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LONG PERIOD GRATING FIBER TEMPERATURE SENSOR
EMBEDDED INTO POLYMER MATRIX OF AN
AUTOMOBILE COMPOSITE MATERIAL MECHANICAL
PART

Sorin MICLOS?!, Dan SAVASTRU?, Roxana SAVASTRUS, Florina-Gianina
ELFARRA* and lon LANCRANJAN?®

The reinforced polymer composites service life depends on long term
aggressive environments. Among the ageing environment mechanism an important
one is the combination of moderate high temperature and moisture. Long Period
Grating Fiber Sensors (LPGFS) can be used as sensors embedded into composite
material polymer matrix for measuring the moderate high temperature and
moisture. There are presented the simulation results of a such LPGFS optical
Sensor.

Keywords: LPGFS sensor, temperature sensor, smart polymer composite
material.

1. Introduction

Presently, in the aerospace and in the automotive industries more and more
mechanical parts are made of polymer composite materials. Interest in polymer
composite materials is increasing gradually due to the opportunities they present
for various applications are necessary their high specific stiffness and strength,
weight reduction, fatigue performance, improved thermal and electrical
conductivity and the possibility to integrate sensors or actuators [1-10].
Composite material has a complex composition on which depend its final
properties correlated on the properties of component materials (polymer matrices,
reinforcements, fillers and additives). The design of composite materials is
affected by a combination of parameters, including the number of layers, the
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material combinations, ply directions and manufacturing method. Composite
materials can be manufactured using a variety of methods available nowadays,
such as vacuum, autoclave, Resin Transfer Molding (RTM) and Liquid Resin
Infusion (LRI) [1-10].

Structural Health Monitoring (SHM) concept aims to give, at every
moment during the life of a structure, a diagnosis of the status of the constituent
materials, of the different parts, and of the full assembly of these parts constituting
the structure as a whole with the purpose of most efficient use of advanced
composites in aerospace and automotive fields [1-10]. Also, SHM represents the
use of in-situ, non-destructive sensing and analysis of structural characteristics,
including the structural response, for detecting changes that may indicate damage
or degradation [8-10]. Nevertheless, an important parameter to be watched in the
SHM frame is the temperature of the polymer composite materials [1-10].

Composite materials damage, health and structural monitoring are
described by proposed many definitions. Structure health is defined as the ability
to function and maintain the structural integrity during the entire life of a
structure. Damage is defined as a material, structural or functional failure, or as a
change in physical parameters, such as mass, stiffness or damping. Monitoring is
the process of structural diagnosis and prognosis [1-10]. SHM is considered as the
observation of a system over time based on periodically sampled response
measurements from a sensor network, the extraction of features sensitive to
damage and the analysis of these features, in order the system’s structural
condition - health to be defined [1-10]. It is a very important tool for the current
and future design, analysis and maintenance of engineering structures [8].
Temperature is an important composite parameter concerning applications with
highly loaded parts, areas susceptible to corrosion and in applications with high
fatigue loads [22]. The SHM is strongly correlated with the concept of defects
induced in the investigated composite materials, being a measure of detecting
defects which are induced into the composite materials such as voids,
delamination of polymer matrix and of composite material [1-10]. Temperature is
important in the sense that if being increased but kept at values lower than the
polymer melting point it has an action in favor of water molecules infiltration into
polymer matrix.

2. Theory

Like the commonly used Fiber Bragg Grating (FBG), Long Period Grating
(LPG) is sensitive to of the surrounding environment temperature changes [3-10].
Although this property can be exploited advantageously in LPG-based
temperature sensors, more often than not it is an undesirable attribute whose
effects need to be eliminated (whether this is for thermal stability required in
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telecommunications applications, or for LPG-based sensors in which thermal
effects could disrupt the detection of another parameter) [3-10]. It is therefore
important to fully characterize the variations in LPG transmission spectra (namely
shifts in attenuation band central wavelengths, possibly accompanied by peak
intensity changes) that are brought about by temperature fluctuations, so that these
effects can be controlled or disregarded as necessary. In Fig. 1 there is
schematically presented the investigated LPGFS and its operation as a
temperature sensor [3-10].

Cladding

Core

ALPG

L

Fig. 1. Schematic representation of a LPGFS.

LPGFS are manufactured into single mode (SM) optical fibers by inducing
a permanent modulation of its characteristics (geometrical shape or refractive
index). The temperature changes effects on LPGFS can be of two categories. The
first category includes effects on optical fiber, namely the thermal expansion or
contraction and the thermal optical effect. The former effect occurs in almost all
materials and is described as
AL = aLAT Q)
where L is the length of fiber being observed, and o is called the thermal
expansion coefficient, defined for fused silica fibers as o = 0.55-10°°C™! [1, 2].
The second is the effect of temperature on the fiber effective index, described as
Anggr = SN AT (2)

which is due mainly to the thermal optic effect of silica material, defined
as dn/dT ~ 1-10° K which is a negligible effect on the waveguide operation of
the optical fiber [1,2]. The overall coefficient ¢ is about 7-10° K™, which is one
order larger than the thermal expansion effect. Thus, the phase defined as
¢= Neft kL (3)
will be modulated by temperature change as
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Ag = (o + &) Ny KLAT (4)
The temperature modulation of light phase leads to
da(m dn an{™) dA
| e o, - 0

where nerico and n(™  are effective values of refractive index of the core and m™

cladding propagation mode and A is the grating period. Temperature variation
will also bring about thermal stress, which comes from the different thermal
expansion coefficients between fiber and its packaging structures, including its
jackets and protective materials in cabling, and intentionally designed mount
structures for fiber sensors. Such thermal stresses have to be analyzed individually
for different situations. In practice, temporal variation of temperature and related
thermal conduction phenomena induce the dynamic thermal effect, usually in low
speed, and cause drifts of signal, which must be dealt seriously, especially for
high-precision and high-stability sensors. The LPGFS operation is quite simple.
The input light beam having an input spectrum and propagating guided through
the core as the fundamental mode is blazing incident on the LPG being diffracted.
An LPG acts as an optical fiber-based grating that enables coupling between the
core and the cladding co-propagation modes. This coupling between propagation
modes represents an electromagnetic energy transfer from the core mode to the
possible cladding modes [15-23]. The transferred energy is lost from the
fundamental light mode and can continue its propagation through the cladding
until it is lost into the ambient, kept into core proximity volume or coupled back,
when meeting another LPG, to the fundamental mode. This energy transfer has
maximum values at discrete wavelengths A' defined by the relation [11-19]

A= (neff - ncltlad)'A (6)
where ' is the central wavelength of the attenuation band, net is the effective
value of the core refractive index, represents the effective value of refractive index
of the i"" possible cladding propagation mode and A is the period of the LPG. Eq.
(3) is useful for sensing observing that the effective values of refractive index of
core and cladding propagation modes depend on the ambient refractive index [11-
17]. Practically any infinitesimal modification of the light propagation through the
LPGFS is sensed by the LPG and can be observed by the spectral shifting and
broadening of each absorption bands existing in SM optical fiber [11-23]. In the
FBG case because the mode coupling caused by the grating between light
propagation modes take place only between the fundamental mode and counter-
propagating ones, a fact imposed by energy and impulse conservation laws, the
single modification of the light spectrum will consist of one sharp reflection band
centered at g, the Bragg wavelength [11-23].
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3. Simulation results

The simulation results were accomplished considering that the LPGFS is
manufactured into a SM optical fiber considered as standard, namely Fibercore
SM750 type optical fiber, which is, according to literature, commonly used as
host for LPGFS [11-17]. For short, this means that the optical fiber core has a
diameter of 2.8 up to 3.5 um and a refractive index of 1.4585, its cladding has a
62.5 um diameter with a refractive index of 1.4540 [11-17]. The LPGFS was
considered as having a length in the range 5 - 70 mm and a grating period in the
range 5 — 500 um. The simulations were performed considering the optical fiber
as embedded in Polycarbonate (PC, i.e. (Ci6H1403)n) matrix of a composite
material.

The first step in performing the FBG or LPGFS simulations consists in
defining the effective value of SM optical fiber refractive index in Egs. (1) and
(3). In Figs. 2 and 3 there are presented the results obtained in calculation of
effective value of core refractive index (nefico) and normalized frequency variation
(Veo) Vs the wavelength A.

In the LPGFS case there are presented the results obtained in simulating
the variations of effective values cladding refractive index with wavelength of the
light propagating through the optical fiber core incident on the LPG. ni_, was

calculated for the first ten cladding propagation modes.

Then the phase matching curves for the investigated LPGFS are calculated
using Eq. (3). The key of LPGFS operation modes becomes clear after analyzing
the significance of the phase matching curves. It can be observed that phase
matching curves are parametric curves defined into domains of LPG grating
period, Acrpe, and guided light wavelength. The following procedure is quite
simple: imagine a horizontal or vertical line, i.e. corresponding to a given value of
Avrpc or light wavelength; the intersection points of this horizontal or vertical line
with the phase matching curves defines the peaks A' of absorption bands appearing
the optic fiber transmission spectrum. In common cases, for a given Areg, at a
wavelength of the emission spectrum of a light source coupled to the LPGFS,
corresponds several absorption bands each of them being induced by energy
transfer to a cladding propagation mode.
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Fig. 2. Simulated variation of core refractive index effective value vs incident light wavelength.
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Fig. 3. Simulated variation of core refractive index effective value vs incident light wavelength.

In Fig. 4 there are presented the variations of effective values of refractive
index corresponding to the first ten cladding propagation modes simulated for the
investigated LPGFS.
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Clad effective refractive index vs wavelength
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Fig. 4. Simulated variation of cladding refractive index effective value vs incident light
wavelength.

In Fig. 5 there are presented the variations of phase matching curves.

There are presented results simulated for the investigated LPGFS for the first ten
cladding propagation modes simulated for the investigating LPGFS.
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Fig. 5. The phase matching curves with wavelength and with long period grating period length,
Avpg, calculated for the first nine cladding modes.

The following procedure is quite simple: imagine a horizontal or vertical
line, i.e. corresponding to a given value of Aipc or light wavelength; the
intersection points of this horizontal or vertical line with the phase matching
curves defines the peaks Ars Of absorption bands appearing the optical fiber
transmission spectrum. In common cases, for a given Arpg, at a wavelength of the
emission spectrum of a light source coupled to the LPGFS, corresponds several
absorption bands each of them being induced by energy transfer to a cladding
propagation mode.
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In Figs. 6 - 12 there are presented the simulations made starting from the
temperature of 0 °C and jumps of 50 °C, 60 °C, 70 °C, 80 °C, 90 °C, 100 °C and
150 °C. The initial absorption band has the peak located at 980.55 nm and a
bandwidth of 21.76 nm. In each of these graphs the initial absorption band
simulated at 0 °C is represented in blue, while the final (shifted) absorption band
is represented in red (dashed).
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Fig. 6. The spectral shift of the 980.55 nm absorption band peak to 1000.12 nm wavelength under
the effect of a relative temperature variation of 50 °C.
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Fig. 7. The spectral shift of the 980.55 nm absorption band peak to 1002.75 nm wavelength under
the effect of a relative temperature variation of 60 °C.
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Shift of the LPG absorption band at 70°C
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Fig. 8. The spectral shift of the 980.55 nm absorption band peak to 1005.12 nm wavelength under
the effect of a relative temperature variation of 70° C.
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Fig. 9. The spectral shift of the 980.55 hm absorption band peak to 1006.52 hm wavelength under
the effect of a relative temperature variation of 80° C.
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Fig. 10. The spectral shift of the 980.55 nm absorption band peak to 1007.25 nm wavelength
under the effect of a relative temperature variation of 90° C.
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Fig. 11. The spectral shift of the 980.55 nm absorption band peak to 1009.19 nm wavelength
under the effect of a relative temperature variation of 100° C.
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Shift of the LPG absorption band at 150°C
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Fig. 12. The spectral shift of the 980.55 nm absorption band peak to 1030.07 nm wavelength
under the effect of a relative temperature variation of 150° C.

There are presented the simulation results at 50 °C temperature consisting
in shifting the initial absorption band at 1000.12 nm and broadening at 40.55 nm
(Fig. 6), at 60 °C temperature consisting in shifting the initial absorption band at
1002.75 nm and broadening at 41.67 nm (Fig. 7), at 70 °C temperature consisting
in shifting the initial absorption band at 1005.12 nm and broadening at 42.45 nm
(Fig. 8), at 80 °C temperature consisting in shifting the initial absorption band at
1006.52 nm and broadening at 44.82 nm (Fig. 9), at 90 °C temperature consisting
in shifting the initial absorption band at 1007.25 nm and broadening at 47.57 nm
(Fig. 10), at 100 °C temperature consisting in shifting the initial absorption band at
1009.19 nm and broadening at 49.65 nm (Fig. 11) and at 150 °C temperature jump
consisting in shifting the initial absorption band at 1021.25 nm and broadening at
55.25 nm (Fig. 12).

Summarizing the simulation results presented in Figs. 6 - 12, it is worth to
notice that the spectral shift of the initial absorption band at 0 °C to the values of
peak wavelength corresponding to the temperatures of 50 °C, 60 °C, 70 °C, 80 °C,
90 °C, 100 °C and 150 °C has a relatively linear increase or fitted with a slow
parabolic curve which cannot be synthetized by a rigorously deduced analytical
relation (see Table 1).
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Table 1
Linearity of the spectral shift
Temperature Spectral shift [nm] Linear trend [nm]
50 °C 19.57 17.82
60 °C 22.20 20.72
70 °C 24.57 23.61
80 °C 25.97 26.51
90 °C 26.70 29.40
100 °C 28.64 32.30
150 °C 49.52 46.77

As expected, the simulations of the initial absorption band located at
980.55 nm and having a bandwidth of 21.76 nm spectral shifts and broadenings
induced by damages of polymer matrix situated at different distances from the
optical fiber. The variations of nefco and n,,, on bending radius of curvature and,

clad

consequently, of ', can be simulated only numerically using very few analytical
relations like Eq. (6).

Also, the broadening of the initial absorption band increase approximately
linear in the same range of temperatures (see Table 2). The initial absorption band
broadening variation versus temperature cannot be defined analytically by a
rigorously deduced mathematical relation.

Table 2
Linearity of the bandwidth broadening
Temperature Bandwidth broadening [nm] Linear trend [nm]
50 °C 18.79 18.68
60 °C 19.91 20.23
70°C 20.69 21.79
80 °C 23.06 23.34
90 °C 25.81 24.90
100 °C 27.89 26.45
150 °C 33.49 34.23

4. Conclusions

For development of a software package dedicated for the measurement of
automobile composite material parts temperature, an optical LPGFS manufactured
in a given commercial optical fiber and embedded into different types of polymers
used as matrix for composite materials was simulated in order to improve its
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design. Aiming to this purpose, the results obtained in calculations of core and
clad effective refractive indexes variations over an extended guided light
propagation wavelength range were obtained and used as a starting point of the
composite properties simulation process. On this basis, for a given LPG period,
there were calculated resonance wavelengths characteristics for several clad
propagation modes, a number which can be extended. The results obtained in
calculation of coupling coefficients of core and clad radiation modes, followed by
the ones obtained in evaluation of absorption coefficients are presented as the
simulation next stages. As the final two stages, the transmission spectra, the shift
and the bandwidth broadening specific for a resonant wavelength, both induced by
a bending deformation of optic fiber, are presented as calculated by using the
developed software design package. The simulation results are in good agreement
with experimental ones obtained from literature. In subsidiary, the presented
results are part of a software design package dedicated to optimization of long
period grating parameters, overall length and period, which are to be
manufactured into a given single mode fiber, with the environment parameters to
be measured with the resulting fiber optic sensor. In this sense, the software
design package proves to be useful for calculation of core and clad refractive
indexes variations with propagation wavelength, long period grating resonance
wavelengths as depending on its period, the absorption coefficients at these
resonance wavelengths and consequently, of its transmission spectra. The above
mentioned long period grating software design package is under current
development, the immediate improvement will consist in using the three layers
optic fiber model and in increasing the number of cladding propagation modes
used in calculations.

This research is supported by MANUNET grant MNET17/ NMCS0042
and by the Core Program project no. PN 18 28.01.01.
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