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DISCRETE MULTIPLE RECURRENCE

Cristian Ghiu', Raluca Tuliga?, Constantin Udriste®

The aim of our paper is to formulate and solve problems concern-
ing multitime multiple recurrence equations. Among the general things, we
discuss in detail the cases of autonomous and non-autonomous recurrences,
highlighting in particular the theorems of existence and uniqueness of solu-
tions. Though the multitime multiple recurrences have occurred in analysis
of algorithms, computational biology, information theory, queueing theory,
filters theory, statistical physics etc, the theoretical part about them needs
further investigation.
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1. General statements

A multivariate recurrence relation is an equation that recursively defines
a multivariate sequence, once one or more initial terms are given: each further
term of the sequence is defined as a function of the preceding terms. Some
simply defined recurrence relations can have very complex (chaotic) behaviors.
We can use such recurrences including the Differential Transform Method to
solve completely integrable first order PDEs system with initial conditions via
discretization.

In this paper we shall refer to discrete multitime multiple recurrence (au-
tonomous and non-autonomous), giving results regarding generic properties
and existence and uniqueness of solutions (see also [7]-[8]). Also, we seek to
provide a fairly thorough and unified exposition of recurrence relations in both
univariate and multivariate settings. Some open problems raised in filters the-
ory [1], [3], [5]-[6], [9]-[12], general recurrence theory [2], [4], [17], and multitime
dynamical systems [13]-[16], receive here detailed answers.

Let m > 1 be an integer number. We denote 1 = (1,1,...,1) € Z™.
Also, for each o € {1,2,...,m}, we denote 1, = (0,...,0,1,0,...,0) € Z™,
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i.e., 1, has 1 on the position o and 0 otherwise. We use product order relation
on Z™.
Let M be an arbitrary nonempty set and t; € Z™ be a fixed element.
For each o € {1,2,...,m}, let F,: {t € Zm|t > tl} x M — M be a function.
We fix tg € Z™, ty > t1. A first order multitime recurrence of the type

2(t+10) = Fu(t,x(t), Vt€Z™ t>ty, Yae{l,2,....m}, (1)

is called a discrete multitime multiple recurrence.
This model of multiple recurrence can be justified by the fact that a
completely integrable first order PDE system

ox' -
o (D) = Xi(t.a(t), t € R™
can be discretized as ‘
' (t+ 1,) = Fo(t,x(t)), t € Z™.
The initial (Cauchy) condition, for the PDE system, is translated into initial
condition for the multiple recurrence.

Proposition 1.1. If for any (to,zo) € {t ez ‘t > tl} x M, there exists at
least one m-sequence x: {t ezm !t > tg} — M which satisfies the recurrence
(1) and the initial condition x(ty) = o, then
Fo(t+ 15, Fp(t,x)) = Fa(t + 14, Fu(t, ), vVt > t, Ve € M, (2)
Vo, €{1,2,...,m}.

Proof. Let t > ty. The equality z(t+ 15+ 1,) = z(t + 1, + 1) is equivalent to
Fa(t + 15,I(t + 1g)) = Fg(t + la, :L‘(t + 1@))
= Fo(t+ 1, Fs(t,z(1))) = Fp(t + 1o, Fu(t, 2(1))).
For t = ty, one obtains: Fa(to + 15, F(to, xo)) = Fg(to + 1,4, Fa(to,xo)).
Since to and z are arbitrary, it follows the relations (2). O

2. Autonomous discrete multitime multiple recurrence

Let M be a nonempty set. For any function G: M — M, we denote:
G =GoGo...0G,ifn>1;and GO = 1dy,.

n

Theorem 2.1. For each a € {1,2,...,m}, let Go: M — M be a function.
a) Let ty € Z™. If for any xy € M, there exists at least one m-sequence

T {tEZm‘tZto}—nM,
which satisfies the recurrence equation

Pt 4 1) = Cua(t), V> to, Yo € {1,2,....m}, 3)
and the initial condition x(ty) = x¢, then
GooGg=GzoG,, Va,fe{l,2,...,m}. (4)

b) If, for any o, B € {1,2,...,m}, the relations (4) are satisfied, then, for any
(to, z0) € Z™ x M, there exists a unique m-sequence x: {t ezZ™|t> tg} — M
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which satisfies the recurrence (3) and the initial condition x(ty) = xo; this
sequence is defined by the composition

z(t) = thl_t(l]) o thQ_tg) o...oGU" ) (1), Vit >t (5)

Proof. a) The equality xz(to + 15 + 1a) = x(to + 1o + 15) is equivalent to
Gal(x(to + 1)) = Gs(a(to + La)) <= Ga(Gp(z(tn))) = Gs(Galz(tn)))
<— G, 0 Gﬁ(fbo) = Gﬁ o Ga(l’o).
Since xq is arbitrary, it follows the relations (4).
b) Firstly we remark that any sequence of the form (5) satisfies the rela-
tions (3) and the initial condition z(ty) = x¢:
z(t+1,) = thl_té) o...oGU ) o o GU" ) (20); (6)
using (4) and the relation (6), it follows
2t +10) = Gao Gl o L oG o o GU" ) (2g) = Gala(t)).
The initial condition z(tg) = x is checked immediately.
The necessity is proved by induction on m, the number of components
of the point t = (t!,... t™).
For m = 1, we have t = t* and tq = t}. If t >y, then
1(t) = o(t') = Gi(a(t' — 1)) = G (a(t - 2)) =
= =GP - R) = = &V a() = & (@),
If t =y, then the relation x(t) G(t _tO)( 0) is obvious.
Let m > 2. Suppose that the relation is true for m — 1 and we shall prove
it for m. We denote t = (t2,...,t™); to = (t2,...,tm).
Let Z(t) = x(t}, 1) = x(t{, 1%, ... ,t™). If t* > t}, then
o(t) = 2(t, 1) = Gy (z(t* — 1,7)) = G (a(t* — 2 f))
= =GP kD) == 6V a D) = ¢V E).
We have proved that if t* > ¢}, then ( ) = G =10 (3(7)); the relation is easily
verified also for ¢! = ¢}.
For a € {2,...,m}, we denote 1, = (0,...,0,1,0,...,0) € Z™'; hence
lo = (0,1,). For o > 2 and t! = t}, the relations (3) become
#((14.1) + (0.1,) = Gala(t}, D). ic.
Pt +1,) = Go(2(D), VE>ty, Yae{2,...,m}.
Obviously 7(ty) = z(t}, to) = z(to) = wo. Since ¢ has m — 1 components,
from the induction hypothesis it follows
@) =G oo QU (1), VE> iy
Consequently, for any t 2 to, we have
2(t) = GV T (EE) = G o GUT oo GET) (7). O

Lemma 2.1. Let G: M — M be an arbitrary function and ty € Z™,
B e {1,2,...,m}, fixzed. If, for any xo € M, there exists at least one m-
sequence T : {t ezm |t >ty — 1g} — M, which satisfies the relation

x(t + 15) = G(J?(t)), Vit Z to - 15, (7)
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and the condition x(ty) = o, then G is surjective (onto).

Proof. Let y € M. There exists an m-sequence z(-) which satisfies (7) and the
condition z(ty) = y. For t =ty — 1, one obtains x(ty) = G(x(to — 1)), hence
G(z(to — 13)) = y. Because y is arbitrary, it follows that the function G is
surjective. 0]

Proposition 2.1. We consider the functions Go: M — M, o € {1,2...,m}.
a) Let tg € Z™ and o € {1,2,...,m}, fized. If for any xo € M, there exists
at least one m-sequence x: {t S ‘ t>ty— 1(10} — M, which satisfies

z(t+1a) = Ga(z(1)), (8)
Vt >ty — lag, Va € {1,2,...,m},
and the condition x(ty) = xo, then G, is surjective and
GaOGQZGBOGa, VO&,BE{I,Z...,M}. (9)
b) Suppose that, for any o € {1,2,...,m}, the functions G, are surjective and
that the relations (9) are satisfied.
Let (to,xo) € Z™ x M and s € 7™, s < to. If for a € M, we have
1781 2752 m__gm
tho )0 Gét" Jo.. . oG )(a) = w9, then the m-sequence
x: {tEZm‘tZS}HM,

2() =G oG o o GE (), Vit > s, (10)

satisfies the recurrence (8), Vt > s, Yo € {1,2,...,m}, and z(ty) = .
c) Suppose that the functions G, are surjective and that the relations (9) are
satisfied.

Then, for any (to,xo) € Z™ x M, there exists at least one m-sequence
x: Z"™ — M which satisfies the recurrence (8), Vt € Z™, Ya € {1,2,...,m},
and the condition z(ty) = xo.

Proof. a) The surjectivity of G,, follows from Lemma 2.1. The relations (9)
are obtained from Theorem 2.1, a), considering the restriction of z(-) to the
set {t € Z™ |t > to}.
b . (th—sh) (t2—52) (tgr—sm) . o
) We observe that the function G oGy o...0Gy is surjec
tive, since t§ — s* > 0, Va, and G, are surjective. Consequently, there exists
a € M such that th‘lj_sl) o thg—s% 0...0 G%gl_sm)(a) = Zo.
From Theorem 2.1, b), it follows that the function defined by the formula
(10) is the unique m-sequence which satisfies the recurrence (8), Vt > s, Va,
and the condition x(s) = a. For t = t;, we have
2(to) = GV 0 G 00 G (a) = a.
0 1 2 m 0
¢) Let G = GyoGy0...0G,. Since the functions G, are surjective,
it follows that the function G is surjective. Hence, there exists a function
H: M — M such that G o H = Id,; (right inverse).
For n € N, we denote P, = {t ez ‘t >to—n- 1}; let a, = H™(z).
We observe that G(a,,1) = a, and G™(a,) = xo, Vn € N.
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For each n € N, we consider the function ¥, : P, — M, defined by

yu(t) = G T o G0 o QU (q), WE >t —n - 1.

Because G™ (a,) = z0, i.e., G\ 0o G 0. .. 0 G (a,) = w0, according to
step b), it follows that the m-sequence y,, satisfies the recurrence (8), Vt € P,,
Va and the condition y,(ty) = .

We remark that P, C P,,;. For t € P,, we have

yn+1(t) _ thl_té-‘rn—l—l) o G(ztz_tg+n+1) o o Gnim_t{)””“)(

=GV o G o o G (Gap))

_ thl_té—i-n) o GétQ_t%+n) o o G%m,tgurn)(an) _ yn(t)-
We showed that y,41(t) = y,(t), ¥t € P,. Inductively, one deduces that, for
any ¢ € N, we have y,4,(t) = y,(t), Vt € P,. Consequently, y,(t) = yx(t),
vVt € Pmin{n,k}-

Let us define the m-sequence x: Z™ — M: let t € Z™; since Z™ = U P,,

an+1)

neN
there exists n € N, such that t € P,. The value of the function x at ¢t will be

#(1) = ().

The function z(-) is well defined since if t € P, and t € Py, we have
showed that y,(t) = yk(t).

Ift € P,, thent+1, € P,. We have x(t+1,) = yn(t+1a) = Ga(yn(t)) =
Go(z(t)) and z(tog) = yn(to) = wo. O

Proposition 2.2. Suppose that, for the functions G,: M — M, the relations
(9) are satisfied.

Let tg € Z™ and ag € {1,2,...,m}, fized. If, for any xo € M, there
exists at most one m-sequence x: {t ezm ’ t>ty— 1%} — M, which satisfies

z(t+ 1) = Golz(t)), VYt >tg— 1o, Ya € {1,2,...,m}, (11)
and the condition x(ty) = xo, then G,, is injective (one-to-one).
Proof. Let p,q € M such that Gu,(p) = Ga,(q). We select g = Go,(p) =
Gao(q). The functions z,y: {t € Z™ !t >ty — Loy} — M,
2(t) =GV o o QU o o GETTI(p), Vit >t — gy, (12)

yt) =G 6 o GUOt" D o o GU I (g), VE>to— 1oy, (13)

are well defined (since t* —¢3° +1 > 0), satisfy the relations (11) and z(ty) =
Gao(p) = o, y(to) = Gay(q) = xo. It follows that z(t) = y(t), Vt > tog — 1a,.
For t = tg—1,,, we obtain z(tp—1,,) = y(to—la,), relation which is equivalent
to p = q (according to (12), (13)). Hence, the function G, is injective. O

If G: M — M is a bijective function, we denote G(=% = (Gil)(k), for
k € N; we have GEF = (G(’“))fl.
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Proposition 2.3. Suppose that the functions G,: M — M are bijective and
the relations (9) hold. Then, for any (to,zo) € Z™ x M, there exists a unique
solution x: Z™ — M, of the recurrence equation

z(t+ 1) = Go(z(t)), VteZ™ Yae{l1,2,...,m}, (14)
with the condition x(ty) = xo. The m-sequence x(-) is defined by the relation
() =G oGV o oG (zg)  (VtezZ™).  (15)

Proof. The existence follows from Proposition 2.1, ¢).

Let z: Z™ — M be a solution of the recurrence (14), with z(tg) = x¢. For
proving the uniqueness, it is sufficient to show that z(¢) satisfies the relation
(15), Vt € Z™.

Let s < tg. We apply Theorem 2.1 for the restriction of z(-) to the set
{t ezZm ‘ t > s}. It follows

2() =G 0 G o0 L o GET M (2(s)), Wt > s.
For t = ¢y, we obtain zy = th(l]_sl) o G(2t3—52) o...0 Ggsn_sm)(a:(s)). Since the
functions G, are bijective, it follows xz(s) = Ggsl_té) o...0GE" ") ().
Consequently, for any ¢t > s, we have
z(t) = thl_sl) o thQ_SQ) 0...0 Gﬁflm_sm)(x(s)) =
_ G§t1_51) o thz_sz) o o Gg;m_sm) o G581_t(1)) ° Ggg?_t(%) o o Gﬁjm‘t?)(xo)
— thl_t(l)) o GétQ_tg) o...0GU" ") ().
We showed that, for any s < ¢y and any ¢t > s, the m-sequence xz(t)
satisfies the relation (15). Since U {tez™|t>s} =7z, it follows

SEZ™, s<tg

that the relation (15) holds for any t € Z™. O

Theorem 2.2. Let M be a nonempty set. For each a € {1,2,...,m}, we
consider the function G,: M — M and we associate the recurrence equation

z(t+ 1,) = Go(x(t)), VYae{l,2,...,m}. (16)

The following statements are equivalent:
i) For any o € {1,2,...,m}, the functions G, are bijective and

GooGs=GzoG,, Vo,fe€{l,2,...,m}. (17)

i1) There exists ty € Z™ such that Voo € {1,2,...,m}, Vg € M, there ezists a
UNique Mm-Sequence T : {t ezm }t > tO_]-ag} — M, which, for anyt > toy—1,,,
satisfies the relations (16), and the condition x(ty) = xy.

i11) There exist the points to,t; € Z™, with t§ < t§, Yo, such that, for each
xo € M, there exists a unique m-sequence x: {t ez |t > tl} — M, which,
for each t >ty satisfies the relations (16), and also the condition xz(ty) = xo.
iv) For each ty,t; € Z™, with t; < ty, and for any xoy € M, there exists a
unique Mm-Sequence T : {t ezm ’t > tl} — M, which, for any t > ty, satisfies
the relations (16), and also the condition x(ty) = xy.
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v) There exists tg € Z™, such that, for any xo € M, there exists a unique
m-sequence x: 2™ — M, which, for any t € Z™ satisfies the relations (16),
and z(ty) = xg.

vi) For each pair (to, o) € Z™ X M, there exists a unique m-sequence x: Z™ —
M, which, for any t € Z™ satisfies the relations (16), and x(to) = xo.

Proof. ii) = 1): The relations (17) and the surjectivity of functions G,, follow
from Proposition 2.1, a), and the injectivity of the functions G, follow from
Proposition 2.2.

i) = vi): It follows from Proposition 2.3.

vi) = v): Considering the restrictions of the functions x(t) to
{t ez }t > tg — 1%} (for each «y), from Proposition 2.1, a), it follows that
the relations (17) hold and that the functions G,, are surjective.

Let tg,t1 € Z™, with t; < ty, and xg € M. There exists a unique m-
sequence Z: Z™ — M such that Z(ty) = xo and the relations (16) are true,
vVt e Z".

To prove the existence, it is sufficient to select x as the restriction of Z
to {t € Z™ |t >t}

Let y: {t € Z™ |t > t;} — M, be a function such that y(ts) = zo and
for which the relations (16) hold, V¢ > t;. We shall prove that the functions «
and y are equal.

From Proposition 2.1, ¢), there exists §: Z™ — M such that g(t1) = y(t1)
and for which the relations (16) hold, V¢ € Z™. From Theorem 2.1, it follows
that y and the restriction of § to {t e zm | t > tl} coincide. Since tq > tq,
we have g(tg) = y(to) = x¢. It follows that the functions Z and gy coincide.
Consequently, for each t > t;, we have: y(t) = g(t) = 2(t) = z(t).

iv) = i) is an obvious implication.

We have proved that the statements i), i), iv), vi) are equivalent.

i) == i11): We have i) <= iv), and iv) = i) is obvious.

iti) = 1): For each a, we have t{ < t§, ie., t§ —1 > t¥. Hence,
for all a, tg — 1, > t;. Considering the restrictions of the functions z to
{t € Zm|t >ty — 14} (for each ay), from Proposition 2.1, a), it follows that
the relations (17) are true and the functions G, are surjective.

Let ag € {1,2,...,m}. We shall prove that G, is injective.

Let p,q € M such that G,,(p) = Ga,(q). According to Proposition 2.1,
¢), there exist the functions y, z: Z™ — M for which the relations (16) hold,
Vt e Z™, and y(tg — 1ay) = p, 2(to — 1ay) = q. Let 29 = Goy(p) = Gay(q).

y(tﬂ) = Gao (y(tﬂ - 1a0)) = Gao(p) = Zo,
2(to) = Gag(2(to = Lay)) = Gao(q) = o-
Applying the uniqueness property for the restrictions of the functions y and z
to the set {t € Z™ |t > t;}, we obtain y(t) = 2(t), Vt > t;.
Since tg — 1o, > t1, it follows y(to — 1a,) = 2(to — lay), 1.6, D = ¢q.
i) = v): We have i) <= vi), and vi) = v) is obvious.
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v) = 1): For each a, we have t§ < t, i.e., t§—1 > t. Hence ty—1, > t4,
Va. Considering the restrictions of the functions = to {t ez {t >ty — 1%}
(for each «y), by Proposition 2.1, a), it follows that the relations (17) hold and
that the functions G, are surjective.

Let ag € {1,2,...,m}. We shall prove that G,, is injective.

Let p,q € M such that Gy, (p) = Ga,(q). According to Proposition 2.1,
¢), there exist the m-sequences y, z: Z™ — M for which the relations (16) are
true, Vt € Z™, and y(to — lay) = p, 2(to — 1a,) = q. Let 29 = Goy(p) = Gay(q)-

y(t(J) = G, (y(to - 1a0)) = GOéo(p) = Zo,
Z(to) = Ga0<z(t0 - 1a0)) = G, (Q) = Zo-

From uniqueness, we obtain y(t) = z(t), Vt € Z™; for t = ty — 14, it

follows y(ty — lay) = 2(to — 1ay), 1-€., p = ¢. O

3. Non-autonomous discrete multitime multiple recurrence

Let t; € Z™. Consider the functions F: {t e zm ‘t > tl} x M — M,
a € {1,2,...,m}, which define the recurrence equation

z(t+ 1y) = Fo(t,x(t)), VYae{l,2,...,m}. (18)
LetM:{SGZm‘SZtl} xMandletGa:ZT/[/HM,
Gu(s,z) = (s + 1q, Fa(s,x)), Y(s,z) € M.
The functions G, define the recurrence

(s(t +1a),z(t+ la)) = (s(t) + 1q, Fa(s(t),x(t))), Va € {1,2,...,m}, (19)

which is equivalent to

2t + 1a) = Fa(s(t), 2(t))
{S(t—f‘la)zs(t)—i—la , Vae{l,2,...,m}. (20)

The unknown function is (s(-),z(+)). Denoting y = (s, z), the recurrence (19)
can be rewritten in the form

y(t+1,) = Ga(y(t)), Yae{l,2,...,m}, (21)
with the unknown function y(-) = (s(-), z(-)).

Lemma 3.1. a) Let to, ty, 80 € Z™, with ty > t.
Then the m-sequence s: {t ezZm |t > tl} — 7™ satisfies, for eacht > tq,

s(t+1,) =s(t)+ 1, Vae{l,2,...,m}, (22)

and the condition s(ty) = so,
if and only if s(t) =t — to + so, Vt > 1.
b) Let ty,so € Z™. The function s: Z™ — Z™ salisfies, for each t € 7™,
the relations (22) and the condition s(ty) = so if and only if s(t) =t — to + So,
Vi e Zm.
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Proof. Let §: Z™ — 7™, 5(t) =t — ty + sg, Vt € Z™. The function § satisfies,
for any t € Z™, the relations (22) and 5(tg) = so.
For each a, we consider the function
Go: Z™ —Z™, Gu(s)=s+1,, VseZ™.
The relations (22) are equivalent to s(t + 1,) = Ga(s(t)), Yo € {1,...,m}.
One observes that G, o ég(s) = ég 0 Gals) = s+ 1o+ lg, Vs € Z™.
For any o, the function G, is bijective. Its inverse is (G4)"(s) = s — 1a.
According to Theorem 2.2, iv), there exists a unique function s: {t €
7m | t> tl} — Z™ which satisfies the recurrence (22), Vt > t;, and the condi-
tion s(tg) = to. By uniqueness, it follows that s coincides with the restriction
of the function 5 to the set {t czm ‘ t> tl}; hence s(t) =t —ty + so, YVt > t1.
According to Theorem 2.2, vi), it follows that there exists a unique func-
tion o: Z™ — Z™ which satisfies the recurrence (22), V¢t € Z™, and the condi-
tion o (tg) = to. From uniqueness, it follows that o = §; hence o(t) = t —to+ so,
vt e 7M. O

In the above conditions, the following result is obtained.
Proposition 3.1. a) For o, 5 € {1,2,...,m}, we have
Fo(t+ 15, Fs(t,x)) = Fg(t + 14, Fu(t,z)), Yt>1t, Ve M (23)

if and only if G, oGz = GgoG,.
b) Let to € Z™, to > t; and xy € M.

If x: {t ezm |t > tl} — M satisfies the recurrence (18), ¥t > t1, and
the condition x(ty) = xq, then the m-sequence

y: {teZ™|t>t}— M, y@)=@z@), Vt>t,

satisfies the recurrence (21), Vt > t1, and the condition y(to) = (to, xo).

Conversely, if y(-) = (s(-),z(")): {t € Z™ |t > t;} — M satisfies the
recurrence (21), ¥t > t1, and the condition y(ty) = (to, zo), then s(t) =t,Vt >
t1 and x(-) satisfies the recurrence (18), Vt > t1, and the condition x(ty) = xo.

Proof. a) For any (s,z) € M, we have: G, 0 Gg(s,x) = Ggo Gy(s, ) =
> (s+1g+1q, Fa(s+1g, Fa(s,2))) = (s+1a+1g, Fa(s+ 14, Fu(s, z)))
= F(s+ 13, Fs(s,2)) = Fa(s + 1o, Fu(s, x)).
b) Let z(-) be a solution of the recurrence (18), with x(to) = xo. We have
to show that the m-sequence y(t) = (¢, z(t)) satisfies the relations (20); since,
for that y(-) we have s(t) = t, the relations (20) become

{;f:ﬁ irali);i(tﬂ”(t)) . Vae{l,2,...,m}. (24)

The second relation in (24) is obvious, and the first is true because the
m-sequence x(-) is a solution of the recurrence (18).
The relation y(ty) = (tg, zo) is obvious.
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Conversely, let y(-) = (s(-),z(-)) be a solution of the recurrence (21),
with y(t9) = (fo, o). Hence s(-) and z(-) satisfies the relations (20) and the
condition s(tg) = to, x(tg) = 0.

Since s(t 4+ 14) = s(t) + 1o, Vt > t1, Vo, and s(tg) = to, from Lemma 3.1
it follows that s(t) = t, Vt > t;.

Hence, the first relation in (20) becomes x(t + 1,) = F,(t, z(t)), i.e., z(-)
is solution of the recurrence (18). O

Theorem 3.1. Let M be an arbitrary nonempty set and ty € Z™. We consider
the functions F,: {t ezm !t > to} XM — M, ae{l,2,...,m}, such that

Fo(t + 1, Fp(t, ) = Fp(t + Lo, Fa(t, 2)), (25)
Vit > tg, Ve € M, VYa,B€{1,2,...,m}.

Then, for any xo € M, there exists a unique m-sequence
x: {t ez™ | t> to} — M which satisfies

z(t+ 1,) = Fo(t,z(t)), Vt>ty, Vae{l,2,...,m}, (26)
and the condition x(ty) = zo.

Proof. LetM:{seZmlszto} x M and let Go: M — M,
Gols,z) = (s+ 1o, Fa(s,x)), V(s,z) € M.

We apply Proposition 3.1 (for t; = ty); according to step a), it follows that
GooGs=GpoG,, Yae{1,2,...,m}. From Theorem 2.1, b), it follows that
there exists a unique m-sequence y(-) = (s(-),z(-)): {t € Z™ | t>to} — M
which satisfies

y(t + 1) = Ga(y(t)), Vt>ty, Vae{1,2,....m}, (27)

and the condition y(ty) = (to,z0). From Proposition 3.1, b), it follows that
x(-) satisfies the relations (26) and the initial condition x(tg) = .

Uniqueness of z(-): let Z: {t € Z™ |t > t,} — M an m-sequence which
satisfies the relations (26) and the condition #(ty) = 2. From Proposition 3.1,
b), it follows that the m-sequence

g {tez™|t=t} — M, §@t)=(z(1), V>t

satisfies the relations (27) and the condition §(ty) = (to, zo).

From the uniqueness property of the solution of the recurrence (27) (The-
orem 2.1, b)), it follows that the functions y and § coincide; hence (s(t), z(t)) =
(t,Z(t)), Vt > to; we obtain z(t) = Z(t), Vt > to. O

Proposition 3.2. Let o € {1,2,...,m}, to € Z™.
a) Let F: {t ez ‘t >ty — 1a0} X M — M. If, for any xo € M, there exists
at least one m-sequence x: {t ez ‘ t>ty— 1(10} — M, which satisfies

Bt + Log) = F(t,a(t), Wt > to — Loy, (28)

and the condition z(ty) = xq, then the function F(to — la,,-) is surjective.
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b) Suppose that for the functions F,: {t ezm } t >ty —lagy X M — M, the
relations (25) hold, V't >ty — 1oy, Vo € M, Vo, 8 € {1,2,...,m}. If, for any
xo € M, there exists at most one m-sequence x: {t ezm | t>tyg— 1a0} — M,
which satisfies

z(t+1,) = Fo(t,z(t)), Vt>to—1a, YVa€{1,2,...,m}, (29)
and the condition x(ty) = xo, then the function F,,(to — la,, ) is injective.

Proof. a) Let z € M. There exists an m-sequence z(-) which satisfies (28)
and the initial condition x(ty) = z. For t =ty — 1,,, one obtains z = F(tg —
Loy, (to — 14,)). Since z is arbitrary, it follows that F'(tg — 14, -) is surjective.
b) Let p,q € M such that Fy,(to— lag, D) = Fag(to— lag, q). We can apply
Theorem 3.1. There exist the functions x, 7 : {t czm™ | t>ty— 1a0} — M for
which the relations (29) are true, and x(ty — 1oy) = p, Z(to — lay) = .
Let g = Fu,(to — lag, P) = Fay(to — lag, ¢). Then
I‘(to) = Fa0<t0 - 1a07$(t0 - 1(10)) = FOéo(tO - 1a07p) = Zo,
i(to) = Fao(to - 1110’@(250 - 1a0)) = Fao<t0 - 1a0,Q) = Zo-
It follows that = and Z coincide; hence x(tg — 1,,) = Z(to — 1oy), 1.6, p=¢q. O

The next result can be proven without difficulty.

Lemma 3.2. Let 5 €{1,2,....,m} and F: Z™ x M — M.

Let G: Z"x M — Z™x M, G(t,x) = (t+1s, F(t,x)), V(t,z) € Z™x M.

a) The function G is injective if and only if, for any t € Z™, the function
F(t,-) is injective.

b) The function G is surjective if and only if, for anyt € Z™, the function
F(t,-) is surjective.

Theorem 3.2. Let M be a nonempty set. For each a € {1,2,...,m}, we
consider the function F,: Z™ x M — M, to which we associate the recurrence

ti
cquation [E(t + 1a) = Fa<t7$(t))> Va € {17 2’ e ’m}' (30)

The following statements are equivalent:
i) Foranya € {1,2,...,m} and any t € Z™, the functions F,(t,-) are bijective

d
an Fu(t+ 15, F5(t, 7)) = Fs(t + 1o, Fa(t, 7)), (31)

V(t,x) € Z™ x M, Yo, € {1,2,...,m}.
i1) For any pair (to,xo) € Z™ X M, and any index oy € {1,2,...,m}, there
erists a unique m-sequence X : {t ez ‘t >ty — 1a0} — M, which, for each
t >ty — lag, satisfies the relations (30), and also the condition x(ty) = xo.
iii) For any to,ty € Z™, with t; < ty, and any xo € M, there exists an m-
sequence x: {t € Zm}t > tl} — M, which, for any t > ti, satisfies the
relations (30), and also the condition x(ty) = xo.
iv) For any (to, o) € Z™ x M, there ezists a unique m-sequence x: Z™ — M,
which, for any t € Z™, satisfies the relation (30), and also x(ty) = xg.
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Proof. ii) = i): Let t; € Z™. For any ty > t; and any zo € M, there exists a
unique m-sequence x : {t ezm ‘ t> t()—lao} — M, which, for any t > to—1,,,
satisfies the relations (30), and also the condition x(ty) = xo.

The restriction of the function z(-) to {t ezm | t> to} satisfies, for any
t > to, the recurrence (30), and also the condition x(tg) = .

From Proposition 1.1 it follows that the relations (31) hold, for any ¢ > ;.
Since t; is arbitrary, we deduce that the relations (31) are true, for any t € Z'.

The surjectivity of functions F,(¢,-) follows from Proposition 3.2, a).

The injectivity of functions F,(t, -) follows from Proposition 3.2, b).

i) => iv): For each o € {1,2,...,m}, we consider the function

Go: Z" XM — Z"xM, Gu(t,x) = (t+1a, F(t,x)), V(t,2) € Z™xM.
Similar to the proof of Proposition 3.1, it is shown that the relations (31) are
true, for any (t,z) € Z™ x M, if and only if G, 0 Gg = Gg o G,.

From Lemma 3.2, we deduce that, for any o € {1,2,...,m}, the function
G, is bijective.

Let (to,xz0) € Z™ x M. According to Theorem 2.2, vi), there exists a
unique m-sequence y(-) = (s(+),z(:)): Z™ — Z™ x M, which, for any t € Z™,
satisfies the relations

y(t+1,) = Ga(y(t)), Yae{l,2,...,m}, (32)
and y(ty) = (to, o), which are equivalent to
Bt + 10) = Fa(s(8), (1))
s(t+ 1q) = s(t) + 14
and S(to) = to, I(to) = 29.

From Lemma 3.1, we obtain s(t) = ¢, Vt € Z™. Replacing in the first re-
lation of (33), it follows that the m-sequence x: Z™ — M satisfies the relations
(30), Vt € Z™.

Uniqueness of z(-): let : Z™ — M be a function which satisfies the
relations (30), Vt € Z™, and the condition Z(ty) = zo. Easily we find that the
function §: Z™ — Z™ x M, §(t) = (t,Z(t)), Vte€Z™,
satisfies the relations (32), ¥Vt € Z™, and the condition §(ty) = (tg, o).

From the uniqueness property of solutions of the recurrence (32) (accord-
ing to Theorem 2.2, vi)) it follows that the functions y and ¢ coincide; hence
(t,z(t)) = (t,Z(t)), Vt € Z™; we obtain z(t) = Z(t), Vt € Z™.

iv) = iii): For each a € {1,2,...,m}, we consider the function G,
defined as in the proof of the implication i) = iv).

Let tg € Z™ and (sg, ) € Z™ x M. We shall show that there exists a
unique m-sequence y(-) = (s(+),z(:)): Z™ — Z™ x M, which, for any t € Z™,
satisfies the relations (32), and y(to) = (S0, Zo)-

There exists a unique m-sequence z: Z™ — M which, for any t € Z™,
satisfies the relations (30), and also the initial condition Z(sg) = xo.

Let s: Z™ — 7™, x: Z™ — M, s(t) = t—to+so, x(t) = T(t—to+so), YVt € Z™.

Easily we find that the m-sequence y(-) = (s(-),x(+)): Z™ — Z™ x M
satisfies, for any ¢t € Z™, the recurrence (32) and y(to) = (so, Zo)-

. Yae{l,2,....m) (33)
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The uniqueness of y(-): Let g(-) = (o(-),2(+)): Z™ — Z™ x M which
satisfies, for any ¢ € Z™, the recurrence (32) and the condition g(ty) = (so, Zo).
Hence, for any t € Z™, the functions o(-), z(-) satisfy the recurrence (33) and
o(to) = o, 2(tg) = zo. From Lemma 3.1, it follows o(t) =t — to + s = s(t).
One observes that the m-sequence Z: Z™ — M, Z(t) = z(t+to— s0), YVt € Z'",
satisfies the recurrence (30), V¢ € Z™, and Z(sg) = xo. It follows that the
functions Z and Z coincide. Hence, we have Z(t —tg + so) = Z(t — to + So), i.e.,
z(t) = x(t). Since o(-) = s(-) and z(-) = x(-), we have g(-) = y(-).

Hence, for the recurrence (32) we can apply Theorem 2.2, implication
vi) = ). Let to,ty € Z™, with t; < to, and xy € M. There exists a
unique m-sequence Z: Z™ — M, such that Z(ty) = xo and the relations (30)
are true, Vt € Z™. It is sufficient to select x as being the restriction of T to
{tezZm|t>1t}.

Uniqueness of the function z(-): Let z: {t ezm }t > tl} — M, which,
for any t > t; satisfies the recurrence (30), and z(ty) = xo.

Let y,5: {t € Z™ |t > t1} — Z™ x M, y(t) = (t, (1)), §(t) = (t, 2(1)).

One observes that y and § satisfy the recurrence (32), V¢t > ¢;; we have
also y(to) = y(to) = (to, xo). From Theorem 2.2, it follows that the functions
y and g coincide. We obtain (¢, z(t)) = (¢, 2(t)), Vt > t1; hence x(t) = z(t).

i11) = i) is an obvious implication. O

4. Recurrences based on a monoid action

Let M be a nonempty set, (N, ) e) be a monoid and let p: N x M — M
be an action of the monoid N on the set M, i.e.,

p(ab,z) = p(a, (b,x)), @le,x) ==z, Ya,be N,Vx € M. (34)

For each a € N, x € M, we denote ¢(a,z) = ax (not to be confused with the
monoid operation on N). The relations (34) become
(ab)x = a(bz), ex =z, Va,be N,Voe M.
We consider ay, as, ..., a, € N, such that ayas = aga,, Vo, 5 € {1,2,...,m}.
For each pair (tg,z9) € Z™ x M, the recurrence
z(t+ 1) = aqz(t), Vae{l,2,...,m}, (35)
with the initial condition x(tg) = x¢, has unique solution
z: {teZ™|t>t} — M,

x(t) = agtl_tfl’)aétQ_t%) o a ) g, (36)

This can be obtained by applying Theorem 2.1 for the functions G,: M — M,

Go(x) = agx, Yo € M. We have G, o Gg(x) = G o Go(x) = agapzr. One
observes that, for any t € N,

thl) o thz) o...0GY(z)=dlat ... dx. (37)

Suppose that for any a € {1,2,...,m}, a, is invertible; then G, is

bijective, with the inverse G.'(z) = a;'z. We find that the formula (37) is

true for any t € Z™. There exists a unique m-sequence z: Z™ — M, solution

of the recurrence (35), with Z(ty) = zo; the function Z(-) is a unique extension
of z(+) and it is defined by the formula (36), but for each t € Z™.
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