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SUPERCONVERGENCE OF THE STATIONARY INCOMPRESSIBLE
MAGNETOHYDRODYNAMICS EQUATIONS

Pengfei Wangl, Pengzhan Huangz, Jilian Wu?

A superconvergence result of the 2D stationary incompressible magnetohydrody-
namics equations is constructed based on finite element method and L2-projection technique,
which, in fact, is a postprocessing procedure that establishes a new approximation based on
a high order basic function on coarse mesh. Next, numerical experiments are presented to
confirm correctness and effectiveness of theoretic analysis.
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1. Introduction

Incompressible magnetohydrodynamics (MHD) problem is used to study
the interaction between a viscous, incompressible, electrically conducting fluid
and an external field. This strong nonlinear multiple variable coupling system is
constructed by the Navier-stokes equations of hydrodynamics and the Maxwell’s
of electromagnetism via Lorentz force and Ohm’s law. The model is very important
and widely used in many areas, such as liquid metal cooling of nuclear reactors,
process metallurgy and so on.

In this article, we will consider stationary incompressible MHD equations as
follow [1]:

~R'Au+u-Vu+Vp-SccurlBXxB=f in Q, (1)
SCR,_churl(curlB) —Sccurl(uxB)=g in Q, 2
V-u=0 in Q, 3)
V:-B=0 in Q, 4)
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with the following boundary conditions

u=0 on JQ, @)
B-n=0 on JQ, (6)
nXcurlB=0 on JQ, (7)

where Q € R?, nis outward normal unit vector of dQ, R, is hydrodynamic Reynolds
number, R, is magnetic Reynolds and S, is coupling number. The MHD equations
are characterized by three fields, and further discussion of them can be found in
[2,3,4,5]. Here u = (u1,up,0), B = (By, Bz, 0) and p denote the velocity, magnetic and
pressure field, respectively. And the known functionsf = (f;, f>,0)and g = (g1, 2,0)
are source terms.

In recent years, many studies have been devoted to the incompressible MHD
equations by using finite element method (FEM). Gunzburger et al. [1] gave a
detailed existence and uniqueness of the solutions of both the weak formulation and
discrete Galerkin finite element schemes of MHD equations. In [6,7], the FEM for
MHD problem was shown, which was based on weighted regularization analyzed
by Hasler et al [8]. Besides, in order to violate the inf-sup condition, Gerbeau [3]
and Salah et al. [4] developed and analyzed a stabilized finite element technique
and Galerkin least-square method for MHD, respectively.

Superconvergence for finite element solutions has been an active research
area in numerical analysis. The main objective in the superconvergence study is to
improve the existing approximation accuracy by applying certain post-processing
techniques. Several types of superconvergence in finite element methods have
been studied in last two decades [9]. In this paper, we are concerned with the
MHD problem and shall establish a superconvergence result for finite element
approximations of the considered problem. We will apply a superconvergence
technique called L?-projection method proposed and analyzed by Wang and Ye
[10]. The basic idea is to project the finite element solution to other finite element
space on a coarser mesh. The difference of the two mesh sizes can be used to achieve
a superconvergence result after post-processing procedure. For more details of this
method, we refer the reader to the work of Chen and Wang [11], Heimsund et al.
[12], Ye et al. [13-16], Liu and Yan [17], Li et al. [18,19] and Huang et al. [20,21].

The rest of the article is organized as follows. In the next section, an abstract
functional setting of the 2D stationary MHD equations is given and then in Sect.
3 stability and convergence of standard FEM are recalled. In Sect. 4, a supercon-
vergence result of the finite element solutions of the 2D stationary incompressible
MHD problem based on L2-projection method is constructed. In the final section,
some numerical tests are provided to support the theoretical analysis.

2. Preliminaries

To get a weak form of (1)-(7), we employ the standard scalar Hilbert space
H*Q) = Wk2(Q) for nonnegative integer k with norm |[v||; = (Zﬁq:o ||D7’v||é)%. For
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vector-value functions, we use the Hilbert space HYQ) = (H*(Q))? with norm

[[v]lx = (21'2:1 ||Ui||i)%- Next, we introduce the following spaces [22,23]:

X ={we H'(Q): wiyo =0},

W={we Hl(Q) :W - nlyg = 0},
V={weX:divw =0in Q},

Va={weW:divw = 0in Q},

and
M =12Q) = {q € 12(Q) : fQ gix = 0}.

We use the product space Wy, = X X W equipped with the usual norm [|[(w, ®@)||;
for all (w, @) € Wy,, where ||(w, D)||; = (||w||z.2 + II(I)IIZ.Z)% (1=0,1,2). The space H_l(Q)
denotes the dual of H(l)(Q) and || - [|-1 represents the norm of dual space.

Now, we give the weak variational form of incompressible MHD system as

follows: Find ((u, B), p) € Wo,, X M such that
Ao((u, B), (v, W) + A1((u, B), (u, B), (v, W) — d((v, ¥),p) + d((u, B),q) g
= (F,(v,W)), Y((v,¥),q) € W, X M, ®)

where
A()((ll, B)I (V, ‘P)) = El()(ll, V) + bO(B/ "p)/
ao(w,v) = R;H(Vw, Vv),
bo(®, W) = S.R(VX D, VXW) +S.RI(V-D,V-W),
Al((u/ B)/ (W/ CD)/ (V/ ‘p)) = ﬂl(u, w, V) - C((D/ B/ V) + C(‘pl B/ W)/

aj(u,w,v) = (u-Vw + %(divu)w, V) = %(u -Vw,v) — %(u -Vv,w),
(P, B, v) = S (curl® X B, v),
d((V, ‘p)/ EI) = (V "V, E]),
F (v,W)) = (f,v)+ (g W)
Further, we set
IFll_; = sup F, (v, W)
(0,0)£(v,W)eWgn (v, W)llx
The following properties for trilinear form a;(-, -, -) are helpful to get the error
estimates [23,24]:
ai (ur w, V) =—m (ur v, W), vu/ W,V € X/ (9)
a1 (u, w, v)| < C3lIVullolIVwllol[Vvllo, Yu,w,veX, (10)
where Cy depends only on Q. Obviously, A1(;, -, -) satisfies

Ai((u, B), (w, D), (w, D)) =0, VY(u,B), (w, D)< Wy,. (11)
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Next, we recall the coercive and continuous properties of Ay(:,-) and the con-
tinuous property of A1(-, -, ) [1] as follows based on the following two inequalities

llcurlvily < V2/[Vvllo,

and
IV - vllo < [[Vvllo,
which are shown in [23,25]. For all (u, B), (w, @), (v, W) € Wy, there hold

Ao((w, D)), (w, D)) = v1ll(w, D)IIf, (12)
Ao((w, D)), (v, ¥))) < vall(w, D)ll1]I(v, P)ll1, (13)
A]((u, B)r (Wr (1)), (V/ \I’) < N||(u, B)”lH(W, q))”]H(V, ‘P)”l/ (14)

where
v = min{R;}, C1ScR;Y, v2 = max{R;, 38R}, N = V2C2max{1, V25,
and C; (depending only on Q) is an embedding constant of W — H(Q), i.e. ,
IVX W3+ IV- W5 > G5, YWeW. (15)

Final, we recall the existence and uniqueness results in [23] as follows.
Theorem 2.1 If R,, S; and R,, satisfy the uniqueness condition

NI[F]| 1

2
1

0<

<1, (16)
vV

there exists a unique solution pair ((u, B), p) € Wo, X M in problem (8) and satisfies
vill(w, B)lly < [|F|-1. (17)

At the end of the section, we consider the following linear problem: find
((w, D), s) € Wp, X M such that for all (v, W), q) € Wo, X M,

Ao((v, W), (w, @) + A1((u, B), (v, W), (w, D)) + A1((v, ¥), (u, B), (w, ©)) — d((v, ¥), p)
= (F, (v,W)),
a((w, @), q) = (v, 9)-
(18)
Assume the domain Q is convex polygonal. Moreover, supposing f,g € L*(Q)
and y € L%(Q), the solution ((w, @), s) of the problem (18) satisfies the following
regularity [23]

[I(w, @)lI2 + lislly < C(|[llo + llgllo + [Iyll1)- (19)

Throughout the paper, the letter C represents a general positive constant meaning
for different values at different places, which has nothing to do with mesh size.
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3. Finite element approximation

Now, let T), be a quasi-uniform and regular partition of ) into triangles
with the mesh parameter /1 (i — 0). Based on the T}, the finite element spaces
(Xn, My, Wh) are constructed. Then, we introduce the following assumption on
(Xn, My, Wy) in [1, 2].

Assumption A; Let Wgn = Xp X Wh. There exists a constant  (only dependent on
Q), such that
d((v, W), 9)

“oan = Pllallo, ¥q € M.
wwew: VPl Bligllo, Vg € My,

Moveover, we employ the following Mini-element used traditionally for the Navier-
Stokes equations to approximate velocity and pressure which satisfies the above
assumption, and any appropriate subspace of H!(QQ) to approximate magnetic filed,
ie.,

Xy = (P NX, My ={qn € CAQ): vyl € P1(K), VK C Ty},
where
P} = {v, € C°%Q) : vyl € P1(K) @ span{b}, VK c Ty},

b is a bubble function, and P;(K) denotes the space of polynomials of degree less
than or equal to 1 on element K. For convenience, we use W, = (Pll’)2 N W for
approximation of magnetic field. So, the Galerkin finite element scheme of (8) is to
seek ((uy,, By), pn) € Wgn X My, such that

AO((uh/ Bh)/ (V, ‘I',)) + Al((uhl Bh)/ (uh/ Bh)/ (V/ ‘p)) - d((V, lp)/ Ph) + d((uh/ Bh)/ 5/)
= (F, (v, W), Y((v,¥),q) € Wi x M,

Besides, we need to recall the following important theorem in [23] which is
necessary for superconvergence result that we want to establish.
Theorem 3.1 Under the assumptions of Theorem 2.1 and Assumption A1, the finite
element scheme (20) has a unique solution pair ((uy, By),pn) € Wgn X M;, which
satisfies

vill(uy, Byl < [|Fll-1, (21)
and the error estimate

[I(w = uy,, B —By)llo + h(V1||(u —uy, B—By)lli +lp - Ph|lo) < Ch?|[Fll.  (22)

4. Superconvergence result

From the above section, the finite element partition T, was used to produce
the finite element approximation ((uy, By), p) in (20), and now in order to get a
superconvergence result, we introduce another three finite element partitions T),
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with mesh sizes p;, where h < p; (i = 1,2,3). Assume that these partitions are
quasi-uniform and regular. Let p; and & have the following relationship:

pi = h",

where 0; € (0,1). The parameter o; will have a great effect on achieving a supercon-
vergence for the finite element approximation ((uy, By), p). Then we employ some

finite element spaces Wo(f; 172 and M,,, which consist of piecewise polynomials of
degree 61,67 and 63, associated with the partitions Tj,, Ty, and T,, respectively.
Next, we define Q,, ,,) and Hy; to be L>-projectors from L*(Q)*> and L*(Q2)

onto the finite element spaces Wéfl] ) and M,,, respectively. Note that these L?-
projectors are the self-adjoint operators [26], and they have the following properties
[27]:

1Q(, 00 @llo < Cligllo, Y€ LXQ)?,  IIHp,¢llo < Cligllo, Y € LX(Q).

In fact, the post-processing of the finite element approximation ((uy, By), pr)
is simply given by their L?>-projections. Hence, we arrive at the superconvergence
result as follows

superconvergence ((uy, By), py) := post-processed ((wy,, By), py) = (Q(pl,pz)(uhlBh)r Hp,pn).
Moreover, subtracting (8) from (20), we obtain the error equation

AO((u —u,, B - Bh)/ (V, ‘p)) + Al((u —u,, B- Bh)/ (ur B)/ (V/ \P))
+ Al((uh/ Bh)/ (u -y, B - Bh)/ (V, III)) - d((V, lp)l p—- Ph) (23)
+d((u-uy,B-By),q) =0, Y(v,¥),q) €W, xM,

and the above error equation will play an important role in proof of following lem-
mas. Now we provide two important lemmas, which will be useful for establishing
superconvergence result.

Lemma 4.1 Assume (19) holds and wgﬁl"’ 2) L?(Q)?. Under the assumption of
Theorem 3.1, there exists a constant C such that

1Qpy,p,) (@ = up, B —By)llo < CH?|[Fllo.

Proof. Consider the following problem: Find ((w, ®@), s) € W, X M such that for all
((V, lI")r Q) € WOTZ X M/

Ao((v, W), (w, @)) + A1((u, B), (v, W), (W, D)) + A1((v, W), (u, B), (W, ®@)) — d((v, ¥)),s)

= (Q(pl,p2)¢l (V/ ‘IJ))/
d((w, ®@),q) =0,
(24)



Superconvergence of the stationary incompressible magnetohydrodynamics equations 287

forany ¢ € (Cg"(Q))Z. Subtracting (23) with ((v, W), ) = ((wy,, @p,), s;,) from (24) with
((V/ ‘p)r Q) = ((u —u,, B - Bh)rp - Ph)/ we get

Q1,00 P, (U — 1y, B—By))

= Ao((u — up, B — By), (W — wy, @ — @) + Ay ((u — uy, B - By), (u, B), (W — wy, @ — D))
+ A1((u, B), (u — uy, B — By), (W — wy, @ — @y))

- A1((u —up, B = By), (u —uy, B - By), (W — wy, @ — @y))

+ A1((u — up, B = By), (u —uy, B - By), (w, @))

- d((W — Wy, D - th)rp - Ph) - d((u -y, B - Bh),S - Sh)r (25)

for all ((wy,, @y,),s,) € Wgn X Mj,. Using (13), (14) and (22), we arrive at
(Q(Pl,,ﬂz)d)’ (u —u,, B - Bh))

< vall(u —up, B — By)lhll(w — wy, @ — Dyl

+ 2N||(u, B)ll1[I(w — uy, B — Byl (W — wy, @ — Dy)lly

+ Nll(u = uy, B = Bl 2((w — wy,, @ — @Iy + [[(w, @)l1) + [[(u — wy, B = By)llills - spllo
+ (W — wy, @ — Dy)|l1llp — pullo

< C(h(lI(w ~ w, B =Byl +lIp = pillo) + lI(w = wy, B = By)I )(Il(w, D)z + lIslh)
< CHI[Ello(lIw, @)Il2 + lIslh )

Moreover, applying the regularity (19) and the property of L?-projection yields

(W, @)I2 + lIslh < ClIQ(y, ) @llo < Clibllo,

(26)
Then combining with the aforementioned bound, we lead to
| (Qp, ) — wi, B—By), ) |
|IQ(P1/P2)(u —uy, B—By)llo = sup p1.p2

PE(CT(Q))2,$20 ll#llo

| (u—uy, B=By), Q) pn®) |
= Sup (perZ) S ChZHF“O/
PE(CT(QR,p#0 ll&llo

where the second equation is deduced by property of the self-adjoint operator
Q(p,,p,) (see Theorem 12.14, [26]).

The proof of the lemma completes.

Lemma 4.2 Assuming (19), Hy, € HY(Q) and Theorem 3.1 hold, there exists a
constant C such that

IHp,p — Hp,pullo < CH*~%|[Fllo.
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Proof. By the definitions of || - [|p and Hj,, we have

IH,,p — Hy,pillo = sup | (Hpsp - Hpsph/ Q) | _ . | (p— ph,Hp3¢) |
" " $eCE(Q),¢#0 lipllo $EC2(Q),0#0 lldllo

As the proof of Lemma 4.1, here the second equation is deduced by property of the
self-adjoint operator H,.

Next, consider the following dual linear problem: seeking ((C, B), 0) € Wo, XM
such that for all ((v, W), q) € Wo, X M,

{Ao((vf W), (. B)) + A1((u, B), (v, W), (C, B)) + Ai1((v, W), (u, B), (C, B)) — d((v,¥),0) = 0,
d((C, B).9) = Hp; ¢, q).
(27)
In (27) and (23), choose ((v,¥),q) = ((u — uy, B — By),p — py) and ((v,W¥),q) =
((Cn, By,), On), respectively, and subtracting (23) from (27), we get
Hpsp,p —pn) = Ao((u—uy, B—By), (C - Cp, - B))

+A1((u —uy, B-By), (u,B),(C -G, B-B)

+A1((u,B), (u—uy, B—By),(C -, - B))

—A1((u -y, B~-By), (u-wu, B-By), (-, B~ B))

+ A1((u—uy, B - Byp), (u—w, B-By),(C,p))

—d((& = Cp B=PBy),p = pn) —d((u =y, B —By), 0 - 6y),

for all ((Cy, B,), On) € Wgn X Mj,. Similarly, using (13), (14), (19) and (22), we arrive
at

(Hp,, p — p) < CH|[FllolHp, ll1.- (28)

Further, by using the above property of projection Hy, and the inverse inequality
[28]:
IHps @l < Cp3"IHpsdllo, Yo € L(Q),

we arrive at

| (p — pn, Hp;®) | Ch?||Fllo|Hp, @llx
IHp,p — Hpypillo = sup P < su i
$eCy(Q),9#0 lillo PECT (Q),¢#0 llpllo
< CH2p3"|[Fllo < CH2~%|Elo.

Then the proof of the lemma completes.
Now, we are in a position to estimate (u, B) — Q(,, »,)(us, By) and p — Hy,, py.

Theorem 4.1 Under the above mentioned assumptions of lemmas 4.1 and 4.2, if
pi,0i (i = 1,2) and h satisfy p; = h% with 0; = 6{%, then

(wt, B) = Q. oy (i Bi)llo < CI2(1I(w, B)loys1 + IElo),
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and
20;

IV (o1,p2) (@, B) = Q(p, ) (ur, Bi))llo < Chi([I(w, B)llsy+1 + [IFllo),
where V(,, ,) is defined element-wise over the partition Ty, and T,,. Besides, if
p3,03 and h satisfy p3 = h? with 03 = ﬁ, then

253+1)

llp — Hp,pnllo < Ch %% (Iplls;+1 + [[Fllo).

Proof. By the definitions of Q,, ,,) and H,,, we obtain

11w, B) = Qp, o) (W, B)llo + pill Vi, 0) (1, B) = Qo) (u, B))llo < CpZ (11, Bl 41
= ChoC*D||(u, B)lls,41,

lIp = Hoapillo < Cp& M lipllsg1 = Ch7 @ D|iplls, 1.
Moreover, combining the Minkowski inequality, the lemmas 4.1 and 4.2 yields

”(u/ B) - Q(pl,pz)(uh/ Bh)”O < ||(u, B) - Q(pl,pz)(ur B)”O + ||Q(p1,p2)(ur B) - Q(pl,p2)(uh/ Bh)”O

< C(h®*D||(u, B)|ls,+1 + H*[Fllo),
(29)

lIp = Hpypullo < CHCVllpllsysa + K>~ [Fllo). (30)

Then the error estimate (29) and (30) can be optimized by choosing o; = 51% and o3
such that 03(03 + 1) = 2 — 03 (thatis o3 = 632?), respectively. Until now, we have got
the L2-estimate of (u, B) — Q1,00 (wn, By) and p — Hy, py,.
Next, by using the inverse inequality and Lemma 4.1, we have
IV (p1,00) (0, B) = Qo) (rr, Bi))llo
< V1), B) = Qo oy (0, BN + 1V, Q1 (8 B) = Qo oy (i Bl
< C(h7||(u, B)lls,+1 + B>~ [Fllo).

Then optimizing the above-mentioned estimate by choosing such a o; that ¢,6; =
2 — 0;, we can get the following estimate:

2(31‘
IV p1,p2) (@, B) = Qo ) (W, Bp))llo < CHT (1| (w, Bl 1 + |[Fllo). (31)

Combining (29)-(31), we complete the proof.

5. Assessment of superconvergence

In this section, we will give computational results for the stationary incom-
pressible MHD equations. Our primary aim is to obtain superconvergence result.
For current investigation, an uniform mesh is adopted; that is, the mesh consists of
triangular elements that are obtained by dividing {) into subsquares of equal size
and then drawing the diagonal in each subsquare.
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Let the solution domain Q = [0,1] X [0,1]. The right-hand sides of MHD
equations are determined by the exact solutions (for the velocity u = (u1, up) , the
magnetic B = (By, B) and the pressure p) given by

u1(x, y) = msin(mnty) cos(my) sin?(nx),  u(x, y) = —msin(7x) cos(mx) sinz(ny),
Bi(x, y) = sin(mx) cos(nty), Ba(x, y) = —sin(mty) cos(mx),
p(x, y) = cos(mx) cos(my).

This example is aimed to confirm the predicted superconvergence rate of the fi-
nite element approximation for the stationary MHD equations by the L?-projection
method.

We take S; = 1,R, = 1 and R,;, = 1. From Theorem 3.1, we know that the
finite element solution pair ((uy, By), p) has the optimal error estimate. Moreover,
in order to achieve superconvergence for the numerical solution, the L?-projection
method is applied. The key of this technique is to project one finite element space
onto other finite element space based on a high order of polynomial on coarse mesh.
In Table 1, we present a theoretical superconvergence result of the finite element
solution by Theorem 4.1, where 61 = 6, = 2,063 = 1.

Table 1 Superconvergence result by projecting (P1b)*> — P; to (P,)* — P;.

FEM solutions mesh u;2 —rate  ugp —rate B —rate By —rate P> —rate

((uh, Bh)/ph) h h h 2 1 2 1 1
(Q(m ,02) (uh/ Bh)/ Hp3ph) h% h h

wIN

2
2 4 4 4
° 2 3 2 3 3

On the one hand, we test the convergence rate of the finite element solution for
the stationary MHD equations. Table 2 shows the convergence rates with different
mesh sizes by (P1b)? — P; element. The numerical convergence rate for the pressure
in the L?-norm seems better than the theoretical one.

Table 2 The convergence rate of (P1b)? — P;.

1 llu—wyllo IV (u—wy)llg IB=Byllo IV(B—By)llo lIp=pillo

h Ilall IVullp IBllo IVBlio lipllo

10 6. 77e-2 2. 42e-1 2. 51e-2 1. 48e-1 1. 37e-0
20 1. 71e-2 1. 21e-1 6. 36e-3 7. 44e-2 4. 38e-1
30 7. 61le-3 8. 08e-2 2. 83e-3 4. 96e-2 2. 3le-1
40 4. 28e-3 6. 06e-2 1. 60e-3 3. 72e-2 1. 48e-1
50 2. 74e-3 4. 84e-2 1. 02e-3 2. 98e-2 1. 05e-1
Rate 2.00 1.00 2.00 1.00 1.53

On the other hand, we check the superconvergence result of the FEM de-
veloped for the considered problem. By applying the L2-projection method, the
solution (Q,, »,)(un, Bp), Hp,pp) is given by follows: Find (Qp, o,y (wn, By), Hpspn) €

W) x My, for all (v, W), q) € W x M,,, such that
(Q(pl,pz)(uhr Bh)r (V/ \P)) = ((uh/ Bh)/ (V/ ‘p))l (Hpsph/ Q) = (Ph/ Q)/
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where ((uy, By),pp) is the solution obtained by the FEM. The error estimates for
(Q(p,,p0)(un, By), Hp,py) are given in Theorem 4.1. In Table 3, five values of h are
chosen, and then the corresponding p; (i = 1, 2, 3) is obtained by using p; = h%, 0; =
2. Numerical result by projecting (P1b)? — Py to (P2)? — P; is listed and it confirms
the superconvergence result provided in Theorem 4.1.

Table 3 The superconvergence result by projecting (P1b)?> — P; to (Py)? - Py.

1 1 4-Q,, wyllo ¥y (@=Qpy wy)llo IB-Q,, Bylly V5, (B-Q,, Bl lp=Haps ully
h pi Tullo Vully G VBl Tillo
10 5 7. 15e-2 1. 71e-1 2. 53e-2 6. 57e-2 7. 06e-1
20 7 1. 71e-2 6. 33e-2 6. 29e-3 2. 44e-2 2. 08e-1
30 10 7. 78e-3 3. 82e-2 2. 79e-3 1. 40e-2 1. 10e-1
40 12 4. 37e-3 2. 48e-2 1. 56e-3 8. 41e-3 7. 15e-2
50 14 2.77e-3 1. 80e-2 9. 98e-4 6. 05e-3 5. 22e-2
Rate 2.06 1.42 2.01 1.48 141
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