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DISCRETE MULTIPLE RECURRENCE

Cristian Ghiu1, Raluca Tuligă2, Constantin Udrişte3

The aim of our paper is to formulate and solve problems concern-
ing multitime multiple recurrence equations. Among the general things, we
discuss in detail the cases of autonomous and non-autonomous recurrences,
highlighting in particular the theorems of existence and uniqueness of solu-
tions. Though the multitime multiple recurrences have occurred in analysis
of algorithms, computational biology, information theory, queueing theory,
filters theory, statistical physics etc, the theoretical part about them needs
further investigation.
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1. General statements

A multivariate recurrence relation is an equation that recursively defines
a multivariate sequence, once one or more initial terms are given: each further
term of the sequence is defined as a function of the preceding terms. Some
simply defined recurrence relations can have very complex (chaotic) behaviors.
We can use such recurrences including the Differential Transform Method to
solve completely integrable first order PDEs system with initial conditions via
discretization.

In this paper we shall refer to discrete multitime multiple recurrence (au-
tonomous and non-autonomous), giving results regarding generic properties
and existence and uniqueness of solutions (see also [7]-[8]). Also, we seek to
provide a fairly thorough and unified exposition of recurrence relations in both
univariate and multivariate settings. Some open problems raised in filters the-
ory [1], [3], [5]-[6], [9]-[12], general recurrence theory [2], [4], [17], and multitime
dynamical systems [13]-[16], receive here detailed answers.

Let m ≥ 1 be an integer number. We denote 1 = (1, 1, . . . , 1) ∈ Zm.
Also, for each α ∈ {1, 2, . . . ,m}, we denote 1α = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zm,
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i.e., 1α has 1 on the position α and 0 otherwise. We use product order relation
on Zm.

Let M be an arbitrary nonempty set and t1 ∈ Zm be a fixed element.
For each α ∈ {1, 2, . . . ,m}, let Fα :

{
t ∈ Zm

∣∣ t ≥ t1
}
×M → M be a function.

We fix t0 ∈ Zm, t0 ≥ t1. A first order multitime recurrence of the type

x(t + 1α) = Fα(t, x(t)), ∀t ∈ Zm, t ≥ t0, ∀α ∈ {1, 2, . . . ,m}, (1)

is called a discrete multitime multiple recurrence.
This model of multiple recurrence can be justified by the fact that a

completely integrable first order PDE system
∂xi

∂tα
(t) = X i

α(t, x(t)), t ∈ Rm

can be discretized as
xi(t + 1α) = F i

α(t, x(t)), t ∈ Zm.
The initial (Cauchy) condition, for the PDE system, is translated into initial
condition for the multiple recurrence.

Proposition 1.1. If for any (t0, x0) ∈
{
t ∈ Zm

∣∣ t ≥ t1
}
×M , there exists at

least one m-sequence x :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ M which satisfies the recurrence

(1) and the initial condition x(t0) = x0, then

Fα(t + 1β, Fβ(t, x)) = Fβ(t + 1α, Fα(t, x)), ∀t ≥ t1, ∀x ∈ M, (2)

∀α, β ∈ {1, 2, . . . ,m}.

Proof. Let t ≥ t0. The equality x(t+1β +1α) = x(t+1α +1β) is equivalent to
Fα(t + 1β, x(t + 1β)) = Fβ(t + 1α, x(t + 1α))

⇐⇒ Fα

(
t + 1β, Fβ(t, x(t))

)
= Fβ

(
t + 1α, Fα(t, x(t))

)
.

For t = t0, one obtains: Fα

(
t0 + 1β, Fβ(t0, x0)

)
= Fβ

(
t0 + 1α, Fα(t0, x0)

)
.

Since t0 and x0 are arbitrary, it follows the relations (2). �

2. Autonomous discrete multitime multiple recurrence

Let M be a nonempty set. For any function G : M → M , we denote:
G(n) = G ◦G ◦ . . . ◦G︸ ︷︷ ︸

n

, if n ≥ 1; and G(0) = IdM .

Theorem 2.1. For each α ∈ {1, 2, . . . ,m}, let Gα : M → M be a function.
a) Let t0 ∈ Zm. If for any x0 ∈ M , there exists at least one m-sequence

x :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ M,

which satisfies the recurrence equation

x(t + 1α) = Gα(x(t)), ∀t ≥ t0, ∀α ∈ {1, 2, . . . ,m}, (3)

and the initial condition x(t0) = x0, then

Gα ◦Gβ = Gβ ◦Gα, ∀α, β ∈ {1, 2, . . . ,m}. (4)

b) If, for any α, β ∈ {1, 2, . . . ,m}, the relations (4) are satisfied, then, for any
(t0, x0) ∈ Zm×M , there exists a unique m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t0
}
→ M
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which satisfies the recurrence (3) and the initial condition x(t0) = x0; this
sequence is defined by the composition

x(t) = G
(t1−t10)
1 ◦G

(t2−t20)
2 ◦ . . . ◦G(tm−tm0 )

m (x0), ∀t ≥ t0. (5)

Proof. a) The equality x(t0 + 1β + 1α) = x(t0 + 1α + 1β) is equivalent to
Gα(x(t0 + 1β)) = Gβ(x(t0 + 1α)) ⇐⇒ Gα(Gβ(x(t0))) = Gβ(Gα(x(t0)))

⇐⇒ Gα ◦Gβ(x0) = Gβ ◦Gα(x0).
Since x0 is arbitrary, it follows the relations (4).
b) Firstly we remark that any sequence of the form (5) satisfies the rela-

tions (3) and the initial condition x(t0) = x0:

x(t + 1α) = G
(t1−t10)
1 ◦ . . . ◦G(tα+1−tα0 )

α ◦ . . . ◦G(tm−tm0 )
m (x0); (6)

using (4) and the relation (6), it follows

x(t + 1α) = Gα ◦ G
(t1−t10)
1 ◦ . . . ◦ G(tα−tα0 )

α ◦ . . . ◦ G(tm−tm0 )
m (x0) = Gα(x(t)).

The initial condition x(t0) = x0 is checked immediately.
The necessity is proved by induction on m, the number of components

of the point t = (t1, . . . , tm).
For m = 1, we have t = t1 and t0 = t10. If t > t0, then

x(t) = x(t1) = G1(x(t1 − 1)) = G
(2)
1 (x(t1 − 2)) =

= . . . = G
(k)
1 (x(t1 − k)) = . . . = G

(t1−t10)
1 (x(t10)) = G

(t1−t10)
1 (x0).

If t = t0, then the relation x(t) = G
(t1−t10)
1 (x0) is obvious.

Let m ≥ 2. Suppose that the relation is true for m−1 and we shall prove
it for m. We denote t̃ = (t2, . . . , tm); t̃0 = (t20, . . . , t

m
0 ).

Let x̃(t̃) = x(t10, t̃) = x(t10, t
2, . . . , tm). If t1 > t10, then

x(t) = x(t1, t̃) = G1(x(t1 − 1, t̃)) = G
(2)
1 (x(t1 − 2, t̃)) =

= . . . = G
(k)
1 (x(t1 − k, t̃)) = . . . = G

(t1−t10)
1 (x(t10, t̃)) = G

(t1−t10)
1 (x̃(t̃)).

We have proved that if t1 > t10, then x(t) = G
(t1−t10)
1 (x̃(t̃)); the relation is easily

verified also for t1 = t10.
For α ∈ {2, . . . ,m}, we denote 1̃α = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zm−1; hence

1α = (0, 1̃α). For α ≥ 2 and t1 = t10, the relations (3) become
x((t10, t̃) + (0, 1̃α)) = Gα(x(t10, t̃)), i.e.,
x̃(t̃ + 1̃α) = Gα(x̃(t̃)), ∀ t̃ ≥ t̃0, ∀α ∈ {2, . . . ,m}.
Obviously x̃(t̃0) = x(t10, t̃0) = x(t0) = x0. Since t̃ has m− 1 components,

from the induction hypothesis it follows

x̃(t̃) = G
(t2−t20)
2 ◦ . . . ◦G(tm−tm0 )

m (x0), ∀t̃ ≥ t̃0.
Consequently, for any t ≥ t0, we have

x(t) = G
(t1−t10)
1 (x̃(t̃)) = G

(t1−t10)
1 ◦G

(t2−t20)
2 ◦ . . . ◦G(tm−tm0 )

m (x0). �

Lemma 2.1. Let G : M → M be an arbitrary function and t0 ∈ Zm,
β ∈ {1, 2, . . . ,m}, fixed. If, for any x0 ∈ M , there exists at least one m-
sequence x :

{
t ∈ Zm

∣∣ t ≥ t0 − 1β

}
→ M, which satisfies the relation

x(t + 1β) = G(x(t)), ∀t ≥ t0 − 1β, (7)
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and the condition x(t0) = x0, then G is surjective (onto).

Proof. Let y ∈ M . There exists an m-sequence x(·) which satisfies (7) and the
condition x(t0) = y. For t = t0 − 1β, one obtains x(t0) = G(x(t0 − 1β)), hence
G(x(t0 − 1β)) = y. Because y is arbitrary, it follows that the function G is
surjective. �

Proposition 2.1. We consider the functions Gα : M → M , α ∈ {1, 2 . . . , m}.
a) Let t0 ∈ Zm and α0 ∈ {1, 2, . . . ,m}, fixed. If for any x0 ∈ M , there exists
at least one m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
→ M , which satisfies

x(t + 1α) = Gα(x(t)), (8)

∀t ≥ t0 − 1α0 , ∀α ∈ {1, 2, . . . ,m},
and the condition x(t0) = x0, then Gα0 is surjective and

Gα ◦Gβ = Gβ ◦Gα, ∀α, β ∈ {1, 2, . . . ,m}. (9)

b) Suppose that, for any α ∈ {1, 2, . . . ,m}, the functions Gα are surjective and
that the relations (9) are satisfied.

Let (t0, x0) ∈ Zm × M and s ∈ Zm, s ≤ t0. If for a ∈ M , we have

G
(t10−s1)
1 ◦G

(t20−s2)
2 ◦ . . . ◦G

(tm0 −sm)
m (a) = x0, then the m-sequence

x :
{
t ∈ Zm

∣∣ t ≥ s
}
→ M,

x(t) = G
(t1−s1)
1 ◦G

(t2−s2)
2 ◦ . . . ◦G(tm−sm)

m (a), ∀t ≥ s, (10)

satisfies the recurrence (8), ∀t ≥ s, ∀α ∈ {1, 2, . . . ,m}, and x(t0) = x0.
c) Suppose that the functions Gα are surjective and that the relations (9) are
satisfied.

Then, for any (t0, x0) ∈ Zm × M , there exists at least one m-sequence
x : Zm → M which satisfies the recurrence (8), ∀t ∈ Zm, ∀α ∈ {1, 2, . . . ,m},
and the condition x(t0) = x0.

Proof. a) The surjectivity of Gα0 follows from Lemma 2.1. The relations (9)
are obtained from Theorem 2.1, a), considering the restriction of x(·) to the
set

{
t ∈ Zm

∣∣ t ≥ t0
}
.

b) We observe that the function G
(t10−s1)
1 ◦G

(t20−s2)
2 ◦ . . .◦G

(tm0 −sm)
m is surjec-

tive, since tα0 − sα ≥ 0, ∀α, and Gα are surjective. Consequently, there exists

a ∈ M such that G
(t10−s1)
1 ◦G

(t20−s2)
2 ◦ . . . ◦G

(tm0 −sm)
m (a) = x0.

From Theorem 2.1, b), it follows that the function defined by the formula
(10) is the unique m-sequence which satisfies the recurrence (8), ∀t ≥ s, ∀α,
and the condition x(s) = a. For t = t0, we have

x(t0) = G
(t10−s1)
1 ◦G

(t20−s2)
2 ◦ . . . ◦G(tm0 −sm)

m (a) = x0.
c) Let G = G1 ◦ G2 ◦ . . . ◦ Gm. Since the functions Gα are surjective,

it follows that the function G is surjective. Hence, there exists a function
H : M → M such that G ◦H = IdM (right inverse).

For n ∈ N, we denote Pn =
{
t ∈ Zm

∣∣ t ≥ t0 − n · 1
}
; let an = H(n)(x0).

We observe that G(an+1) = an and G(n)(an) = x0, ∀n ∈ N.
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For each n ∈ N, we consider the function yn : Pn → M , defined by

yn(t) = G
(t1−t10+n)
1 ◦G

(t2−t20+n)
2 ◦ . . . ◦G(tm−tm0 +n)

m (an), ∀t ≥ t0 − n · 1.

Because G(n)(an) = x0, i.e., G
(n)
1 ◦G

(n)
2 ◦ . . . ◦G

(n)
m (an) = x0, according to

step b), it follows that the m-sequence yn satisfies the recurrence (8), ∀t ∈ Pn,
∀α and the condition yn(t0) = x0.

We remark that Pn ⊆ Pn+1. For t ∈ Pn, we have

yn+1(t) = G
(t1−t10+n+1)
1 ◦G

(t2−t20+n+1)
2 ◦ . . . ◦G(tm−tm0 +n+1)

m (an+1)

= G
(t1−t10+n)
1 ◦G

(t2−t20+n)
2 ◦ . . . ◦G(tm−tm0 +n)

m

(
G(an+1)

)
= G

(t1−t10+n)
1 ◦G

(t2−t20+n)
2 ◦ . . . ◦G(tm−tm0 +n)

m (an) = yn(t).
We showed that yn+1(t) = yn(t), ∀t ∈ Pn. Inductively, one deduces that, for
any q ∈ N, we have yn+q(t) = yn(t), ∀t ∈ Pn. Consequently, yn(t) = yk(t),
∀t ∈ Pmin{n,k}.

Let us define the m-sequence x : Zm → M : let t ∈ Zm; since Zm =
⋃
n∈N

Pn,

there exists n ∈ N, such that t ∈ Pn. The value of the function x at t will be
x(t) = yn(t).

The function x(·) is well defined since if t ∈ Pn and t ∈ Pk, we have
showed that yn(t) = yk(t).

If t ∈ Pn, then t+1α ∈ Pn. We have x(t+1α) = yn(t+1α) = Gα(yn(t)) =
Gα(x(t)) and x(t0) = yn(t0) = x0. �

Proposition 2.2. Suppose that, for the functions Gα : M → M , the relations
(9) are satisfied.

Let t0 ∈ Zm and α0 ∈ {1, 2, . . . ,m}, fixed. If, for any x0 ∈ M , there
exists at most one m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t0−1α0

}
→ M , which satisfies

x(t + 1α) = Gα(x(t)), ∀t ≥ t0 − 1α0 , ∀α ∈ {1, 2, . . . ,m}, (11)

and the condition x(t0) = x0, then Gα0 is injective (one-to-one).

Proof. Let p, q ∈ M such that Gα0(p) = Gα0(q). We select x0 = Gα0(p) =
Gα0(q). The functions x, y :

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
→ M,

x(t) = G
(t1−t10)
1 ◦ . . . ◦G(tα0−t

α0
0 +1)

α0
◦ . . . ◦G(tm−tm0 )

m (p), ∀t ≥ t0 − 1α0 , (12)

y(t) = G
(t1−t10)
1 ◦ . . . ◦G(tα0−t

α0
0 +1)

α0
◦ . . . ◦G(tm−tm0 )

m (q), ∀t ≥ t0 − 1α0 , (13)

are well defined (since tα0 − tα0
0 + 1 ≥ 0), satisfy the relations (11) and x(t0) =

Gα0(p) = x0, y(t0) = Gα0(q) = x0. It follows that x(t) = y(t), ∀t ≥ t0 − 1α0 .
For t = t0−1α0 , we obtain x(t0−1α0) = y(t0−1α0), relation which is equivalent
to p = q (according to (12), (13)). Hence, the function Gα0 is injective. �

If G : M → M is a bijective function, we denote G(−k) =
(
G−1

)(k)
, for

k ∈ N; we have G(−k) =
(
G(k)

)−1
.
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Proposition 2.3. Suppose that the functions Gα : M → M are bijective and
the relations (9) hold. Then, for any (t0, x0) ∈ Zm ×M , there exists a unique
solution x : Zm → M , of the recurrence equation

x(t + 1α) = Gα(x(t)), ∀t ∈ Zm, ∀α ∈ {1, 2, . . . ,m}, (14)

with the condition x(t0) = x0. The m-sequence x(·) is defined by the relation

x(t) = G
(t1−t10)
1 ◦G

(t2−t20)
2 ◦ . . . ◦G(tm−tm0 )

m (x0) (∀t ∈ Zm). (15)

Proof. The existence follows from Proposition 2.1, c).
Let x : Zm → M be a solution of the recurrence (14), with x(t0) = x0. For

proving the uniqueness, it is sufficient to show that x(t) satisfies the relation
(15), ∀t ∈ Zm.

Let s ≤ t0. We apply Theorem 2.1 for the restriction of x(·) to the set{
t ∈ Zm

∣∣ t ≥ s
}
. It follows

x(t) = G
(t1−s1)
1 ◦G

(t2−s2)
2 ◦ . . . ◦G(tm−sm)

m (x(s)), ∀t ≥ s.

For t = t0, we obtain x0 = G
(t10−s1)
1 ◦ G

(t20−s2)
2 ◦ . . . ◦ G

(tm0 −sm)
m (x(s)). Since the

functions Gα are bijective, it follows x(s) = G
(s1−t10)
1 ◦ . . . ◦G(sm−tm0 )

m (x0).
Consequently, for any t ≥ s, we have

x(t) = G
(t1−s1)
1 ◦G

(t2−s2)
2 ◦ . . . ◦G(tm−sm)

m (x(s)) =

= G
(t1−s1)
1 ◦G

(t2−s2)
2 ◦ . . . ◦G(tm−sm)

m ◦G
(s1−t10)
1 ◦G

(s2−t20)
2 ◦ . . . ◦G(sm−tm0 )

m (x0)

= G
(t1−t10)
1 ◦G

(t2−t20)
2 ◦ . . . ◦G(tm−tm0 )

m (x0).
We showed that, for any s ≤ t0 and any t ≥ s, the m-sequence x(t)

satisfies the relation (15). Since
⋃

s∈Zm, s≤t0

{
t ∈ Zm

∣∣ t ≥ s
}

= Zm, it follows

that the relation (15) holds for any t ∈ Zm. �

Theorem 2.2. Let M be a nonempty set. For each α ∈ {1, 2, . . . ,m}, we
consider the function Gα : M → M and we associate the recurrence equation

x(t + 1α) = Gα(x(t)), ∀α ∈ {1, 2, . . . ,m}. (16)

The following statements are equivalent:
i) For any α ∈ {1, 2, . . . ,m}, the functions Gα are bijective and

Gα ◦Gβ = Gβ ◦Gα, ∀α, β ∈ {1, 2, . . . ,m}. (17)

ii) There exists t0 ∈ Zm such that ∀α0 ∈ {1, 2, . . . ,m}, ∀x0 ∈ M , there exists a
unique m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t0−1α0

}
→ M , which, for any t ≥ t0−1α0,

satisfies the relations (16), and the condition x(t0) = x0.
iii) There exist the points t0, t1 ∈ Zm, with tα1 < tα0 , ∀α, such that, for each
x0 ∈ M , there exists a unique m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t1
}
→ M , which,

for each t ≥ t1 satisfies the relations (16), and also the condition x(t0) = x0.
iv) For each t0, t1 ∈ Zm, with t1 ≤ t0, and for any x0 ∈ M , there exists a
unique m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t1
}
→ M , which, for any t ≥ t1, satisfies

the relations (16), and also the condition x(t0) = x0.
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v) There exists t0 ∈ Zm, such that, for any x0 ∈ M , there exists a unique
m-sequence x : Zm → M , which, for any t ∈ Zm satisfies the relations (16),
and x(t0) = x0.
vi) For each pair (t0, x0) ∈ Zm×M , there exists a unique m-sequence x : Zm →
M , which, for any t ∈ Zm satisfies the relations (16), and x(t0) = x0.

Proof. ii) =⇒ i): The relations (17) and the surjectivity of functions Gα follow
from Proposition 2.1, a), and the injectivity of the functions Gα follow from
Proposition 2.2.

i) =⇒ vi): It follows from Proposition 2.3.
vi) =⇒ iv): Considering the restrictions of the functions x(t) to{

t ∈ Zm
∣∣ t ≥ t0 − 1α0

}
(for each α0), from Proposition 2.1, a), it follows that

the relations (17) hold and that the functions Gα are surjective.
Let t0, t1 ∈ Zm, with t1 ≤ t0, and x0 ∈ M . There exists a unique m-

sequence x̃ : Zm → M such that x̃(t0) = x0 and the relations (16) are true,
∀t ∈ Zm.

To prove the existence, it is sufficient to select x as the restriction of x̃
to

{
t ∈ Zm

∣∣ t ≥ t1
}
.

Let y :
{
t ∈ Zm

∣∣ t ≥ t1
}
→ M , be a function such that y(t0) = x0 and

for which the relations (16) hold, ∀t ≥ t1. We shall prove that the functions x
and y are equal.

From Proposition 2.1, c), there exists ỹ : Zm → M such that ỹ(t1) = y(t1)
and for which the relations (16) hold, ∀t ∈ Zm. From Theorem 2.1, it follows
that y and the restriction of ỹ to

{
t ∈ Zm

∣∣ t ≥ t1
}

coincide. Since t0 ≥ t1,
we have ỹ(t0) = y(t0) = x0. It follows that the functions x̃ and ỹ coincide.
Consequently, for each t ≥ t1, we have: y(t) = ỹ(t) = x̃(t) = x(t).

iv) =⇒ ii) is an obvious implication.
We have proved that the statements i), ii), iv), vi) are equivalent.
i) =⇒ iii): We have i) ⇐⇒ iv), and iv) =⇒ iii) is obvious.
iii) =⇒ i): For each α, we have tα1 < tα0 , i.e., tα0 − 1 ≥ tα1 . Hence,

for all α, t0 − 1α ≥ t1. Considering the restrictions of the functions x to{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
(for each α0), from Proposition 2.1, a), it follows that

the relations (17) are true and the functions Gα are surjective.
Let α0 ∈ {1, 2, . . . ,m}. We shall prove that Gα0 is injective.
Let p, q ∈ M such that Gα0(p) = Gα0(q). According to Proposition 2.1,

c), there exist the functions y, z : Zm → M for which the relations (16) hold,
∀t ∈ Zm, and y(t0 − 1α0) = p, z(t0 − 1α0) = q. Let x0 = Gα0(p) = Gα0(q).

y(t0) = Gα0(y(t0 − 1α0)) = Gα0(p) = x0,
z(t0) = Gα0(z(t0 − 1α0)) = Gα0(q) = x0.

Applying the uniqueness property for the restrictions of the functions y and z
to the set

{
t ∈ Zm

∣∣ t ≥ t1
}
, we obtain y(t) = z(t), ∀t ≥ t1.

Since t0 − 1α0 ≥ t1, it follows y(t0 − 1α0) = z(t0 − 1α0), i.e., p = q.
i) =⇒ v): We have i) ⇐⇒ vi), and vi) =⇒ v) is obvious.
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v) =⇒ i): For each α, we have tα1 < tα0 , i.e., tα0−1 ≥ tα1 . Hence t0−1α ≥ t1,
∀α. Considering the restrictions of the functions x to

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
(for each α0), by Proposition 2.1, a), it follows that the relations (17) hold and
that the functions Gα are surjective.

Let α0 ∈ {1, 2, . . . ,m}. We shall prove that Gα0 is injective.
Let p, q ∈ M such that Gα0(p) = Gα0(q). According to Proposition 2.1,

c), there exist the m-sequences y, z : Zm → M for which the relations (16) are
true, ∀t ∈ Zm, and y(t0−1α0) = p, z(t0−1α0) = q. Let x0 = Gα0(p) = Gα0(q).

y(t0) = Gα0(y(t0 − 1α0)) = Gα0(p) = x0,
z(t0) = Gα0(z(t0 − 1α0)) = Gα0(q) = x0.

From uniqueness, we obtain y(t) = z(t), ∀t ∈ Zm; for t = t0 − 1α0 it
follows y(t0 − 1α0) = z(t0 − 1α0), i.e., p = q. �

3. Non-autonomous discrete multitime multiple recurrence

Let t1 ∈ Zm. Consider the functions Fα :
{
t ∈ Zm

∣∣ t ≥ t1
}
×M → M ,

α ∈ {1, 2, . . . ,m}, which define the recurrence equation

x(t + 1α) = Fα(t, x(t)), ∀α ∈ {1, 2, . . . ,m}. (18)

Let M̃ =
{
s ∈ Zm

∣∣ s ≥ t1
}
×M and let Gα : M̃ → M̃ ,

Gα(s, x) =
(
s + 1α, Fα(s, x)

)
, ∀(s, x) ∈ M̃.

The functions Gα define the recurrence(
s(t + 1α), x(t + 1α)

)
=

(
s(t) + 1α, Fα(s(t), x(t))

)
, ∀α ∈ {1, 2, . . . ,m}, (19)

which is equivalent to{
x(t + 1α) = Fα(s(t), x(t))

s(t + 1α) = s(t) + 1α

, ∀α ∈ {1, 2, . . . ,m}. (20)

The unknown function is
(
s(·), x(·)

)
. Denoting y = (s, x), the recurrence (19)

can be rewritten in the form

y(t + 1α) = Gα(y(t)), ∀α ∈ {1, 2, . . . ,m}, (21)

with the unknown function y(·) =
(
s(·), x(·)

)
.

Lemma 3.1. a) Let t0, t1, s0 ∈ Zm, with t0 ≥ t1.
Then the m-sequence s :

{
t ∈ Zm

∣∣ t ≥ t1
}
→ Zm satisfies, for each t ≥ t1,

s(t + 1α) = s(t) + 1α, ∀α ∈ {1, 2, . . . ,m}, (22)

and the condition s(t0) = s0,
if and only if s(t) = t− t0 + s0, ∀t ≥ t1.

b) Let t0, s0 ∈ Zm. The function s : Zm → Zm satisfies, for each t ∈ Zm,
the relations (22) and the condition s(t0) = s0 if and only if s(t) = t− t0 + s0,
∀t ∈ Zm.
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Proof. Let s̃ : Zm → Zm, s̃(t) = t− t0 + s0, ∀t ∈ Zm. The function s̃ satisfies,
for any t ∈ Zm, the relations (22) and s̃(t0) = s0.

For each α, we consider the function

G̃α : Zm → Zm, G̃α(s) = s + 1α, ∀s ∈ Zm.

The relations (22) are equivalent to s(t + 1α) = G̃α(s(t)), ∀α ∈ {1, . . . ,m}.
One observes that G̃α ◦ G̃β(s) = G̃β ◦ G̃α(s) = s + 1α + 1β, ∀s ∈ Zm.

For any α, the function G̃α is bijective. Its inverse is (G̃α)−1(s) = s− 1α.
According to Theorem 2.2, iv), there exists a unique function s :

{
t ∈

Zm
∣∣ t ≥ t1

}
→ Zm which satisfies the recurrence (22), ∀t ≥ t1, and the condi-

tion s(t0) = t0. By uniqueness, it follows that s coincides with the restriction
of the function s̃ to the set

{
t ∈ Zm

∣∣ t ≥ t1
}
; hence s(t) = t− t0 + s0, ∀t ≥ t1.

According to Theorem 2.2, vi), it follows that there exists a unique func-
tion σ : Zm → Zm which satisfies the recurrence (22), ∀t ∈ Zm, and the condi-
tion σ(t0) = t0. From uniqueness, it follows that σ = s̃; hence σ(t) = t−t0+s0,
∀t ∈ Zm. �

In the above conditions, the following result is obtained.

Proposition 3.1. a) For α, β ∈ {1, 2, . . . ,m}, we have

Fα(t + 1β, Fβ(t, x)) = Fβ(t + 1α, Fα(t, x)), ∀t ≥ t1, ∀x ∈ M (23)

if and only if Gα ◦Gβ = Gβ ◦Gα.
b) Let t0 ∈ Zm, t0 ≥ t1 and x0 ∈ M .

If x :
{
t ∈ Zm

∣∣ t ≥ t1
}
→ M satisfies the recurrence (18), ∀t ≥ t1, and

the condition x(t0) = x0, then the m-sequence

y :
{
t ∈ Zm

∣∣ t ≥ t1
}
→ M̃, y(t) = (t, x(t)), ∀t ≥ t1,

satisfies the recurrence (21), ∀t ≥ t1, and the condition y(t0) = (t0, x0).

Conversely, if y(·) =
(
s(·), x(·)

)
:
{
t ∈ Zm

∣∣ t ≥ t1
}
→ M̃ satisfies the

recurrence (21), ∀t ≥ t1, and the condition y(t0) = (t0, x0), then s(t) = t,∀t ≥
t1 and x(·) satisfies the recurrence (18), ∀t ≥ t1, and the condition x(t0) = x0.

Proof. a) For any (s, x) ∈ M̃ , we have: Gα ◦Gβ(s, x) = Gβ ◦Gα(s, x) ⇐⇒
⇐⇒

(
s+1β +1α, Fα(s+1β, Fβ(s, x))

)
=

(
s+1α+1β, Fβ(s+1α, Fα(s, x))

)
⇐⇒ Fα(s + 1β, Fβ(s, x)) = Fβ(s + 1α, Fα(s, x)).
b) Let x(·) be a solution of the recurrence (18), with x(t0) = x0. We have

to show that the m-sequence y(t) = (t, x(t)) satisfies the relations (20); since,
for that y(·) we have s(t) = t, the relations (20) become{

x(t + 1α) = Fα(t, x(t))

t + 1α = t + 1α

, ∀α ∈ {1, 2, . . . ,m}. (24)

The second relation in (24) is obvious, and the first is true because the
m-sequence x(·) is a solution of the recurrence (18).

The relation y(t0) = (t0, x0) is obvious.
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Conversely, let y(·) =
(
s(·), x(·)

)
be a solution of the recurrence (21),

with y(t0) = (t0, x0). Hence s(·) and x(·) satisfies the relations (20) and the
condition s(t0) = t0, x(t0) = x0.

Since s(t + 1α) = s(t) + 1α, ∀t ≥ t1, ∀α, and s(t0) = t0, from Lemma 3.1
it follows that s(t) = t, ∀t ≥ t1.

Hence, the first relation in (20) becomes x(t+1α) = Fα(t, x(t)), i.e., x(·)
is solution of the recurrence (18). �

Theorem 3.1. Let M be an arbitrary nonempty set and t0 ∈ Zm. We consider
the functions Fα :

{
t ∈ Zm

∣∣ t ≥ t0
}
×M → M , α ∈ {1, 2, . . . ,m}, such that

Fα(t + 1β, Fβ(t, x)) = Fβ(t + 1α, Fα(t, x)), (25)

∀t ≥ t0, ∀x ∈ M, ∀α, β ∈ {1, 2, . . . ,m}.
Then, for any x0 ∈ M , there exists a unique m-sequence
x :

{
t ∈ Zm

∣∣ t ≥ t0
}
→ M which satisfies

x(t + 1α) = Fα(t, x(t)), ∀t ≥ t0, ∀α ∈ {1, 2, . . . ,m}, (26)

and the condition x(t0) = x0.

Proof. Let M̃ =
{
s ∈ Zm

∣∣ s ≥ t0
}
×M and let Gα : M̃ → M̃ ,

Gα(s, x) =
(
s + 1α, Fα(s, x)

)
, ∀(s, x) ∈ M̃.

We apply Proposition 3.1 (for t1 = t0); according to step a), it follows that
Gα ◦Gβ = Gβ ◦Gα, ∀α ∈ {1, 2, . . . ,m}. From Theorem 2.1, b), it follows that

there exists a unique m-sequence y(·) =
(
s(·), x(·)

)
:
{
t ∈ Zm

∣∣ t ≥ t0
}
→ M̃

which satisfies

y(t + 1α) = Gα(y(t)), ∀t ≥ t0, ∀α ∈ {1, 2, . . . ,m}, (27)

and the condition y(t0) = (t0, x0). From Proposition 3.1, b), it follows that
x(·) satisfies the relations (26) and the initial condition x(t0) = x0.

Uniqueness of x(·): let x̃ :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ M an m-sequence which

satisfies the relations (26) and the condition x̃(t0) = x0. From Proposition 3.1,
b), it follows that the m-sequence

ỹ :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ M̃, ỹ(t) = (t, x̃(t)), ∀t ≥ t0,

satisfies the relations (27) and the condition ỹ(t0) = (t0, x0).
From the uniqueness property of the solution of the recurrence (27) (The-

orem 2.1, b)), it follows that the functions y and ỹ coincide; hence
(
s(t), x(t)

)
=(

t, x̃(t)
)
, ∀t ≥ t0; we obtain x(t) = x̃(t), ∀t ≥ t0. �

Proposition 3.2. Let α0 ∈ {1, 2, . . . ,m}, t0 ∈ Zm.
a) Let F :

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
×M → M . If, for any x0 ∈ M , there exists

at least one m-sequence x :
{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
→ M , which satisfies

x(t + 1α0) = F (t, x(t)), ∀t ≥ t0 − 1α0 , (28)

and the condition x(t0) = x0, then the function F (t0 − 1α0 , ·) is surjective.
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b) Suppose that for the functions Fα :
{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
×M → M , the

relations (25) hold, ∀t ≥ t0 − 1α0, ∀x ∈ M , ∀α, β ∈ {1, 2, . . . ,m}. If, for any
x0 ∈ M , there exists at most one m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t0− 1α0

}
→ M ,

which satisfies

x(t + 1α) = Fα(t, x(t)), ∀t ≥ t0 − 1α0 , ∀α ∈ {1, 2, . . . ,m}, (29)

and the condition x(t0) = x0, then the function Fα0(t0 − 1α0 , ·) is injective.

Proof. a) Let z ∈ M . There exists an m-sequence x(·) which satisfies (28)
and the initial condition x(t0) = z. For t = t0 − 1α0 , one obtains z = F (t0 −
1α0 , x(t0− 1α0)). Since z is arbitrary, it follows that F (t0− 1α0 , ·) is surjective.

b) Let p, q ∈ M such that Fα0(t0−1α0 , p) = Fα0(t0−1α0 , q). We can apply
Theorem 3.1. There exist the functions x, x̃ :

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
→ M for

which the relations (29) are true, and x(t0 − 1α0) = p, x̃(t0 − 1α0) = q.
Let x0 = Fα0(t0 − 1α0 , p) = Fα0(t0 − 1α0 , q). Then

x(t0) = Fα0(t0 − 1α0 , x(t0 − 1α0)) = Fα0(t0 − 1α0 , p) = x0,
x̃(t0) = Fα0(t0 − 1α0 , x̃(t0 − 1α0)) = Fα0(t0 − 1α0 , q) = x0.

It follows that x and x̃ coincide; hence x(t0−1α0) = x̃(t0−1α0), i.e., p = q. �

The next result can be proven without difficulty.

Lemma 3.2. Let β ∈ {1, 2, . . . ,m} and F : Zm ×M → M .
Let G : Zm×M → Zm×M , G(t, x) =

(
t+1β, F (t, x)

)
, ∀(t, x) ∈ Zm×M .

a) The function G is injective if and only if, for any t ∈ Zm, the function
F (t, ·) is injective.

b) The function G is surjective if and only if, for any t ∈ Zm, the function
F (t, ·) is surjective.

Theorem 3.2. Let M be a nonempty set. For each α ∈ {1, 2, . . . ,m}, we
consider the function Fα : Zm×M → M , to which we associate the recurrence
equation

x(t + 1α) = Fα(t, x(t)), ∀α ∈ {1, 2, . . . ,m}. (30)

The following statements are equivalent:
i) For any α ∈ {1, 2, . . . ,m} and any t ∈ Zm, the functions Fα(t, ·) are bijective
and

Fα(t + 1β, Fβ(t, x)) = Fβ(t + 1α, Fα(t, x)), (31)

∀(t, x) ∈ Zm ×M, ∀α, β ∈ {1, 2, . . . ,m}.
ii) For any pair (t0, x0) ∈ Zm ×M , and any index α0 ∈ {1, 2, . . . ,m}, there
exists a unique m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t0 − 1α0

}
→ M , which, for each

t ≥ t0 − 1α0, satisfies the relations (30), and also the condition x(t0) = x0.
iii) For any t0, t1 ∈ Zm, with t1 ≤ t0, and any x0 ∈ M , there exists an m-
sequence x :

{
t ∈ Zm

∣∣ t ≥ t1
}
→ M , which, for any t ≥ t1, satisfies the

relations (30), and also the condition x(t0) = x0.
iv) For any (t0, x0) ∈ Zm×M , there exists a unique m-sequence x : Zm → M ,
which, for any t ∈ Zm, satisfies the relation (30), and also x(t0) = x0.
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Proof. ii) =⇒ i): Let t1 ∈ Zm. For any t0 ≥ t1 and any x0 ∈ M , there exists a
unique m-sequence x :

{
t ∈ Zm

∣∣ t ≥ t0−1α0

}
→ M , which, for any t ≥ t0−1α0 ,

satisfies the relations (30), and also the condition x(t0) = x0.
The restriction of the function x(·) to

{
t ∈ Zm

∣∣ t ≥ t0
}

satisfies, for any
t ≥ t0, the recurrence (30), and also the condition x(t0) = x0.

From Proposition 1.1 it follows that the relations (31) hold, for any t ≥ t1.
Since t1 is arbitrary, we deduce that the relations (31) are true, for any t ∈ Zm.

The surjectivity of functions Fα(t, ·) follows from Proposition 3.2, a).
The injectivity of functions Fα(t, ·) follows from Proposition 3.2, b).
i) =⇒ iv): For each α ∈ {1, 2, . . . ,m}, we consider the function
Gα : Zm×M → Zm×M, Gα(t, x) =

(
t+1α, F (t, x)

)
, ∀(t, x) ∈ Zm×M.

Similar to the proof of Proposition 3.1, it is shown that the relations (31) are
true, for any (t, x) ∈ Zm ×M , if and only if Gα ◦Gβ = Gβ ◦Gα.

From Lemma 3.2, we deduce that, for any α ∈ {1, 2, . . . ,m}, the function
Gα is bijective.

Let (t0, x0) ∈ Zm × M . According to Theorem 2.2, vi), there exists a
unique m-sequence y(·) = (s(·), x(·)) : Zm → Zm ×M , which, for any t ∈ Zm,
satisfies the relations

y(t + 1α) = Gα(y(t)), ∀α ∈ {1, 2, . . . ,m}, (32)

and y(t0) = (t0, x0), which are equivalent to{
x(t + 1α) = Fα(s(t), x(t))

s(t + 1α) = s(t) + 1α

, ∀α ∈ {1, 2, . . . ,m} (33)

and s(t0) = t0, x(t0) = x0.
From Lemma 3.1, we obtain s(t) = t, ∀t ∈ Zm. Replacing in the first re-

lation of (33), it follows that the m-sequence x : Zm → M satisfies the relations
(30), ∀t ∈ Zm.

Uniqueness of x(·): let x̃ : Zm → M be a function which satisfies the
relations (30), ∀t ∈ Zm, and the condition x̃(t0) = x0. Easily we find that the
function ỹ : Zm → Zm ×M, ỹ(t) = (t, x̃(t)), ∀t ∈ Zm,
satisfies the relations (32), ∀t ∈ Zm, and the condition ỹ(t0) = (t0, x0).

From the uniqueness property of solutions of the recurrence (32) (accord-
ing to Theorem 2.2, vi)) it follows that the functions y and ỹ coincide; hence(
t, x(t)

)
=

(
t, x̃(t)

)
, ∀t ∈ Zm; we obtain x(t) = x̃(t), ∀t ∈ Zm.

iv) =⇒ iii): For each α ∈ {1, 2, . . . ,m}, we consider the function Gα

defined as in the proof of the implication i) =⇒ iv).
Let t0 ∈ Zm and (s0, x0) ∈ Zm ×M . We shall show that there exists a

unique m-sequence y(·) = (s(·), x(·)) : Zm → Zm ×M , which, for any t ∈ Zm,
satisfies the relations (32), and y(t0) = (s0, x0).

There exists a unique m-sequence x̃ : Zm → M which, for any t ∈ Zm,
satisfies the relations (30), and also the initial condition x̃(s0) = x0.
Let s : Zm → Zm, x : Zm → M , s(t) = t−t0+s0, x(t) = x̃(t−t0+s0), ∀t ∈ Zm.

Easily we find that the m-sequence y(·) = (s(·), x(·)) : Zm → Zm × M
satisfies, for any t ∈ Zm, the recurrence (32) and y(t0) = (s0, x0).
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The uniqueness of y(·): Let ỹ(·) = (σ(·), z(·)) : Zm → Zm × M which
satisfies, for any t ∈ Zm, the recurrence (32) and the condition ỹ(t0) = (s0, x0).
Hence, for any t ∈ Zm, the functions σ(·), z(·) satisfy the recurrence (33) and
σ(t0) = s0, z(t0) = x0. From Lemma 3.1, it follows σ(t) = t− t0 + s0 = s(t).
One observes that the m-sequence z̃ : Zm → M, z̃(t) = z(t+ t0−s0), ∀t ∈ Zm,
satisfies the recurrence (30), ∀t ∈ Zm, and z̃(s0) = x0. It follows that the
functions x̃ and z̃ coincide. Hence, we have z̃(t− t0 + s0) = x̃(t− t0 + s0), i.e.,
z(t) = x(t). Since σ(·) = s(·) and z(·) = x(·), we have ỹ(·) = y(·).

Hence, for the recurrence (32) we can apply Theorem 2.2, implication
vi) =⇒ iv). Let t0, t1 ∈ Zm, with t1 ≤ t0, and x0 ∈ M . There exists a
unique m-sequence x̃ : Zm → M , such that x̃(t0) = x0 and the relations (30)
are true, ∀t ∈ Zm. It is sufficient to select x as being the restriction of x̃ to{
t ∈ Zm

∣∣ t ≥ t1
}
.

Uniqueness of the function x(·): Let z :
{
t ∈ Zm

∣∣ t ≥ t1
}
→ M , which,

for any t ≥ t1 satisfies the recurrence (30), and z(t0) = x0.
Let y, ỹ :

{
t ∈ Zm

∣∣ t ≥ t1
}
→ Zm ×M , y(t) = (t, x(t)), ỹ(t) = (t, z(t)).

One observes that y and ỹ satisfy the recurrence (32), ∀t ≥ t1; we have
also y(t0) = ỹ(t0) = (t0, x0). From Theorem 2.2, it follows that the functions
y and ỹ coincide. We obtain (t, x(t)) = (t, z(t)), ∀t ≥ t1; hence x(t) = z(t).

iii) =⇒ ii) is an obvious implication. �

4. Recurrences based on a monoid action

Let M be a nonempty set,
(
N, ·, e

)
be a monoid and let ϕ : N ×M → M

be an action of the monoid N on the set M , i.e.,
ϕ(ab, x) = ϕ

(
a, (b, x)

)
, ϕ(e, x) = x, ∀a, b ∈ N, ∀x ∈ M. (34)

For each a ∈ N , x ∈ M , we denote ϕ(a, x) = ax (not to be confused with the
monoid operation on N). The relations (34) become

(ab)x = a(bx), ex = x, ∀a, b ∈ N,∀x ∈ M.
We consider a1, a2, . . . , am ∈ N , such that aαaβ = aβaα, ∀α, β ∈ {1, 2, . . . ,m}.

For each pair (t0, x0) ∈ Zm ×M , the recurrence

x(t + 1α) = aαx(t), ∀α ∈ {1, 2, . . . ,m}, (35)
with the initial condition x(t0) = x0, has unique solution

x :
{
t ∈ Zm

∣∣ t ≥ t0
}
→ M,

x(t) = a
(t1−t10)
1 a

(t2−t20)
2 · . . . · a(tm−tm0 )

m x0. (36)
This can be obtained by applying Theorem 2.1 for the functions Gα : M → M ,
Gα(x) = aαx, ∀x ∈ M . We have Gα ◦ Gβ(x) = Gβ ◦ Gα(x) = aαaβx. One
observes that, for any t ∈ Nm,

G
(t1)
1 ◦G

(t2)
2 ◦ . . . ◦G(tm)

m (x) = at1

1 at2

2 · . . . · atm

m x. (37)

Suppose that for any α ∈ {1, 2, . . . ,m}, aα is invertible; then Gα is
bijective, with the inverse G−1

α (x) = a−1
α x. We find that the formula (37) is

true for any t ∈ Zm. There exists a unique m-sequence x̃ : Zm → M , solution
of the recurrence (35), with x̃(t0) = x0; the function x̃(·) is a unique extension
of x(·) and it is defined by the formula (36), but for each t ∈ Zm.
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was willing to participate in our discussions about multivariate sequences and
to suggest the title “multiple recurrences”.

REFE RENC ES

[1] M. Ahmadi, Design of 2-Dimensional recursive digital filters, Control and Dynamics
System, 78(1996), 131-181.
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