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SUPERCONVERGENCE OF THE STATIONARY INCOMPRESSIBLE
MAGNETOHYDRODYNAMICS EQUATIONS

Pengfei Wang1, Pengzhan Huang2, Jilian Wu2

A superconvergence result of the 2D stationary incompressible magnetohydrody-
namics equations is constructed based on finite element method and L2-projection technique,
which, in fact, is a postprocessing procedure that establishes a new approximation based on
a high order basic function on coarse mesh. Next, numerical experiments are presented to
confirm correctness and effectiveness of theoretic analysis.

Keywords: magnetohydrodynamics, finite element method, superconvergence,
L2-projection technique.

MSC2010: 65N 30, 65N 12.

1. Introduction

Incompressible magnetohydrodynamics (MHD) problem is used to study
the interaction between a viscous, incompressible, electrically conducting fluid
and an external field. This strong nonlinear multiple variable coupling system is
constructed by the Navier-stokes equations of hydrodynamics and the Maxwell’s
of electromagnetism via Lorentz force and Ohm’s law. The model is very important
and widely used in many areas, such as liquid metal cooling of nuclear reactors,
process metallurgy and so on.

In this article, we will consider stationary incompressible MHD equations as
follow [1]:

− R−1
e ∆u + u · ∇u + ∇p − SccurlB × B = f in Ω, (1)

ScR−1
m curl(curlB) − Sccurl(u × B) = g in Ω, (2)

∇ · u = 0 in Ω, (3)

∇ · B = 0 in Ω, (4)
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with the following boundary conditions

u = 0 on ∂Ω, (5)

B · n = 0 on ∂Ω, (6)

n × curlB = 0 on ∂Ω, (7)

whereΩ⊂R2, n is outward normal unit vector of ∂Ω , Re is hydrodynamic Reynolds
number, Rm is magnetic Reynolds and Sc is coupling number. The MHD equations
are characterized by three fields, and further discussion of them can be found in
[2,3,4,5]. Here u = (u1, u2, 0), B = (B1,B2, 0) and p denote the velocity, magnetic and
pressure field, respectively. And the known functions f = ( f1, f2, 0) and g = (g1, g2, 0)
are source terms.

In recent years, many studies have been devoted to the incompressible MHD
equations by using finite element method (FEM). Gunzburger et al. [1] gave a
detailed existence and uniqueness of the solutions of both the weak formulation and
discrete Galerkin finite element schemes of MHD equations. In [6,7], the FEM for
MHD problem was shown, which was based on weighted regularization analyzed
by Hasler et al [8]. Besides, in order to violate the inf-sup condition, Gerbeau [3]
and Salah et al. [4] developed and analyzed a stabilized finite element technique
and Galerkin least-square method for MHD, respectively.

Superconvergence for finite element solutions has been an active research
area in numerical analysis. The main objective in the superconvergence study is to
improve the existing approximation accuracy by applying certain post-processing
techniques. Several types of superconvergence in finite element methods have
been studied in last two decades [9]. In this paper, we are concerned with the
MHD problem and shall establish a superconvergence result for finite element
approximations of the considered problem. We will apply a superconvergence
technique called L2-projection method proposed and analyzed by Wang and Ye
[10]. The basic idea is to project the finite element solution to other finite element
space on a coarser mesh. The difference of the two mesh sizes can be used to achieve
a superconvergence result after post-processing procedure. For more details of this
method, we refer the reader to the work of Chen and Wang [11], Heimsund et al.
[12], Ye et al. [13-16], Liu and Yan [17], Li et al. [18,19] and Huang et al. [20,21].

The rest of the article is organized as follows. In the next section, an abstract
functional setting of the 2D stationary MHD equations is given and then in Sect.
3 stability and convergence of standard FEM are recalled. In Sect. 4, a supercon-
vergence result of the finite element solutions of the 2D stationary incompressible
MHD problem based on L2-projection method is constructed. In the final section,
some numerical tests are provided to support the theoretical analysis.

2. Preliminaries

To get a weak form of (1)-(7), we employ the standard scalar Hilbert space
Hk(Ω) = Wk,2(Ω) for nonnegative integer k with norm ∥v∥k = (

∑k
|γ|=0 ∥Dγv∥20)

1
2 . For
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vector-value functions, we use the Hilbert space Hk(Ω) = (Hk(Ω))2 with norm
∥v∥k = (

∑2
i=1 ∥vi∥2k)

1
2 . Next, we introduce the following spaces [22,23]:

X = {w ∈H1(Ω) : w|∂Ω = 0},
W = {w ∈H1(Ω) : w · n|∂Ω = 0},
V = {w ∈ X : divw = 0 in Ω},

Vn = {w ∈W : divw = 0 in Ω},
and

M = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

qdx = 0
}
.

We use the product space W0n = X ×W equipped with the usual norm ∥(w,Φ)∥1
for all (w,Φ) ∈ W0n where ∥(w,Φ)∥i = (∥w∥2i + ∥Φ∥2i )

1
2 (i=0,1,2). The space H−1(Ω)

denotes the dual of H1
0(Ω) and ∥ · ∥−1 represents the norm of dual space.

Now, we give the weak variational form of incompressible MHD system as
follows: Find ((u,B), p) ∈W0n ×M such that

A0((u,B), (v,Ψ)) + A1((u,B), (u,B), (v,Ψ)) − d((v,Ψ), p) + d((u,B), q)

= (F, (v,Ψ)), ∀((v,Ψ), q) ∈W0n ×M,
(8)

where

A0((u,B), (v,Ψ)) = a0(u, v) + b0(B,Ψ),

a0(w, v) = R−1
e (∇w,∇v),

b0(Φ,Ψ) = ScR−1
m (∇ ×Φ,∇ ×Ψ) + ScR−1

m (∇ ·Φ,∇ ·Ψ),

A1((u,B), (w,Φ), (v,Ψ)) = a1(u,w,v) − c(Φ,B, v) + c(Ψ,B,w),

a1(u,w,v) = (u · ∇w +
1
2

(divu)w,v) =
1
2

(u · ∇w, v) − 1
2

(u · ∇v,w),

c(Φ,B, v) = Sc(curlΦ × B, v),

d((v,Ψ), q) = (∇ · v, q),

(F, (v,Ψ)) = (f,v) + (g,Ψ).

Further, we set

∥F∥−1 = sup
(0,0),(v,Ψ)∈W0n

(F, (v,Ψ))
∥(v,Ψ)∥1

.

The following properties for trilinear form a1(·, ·, ·) are helpful to get the error
estimates [23,24]:

a1(u,w,v) = −a1(u, v,w), ∀u,w,v ∈ X, (9)

|a1(u,w,v)| ≤ C2
0∥∇u∥0∥∇w∥0∥∇v∥0, ∀u,w, v ∈ X, (10)

where C0 depends only on Ω. Obviously, A1(·, ·, ·) satisfies

A1((u,B), (w,Φ), (w,Φ)) = 0, ∀(u,B), (w,Φ) ∈W0n. (11)
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Next, we recall the coercive and continuous properties of A0(·, ·) and the con-
tinuous property of A1(·, ·, ·) [1] as follows based on the following two inequalities

∥curlv∥0 ≤
√

2∥∇v∥0,

and

∥∇ · v∥0 ≤ ∥∇v∥0,

which are shown in [23,25]. For all (u,B), (w,Φ), (v,Ψ) ∈W0n, there hold

A0((w,Φ)), (w,Φ))) ≥ ν1∥(w,Φ)∥21, (12)

A0((w,Φ)), (v,Ψ))) ≤ ν2∥(w,Φ)∥1∥(v,Ψ)∥1, (13)

A1((u,B), (w,Φ), (v,Ψ) ≤ N∥(u,B)∥1∥(w,Φ)∥1∥(v,Ψ)∥1, (14)

where

ν1 = min{R−1
e ,C1ScR−1

m }, ν2 = max{R−1
e , 3ScR−1

m }, N =
√

2C2
0 max{1,

√
2Sc},

and C1 (depending only on Ω) is an embedding constant of W ↪→ H1(Ω), i.e. ,

∥∇ ×Ψ∥20 + ∥∇ ·Ψ∥20 ≥ C1∥Ψ∥21, ∀Ψ ∈W. (15)

Final, we recall the existence and uniqueness results in [23] as follows.
Theorem 2.1 If Re, Sc and Rm satisfy the uniqueness condition

0 <
N∥F∥−1

ν2
1

< 1, (16)

there exists a unique solution pair ((u,B), p) ∈W0n ×M in problem (8) and satisfies

ν1∥(u,B)∥1 ≤ ∥F∥−1. (17)

At the end of the section, we consider the following linear problem: find
((w,Φ), s) ∈W0n ×M such that for all ((v,Ψ), q) ∈W0n ×M,

A0((v,Ψ), (w,Φ)) + A1((u,B), (v,Ψ), (w,Φ)) + A1((v,Ψ), (u,B), (w,Φ)) − d((v,Ψ), p)

= (F, (v,Ψ)),

d((w,Φ), q) = (γ, q).
(18)

Assume the domain Ω is convex polygonal. Moreover, supposing f,g ∈ L2(Ω)
and γ ∈ L2(Ω), the solution ((w,Φ), s) of the problem (18) satisfies the following
regularity [23]

∥(w,Φ)∥2 + ∥s∥1 ≤ C(∥f∥0 + ∥g∥0 + ∥γ∥1). (19)

Throughout the paper, the letter C represents a general positive constant meaning
for different values at different places, which has nothing to do with mesh size.
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3. Finite element approximation

Now, let Th be a quasi-uniform and regular partition of Ω into triangles
with the mesh parameter h (h → 0). Based on the Th, the finite element spaces
(Xh,Mh,Wh) are constructed. Then, we introduce the following assumption on
(Xh,Mh,Wh) in [1, 2].
Assumption A1 Let Wh

0n = Xh ×Wh. There exists a constant β (only dependent on
Ω), such that

sup
(v,Ψ)∈Wh

0n

d((v,Ψ), q)
∥(v,Ψ)∥1

≥ β∥q∥0,∀q ∈Mh.

Moveover, we employ the following Mini-element used traditionally for the Navier-
Stokes equations to approximate velocity and pressure which satisfies the above
assumption, and any appropriate subspace of H1(Ω) to approximate magnetic filed,
i.e.,

Xh = (Pb
1)2 ∩ X, Mh =

{
qh ∈ C0(Ω) : vh|K ∈ P1(K),∀K ⊂ Th

}
,

where
Pb

1 =
{
vh ∈ C0(Ω) : vh|K ∈ P1(K) ⊕ span{b̂},∀K ⊂ Th

}
,

b̂ is a bubble function, and P1(K) denotes the space of polynomials of degree less
than or equal to 1 on element K. For convenience, we use Wh = (Pb

1)2 ∩W for
approximation of magnetic field. So, the Galerkin finite element scheme of (8) is to
seek ((uh,Bh), ph) ∈Wh

0n ×Mh such that

A0((uh,Bh), (v,Ψ)) + A1((uh,Bh), (uh,Bh), (v,Ψ)) − d((v,Ψ), ph) + d((uh,Bh), q)

= (F, (v,Ψ)), ∀((v,Ψ), q) ∈Wh
0n ×Mh.

(20)

Besides, we need to recall the following important theorem in [23] which is
necessary for superconvergence result that we want to establish.
Theorem 3.1 Under the assumptions of Theorem 2.1 and Assumption A1, the finite
element scheme (20) has a unique solution pair ((uh,Bh), ph) ∈ Wh

0n × Mh which
satisfies

ν1∥(uh,Bh)∥1 ≤ ∥F∥−1, (21)

and the error estimate

∥(u − uh,B − Bh)∥0 + h
(
ν1∥(u − uh,B − Bh)∥1 + ∥p − ph∥0

)
≤ Ch2∥F∥0. (22)

4. Superconvergence result

From the above section, the finite element partition Th was used to produce
the finite element approximation ((uh,Bh), ph) in (20), and now in order to get a
superconvergence result, we introduce another three finite element partitions Tρi
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with mesh sizes ρi, where h ≪ ρi (i = 1, 2, 3). Assume that these partitions are
quasi-uniform and regular. Let ρi and h have the following relationship:

ρi = hσi ,

where σi ∈ (0, 1). The parameter σi will have a great effect on achieving a supercon-
vergence for the finite element approximation ((uh,Bh), ph). Then we employ some
finite element spaces W

(ρ1,ρ2)
on and Mρ3 , which consist of piecewise polynomials of

degree δ1, δ2 and δ3, associated with the partitions Tρ1 ,Tρ2 and Tρ3 , respectively.
Next, we define Q(ρ1,ρ2) and Hρ3 to be L2-projectors from L2(Ω)2 and L2(Ω)

onto the finite element spaces W(ρ1,ρ2)
on and Mρ3 , respectively. Note that these L2-

projectors are the self-adjoint operators [26], and they have the following properties
[27]:

∥Q(ρ1,ρ2)ϕ∥0 ≤ C∥ϕ∥0, ∀ϕ ∈ L2(Ω)2, ∥Hρ3ϕ∥0 ≤ C∥ϕ∥0, ∀ϕ ∈ L2(Ω).

In fact, the post-processing of the finite element approximation ((uh,Bh), ph)
is simply given by their L2-projections. Hence, we arrive at the superconvergence
result as follows

superconvergence ((uh,Bh), ph) := post-processed ((uh,Bh), ph) = (Q(ρ1,ρ2)(uh,Bh),Hρ3ph).

Moreover, subtracting (8) from (20), we obtain the error equation

A0((u − uh,B − Bh), (v,Ψ)) + A1((u − uh,B − Bh), (u,B), (v,Ψ))

+ A1((uh,Bh), (u − uh,B − Bh), (v,Ψ)) − d((v,Ψ), p − ph)

+ d((u − uh,B − Bh), q) = 0, ∀((v,Ψ), q) ∈Wh
0n ×Mh,

(23)

and the above error equation will play an important role in proof of following lem-
mas. Now we provide two important lemmas, which will be useful for establishing
superconvergence result.
Lemma 4.1 Assume (19) holds and W(ρ1,ρ2)

on ⊂ L2(Ω)2. Under the assumption of
Theorem 3.1, there exists a constant C such that

∥Q(ρ1,ρ2)(u − uh,B − Bh)∥0 ≤ Ch2∥F∥0.

Proof. Consider the following problem: Find ((w,Φ), s) ∈W0n ×M such that for all
((v,Ψ), q) ∈W0n ×M,

A0((v,Ψ), (w,Φ)) + A1((u,B), (v,Ψ), (w,Φ)) + A1((v,Ψ), (u,B), (w,Φ)) − d((v,Ψ)), s)

= (Q(ρ1,ρ2)ϕ, (v,Ψ)),

d((w,Φ), q) = 0,
(24)
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for any ϕ ∈ (C∞0 (Ω))2. Subtracting (23) with ((v,Ψ), q) = ((wh,Φh), sh) from (24) with
((v,Ψ), q) = ((u − uh,B − Bh), p − ph), we get

(Q(ρ1,ρ2)ϕ, (u − uh,B − Bh))

= A0((u − uh,B − Bh), (w −wh,Φ −Φh)) + A1((u − uh,B − Bh), (u,B), (w −wh,Φ −Φh))

+ A1((u,B), (u − uh,B − Bh), (w −wh,Φ −Φh))

− A1((u − uh,B − Bh), (u − uh,B − Bh), (w −wh,Φ −Φh))

+ A1((u − uh,B − Bh), (u − uh,B − Bh), (w,Φ))

− d((w −wh,Φ −Φh), p − ph) − d((u − uh,B − Bh), s − sh), (25)

for all ((wh,Φh), sh) ∈Wh
0n ×Mh. Using (13), (14) and (22), we arrive at

(Q(ρ1,ρ2)ϕ, (u − uh,B − Bh))

≤ ν2∥(u − uh,B − Bh)∥1∥(w −wh,Φ −Φh)∥1
+ 2N∥(u,B)∥1∥(u − uh,B − Bh)∥1∥(w −wh,Φ −Φh)∥1
+N∥(u − uh,B − Bh)∥12(∥(w −wh,Φ −Φh)∥1 + ∥(w,Φ)∥1) + ∥(u − uh,B − Bh)∥1∥s − sh∥0
+ ∥(w −wh,Φ −Φh)∥1∥p − ph∥0
≤ C
(
h
(
∥(u − uh,B − Bh)∥1 + ∥p − ph∥0

)
+ ∥(u − uh,B − Bh)∥21

)(
∥(w,Φ)∥2 + ∥s∥1

)
≤ Ch2∥F∥0

(
∥(w,Φ)∥2 + ∥s∥1

)
.

Moreover, applying the regularity (19) and the property of L2-projection yields

∥(w,Φ)∥2 + ∥s∥1 ≤ C∥Q(ρ1,ρ2)ϕ∥0 ≤ C∥ϕ∥0, (26)

Then combining with the aforementioned bound, we lead to

∥Q(ρ1,ρ2)(u − uh,B − Bh)∥0 = sup
ϕ∈(C∞0 (Ω))2,ϕ,0

| (Q(ρ1,ρ2)(u − uh,B − Bh), ϕ) |
∥ϕ∥0

= sup
ϕ∈(C∞0 (Ω))2,ϕ,0

| ((u − uh,B − Bh),Q(ρ1,ρ2)ϕ) |
∥ϕ∥0

≤ Ch2∥F∥0,

where the second equation is deduced by property of the self-adjoint operator
Q(ρ1,ρ2) (see Theorem 12.14, [26]).

The proof of the lemma completes.

Lemma 4.2 Assuming (19), Hρ3 ∈ H1(Ω) and Theorem 3.1 hold, there exists a
constant C such that

∥Hρ3p −Hρ3ph∥0 ≤ Ch2−σ3∥F∥0.
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Proof. By the definitions of ∥ · ∥0 and Hρ3 , we have

∥Hρ3p −Hρ3ph∥0 = sup
ϕ∈C∞0 (Ω),ϕ,0

| (Hρ3p −Hρ3ph, ϕ) |
∥ϕ∥0

= sup
ϕ∈C∞0 (Ω),ϕ,0

| (p − ph,Hρ3ϕ) |
∥ϕ∥0

.

As the proof of Lemma 4.1, here the second equation is deduced by property of the
self-adjoint operator Hρ3 .

Next, consider the following dual linear problem: seeking ((ζ,β), θ) ∈W0n×M
such that for all ((v,Ψ), q) ∈W0n ×M,A0((v,Ψ), (ζ,β)) + A1((u,B), (v,Ψ), (ζ,β)) + A1((v,Ψ), (u,B), (ζ,β)) − d((v,Ψ), θ) = 0,

d((ζ,β), q) = (Hρ3ϕ, q).
(27)

In (27) and (23), choose ((v,Ψ), q) = ((u − uh,B − Bh), p − ph) and ((v,Ψ), q) =
((ζh,βh), θh), respectively, and subtracting (23) from (27), we get

(Hρ3ϕ, p − ph) = A0((u − uh,B − Bh), (ζ − ζh,β − βh))

+ A1((u − uh,B − Bh), (u,B), (ζ − ζh,β − βh))

+ A1((u,B), (u − uh,B − Bh), (ζ − ζh,β − βh))

− A1((u − uh,B − Bh), (u − uh,B − Bh), (ζ − ζh,β − βh))

+ A1((u − uh,B − Bh), (u − uh,B − Bh), (ζ,β))

− d((ζ − ζh,β − βh), p − ph) − d((u − uh,B − Bh), θ − θh),

for all ((ζh,βh), θh) ∈ Wh
0n ×Mh. Similarly, using (13), (14), (19) and (22), we arrive

at

(Hρ3ϕ, p − ph) ≤ Ch2∥F∥0∥Hρ3ϕ∥1. (28)

Further, by using the above property of projection Hρ3 and the inverse inequality
[28]:

∥Hρ3ϕ∥1 ≤ Cρ−1
3 ∥Hρ3ϕ∥0, ∀ϕ ∈ L2(Ω),

we arrive at

∥Hρ3p −Hρ3ph∥0 = sup
ϕ∈C∞0 (Ω),ϕ,0

| (p − ph,Hρ3ϕ) |
∥ϕ∥0

≤ sup
ϕ∈C∞0 (Ω),ϕ,0

Ch2∥F∥0∥Hρ3ϕ∥1
∥ϕ∥0

≤ Ch2ρ−1
3 ∥F∥0 ≤ Ch2−σ3∥F∥0.

Then the proof of the lemma completes.
Now, we are in a position to estimate (u,B) −Q(ρ1,ρ2)(uh,Bh) and p −Hρ3ph.

Theorem 4.1 Under the above mentioned assumptions of lemmas 4.1 and 4.2, if
ρi, σi (i = 1, 2) and h satisfy ρi = hσi with σi =

2
δi+1 , then

∥(u,B) −Q(ρ1,ρ2)(uh,Bh)∥0 ≤ Ch2(∥(u,B)∥δi+1 + ∥F∥0),
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and

∥∇(ρ1,ρ2)((u,B) −Q(ρ1,ρ2)(uh,Bh))∥0 ≤ Ch
2δi

1+δi (∥(u,B)∥δi+1 + ∥F∥0),

where ∇(ρ1,ρ2) is defined element-wise over the partition Tρ1 and Tρ2 . Besides, if
ρ3, σ3 and h satisfy ρ3 = hσ3 with σ3 =

2
δ3+2 , then

∥p −Hρ3ph∥0 ≤ Ch
2(δ3+1)
δ3+2 (∥p∥δ3+1 + ∥F∥0).

Proof. By the definitions of Q(ρ1,ρ2) and Hρ3 , we obtain

∥(u,B) −Q(ρ1,ρ2)(u,B)∥0 + ρi∥∇(ρ1,ρ2)((u,B) −Q(ρ1,ρ2)(u,B))∥0 ≤ Cρδi+1
i ∥(u,B)∥δi+1

= Chσi(δi+1)∥(u,B)∥δi+1,

∥p −Hρ3ph∥0 ≤ Cρδ3+1
3 ∥p∥δ3+1 = Chσ3(δ3+1)∥p∥δ3+1.

Moreover, combining the Minkowski inequality, the lemmas 4.1 and 4.2 yields

∥(u,B) −Q(ρ1,ρ2)(uh,Bh)∥0 ≤ ∥(u,B) −Q(ρ1,ρ2)(u,B)∥0 + ∥Q(ρ1,ρ2)(u,B) −Q(ρ1,ρ2)(uh,Bh)∥0
≤ C(hσi(δi+1)∥(u,B)∥δi+1 + h2∥F∥0),

(29)

∥p −Hρ3ph∥0 ≤ C(hσ3(δ3+1)∥p∥δ3+1 + h2−σ3∥F∥0). (30)

Then the error estimate (29) and (30) can be optimized by choosing σi =
2
δi+1 and σ3

such that σ3(δ3 + 1) = 2− σ3 (that is σ3 =
2
δ3+2 ), respectively. Until now, we have got

the L2-estimate of (u,B) −Q(ρ1,ρ2)(uh,Bh) and p −Hρ3ph.
Next, by using the inverse inequality and Lemma 4.1, we have

∥∇(ρ1,ρ2)((u,B) −Q(ρ1,ρ2)(uh,Bh))∥0
≤ ∥∇(ρ1,ρ2)((u,B) −Q(ρ1,ρ2)(u,B))∥0 + ∥∇(ρ1,ρ2)(Q(ρ1,ρ2)(u,B) −Q(ρ1,ρ2)(uh,Bh))∥0
≤ C(hσiδi∥(u,B)∥δi+1 + h2−σi∥F∥0).

Then optimizing the above-mentioned estimate by choosing such a σi that σiδi =

2 − σi, we can get the following estimate:

∥∇(ρ1,ρ2)((u,B) −Q(ρ1,ρ2)(uh,Bh))∥0 ≤ Ch
2δi

1+δi (∥(u,B)∥δi+1 + ∥F∥0). (31)

Combining (29)-(31), we complete the proof.

5. Assessment of superconvergence

In this section, we will give computational results for the stationary incom-
pressible MHD equations. Our primary aim is to obtain superconvergence result.
For current investigation, an uniform mesh is adopted; that is, the mesh consists of
triangular elements that are obtained by dividing Ω into subsquares of equal size
and then drawing the diagonal in each subsquare.
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Let the solution domain Ω = [0, 1] × [0, 1]. The right-hand sides of MHD
equations are determined by the exact solutions (for the velocity u = (u1,u2) , the
magnetic B = (B1,B2) and the pressure p) given by

u1(x, y) = π sin(πy) cos(πy) sin2(πx), u2(x, y) = −π sin(πx) cos(πx) sin2(πy),

B1(x, y) = sin(πx) cos(πy), B2(x, y) = − sin(πy) cos(πx),

p(x, y) = cos(πx) cos(πy).

This example is aimed to confirm the predicted superconvergence rate of the fi-
nite element approximation for the stationary MHD equations by the L2-projection
method.

We take Sc = 1,Re = 1 and Rm = 1. From Theorem 3.1, we know that the
finite element solution pair ((uh,Bh), ph) has the optimal error estimate. Moreover,
in order to achieve superconvergence for the numerical solution, the L2-projection
method is applied. The key of this technique is to project one finite element space
onto other finite element space based on a high order of polynomial on coarse mesh.
In Table 1, we present a theoretical superconvergence result of the finite element
solution by Theorem 4.1, where δ1 = δ2 = 2, δ3 = 1.

Table 1 Superconvergence result by projecting (P1b)2 − P1 to (P2)2 − P1.

FEM solutions mesh uL2 − rate uH1 − rate BL2 − rate BH1 − rate PL2 − rate

((uh,Bh), ph) h h h 2 1 2 1 1

(Q(ρ1 ,ρ2)(uh,Bh),Hρ3 ph) h
2
3 h

2
3 h

2
3 2 4

3 2 4
3

4
3

On the one hand, we test the convergence rate of the finite element solution for
the stationary MHD equations. Table 2 shows the convergence rates with different
mesh sizes by (P1b)2 −P1 element. The numerical convergence rate for the pressure
in the L2-norm seems better than the theoretical one.

Table 2 The convergence rate of (P1b)2 − P1.

1
h

∥u−uh∥0
∥u∥0

∥∇(u−uh)∥0
∥∇u∥0

∥B−Bh∥0
∥B∥0

∥∇(B−Bh)∥0
∥∇B∥0

∥p−ph∥0
∥p∥0

10 6. 77e-2 2. 42e-1 2. 51e-2 1. 48e-1 1. 37e-0

20 1. 71e-2 1. 21e-1 6. 36e-3 7. 44e-2 4. 38e-1

30 7. 61e-3 8. 08e-2 2. 83e-3 4. 96e-2 2. 31e-1

40 4. 28e-3 6. 06e-2 1. 60e-3 3. 72e-2 1. 48e-1

50 2. 74e-3 4. 84e-2 1. 02e-3 2. 98e-2 1. 05e-1

Rate 2.00 1.00 2.00 1.00 1.53

On the other hand, we check the superconvergence result of the FEM de-
veloped for the considered problem. By applying the L2-projection method, the
solution (Q(ρ1,ρ2)(uh,Bh),Hρ3ph) is given by follows: Find (Q(ρ1,ρ2)(uh,Bh),Hρ3ph) ∈
W

(ρ1,ρ2)
on ×Mρ3 for all ((v,Ψ), q) ∈W (ρ1,ρ2)

on ×Mρ3 such that

(Q(ρ1,ρ2)(uh,Bh), (v,Ψ)) = ((uh,Bh), (v,Ψ)), (Hρ3ph, q) = (ph, q),
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where ((uh,Bh), ph) is the solution obtained by the FEM. The error estimates for
(Q(ρ1,ρ2)(uh,Bh),Hρ3ph) are given in Theorem 4.1. In Table 3, five values of h are
chosen, and then the corresponding ρi (i = 1, 2, 3) is obtained by using ρi = hσi , σi =
2
3 . Numerical result by projecting (P1b)2 − P1 to (P2)2 − P1 is listed and it confirms
the superconvergence result provided in Theorem 4.1.

Table 3 The superconvergence result by projecting (P1b)2 − P1 to (P2)2 − P1.

1
h

1
ρi

∥u−Qρ1
uh∥0

∥u∥0
∥∇ρ1 (u−Qρ1

uh)∥0
∥∇u∥0

∥B−Qρ2 Bh∥0
∥B∥0

∥∇ρ2 (B−Qρ2 Bh)∥0
∥∇B∥0

∥p−Hρ3 ph∥0
∥p∥0

10 5 7. 15e-2 1. 71e-1 2. 53e-2 6. 57e-2 7. 06e-1

20 7 1. 71e-2 6. 33e-2 6. 29e-3 2. 44e-2 2. 08e-1

30 10 7. 78e-3 3. 82e-2 2. 79e-3 1. 40e-2 1. 10e-1

40 12 4. 37e-3 2. 48e-2 1. 56e-3 8. 41e-3 7. 15e-2

50 14 2. 77e-3 1. 80e-2 9. 98e-4 6. 05e-3 5. 22e-2

Rate 2.06 1.42 2.01 1.48 1.41
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[8] U. Hasler, A. Schneebeli, D. Schözau, Mixed finite element approximation of incompressible
MHD problems based on weighted regularization. Applied Numerical Mathematics. 51(2004), 19-
45.



292 Pengfei Wang, Pengzhan Huang, Jilian Wu
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