1)-(3) has a bounded absorbing set

in Hα. By the iteration method, we can obtain that (40) holds for all α ≥ 1
2 . �

Now, we give the proof of Theorem 2.2.

Proof of Theorem 2.2. Combining Lemma 3.3 with Lemma 3.4, we have completed
the proof of Theorem 2.2. �

4. Conclusions

The dynamic properties of the higher order equation, such as the global asymp-
totical behaviors of solutions and existence of global attractors are important. In
this paper, we investigate the sixth order nonlinear parabolic equation which arises
naturally as a continuum model for the formation of quantum dots and their faceting.
The main difficulties for treating the problem are caused by the nonlinearity of both
the fourth order diffusive and the convective factors. The method used for treating
Cahn-Hilliard equation seems not applicable to the present situation. Based on the
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regularity estimates for the semigroups, iteration technique and the classical exis-
tence theorem of global attractors, we prove that the sixth order parabolic equation
possesses a global attractor in the Hk (k ≥ 0) space.
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