

## CONTROL AND OPTIMIZATION FOR THE COWPERS OF A STEELMAKING PLANT

C. PETRESCU, C. LUPU\*

*Lucrarea prezinta principalele rezultatele ale cercetarilor efectuate de autori pentru proiectarea si implementarea un sistem de control si optimizare a unui cowper de la combinatul siderurgic ISPAT-SIDEX S.A. Galati. Sistemul a fost dezvoltat pe doua nivele ierarhice intrconectate in cadrul structurii de conducere. Primul nivel ce include functiile de achizitie si reglare a fost dezvoltat utilizand arhitecturi de tip microcontroller. Nivelul de supravizare a procesului de combustie a fost implementat pe o consola operator. Solutia problemei de optimizare reprezinta decizia optimala ce este transferata in timp real nivelului de achizitie si reglare.*

*The paper presents the results of the research performed by the authors on systems control and optimization for the operating process of the cowpers from the ISPAT-SIDEX steel plant. This system was developed on two relevant levels interconnected in a hierarchical control structure. The acquisition and control level was designed using specialized microcontrollers. The supervisor level for the optimization of the combustion process was implemented on an operator console. The solution of the optimization problem represents the optimal decision, translated in real-time procedure to the acquisition and level control.*

**Keywords:** control, optimization, RST algorithm, real time control application.

### Introduction

The complexity of the metallurgical installations and the difficulties of planning and technological functioning are well-known. Significant improvements in heating steel plant instalation area have been obtained when numerical equipments and modern theory of automatic control were introduced [8], [1]. In economic and commercial environments, quality and performance are very important criteria. The priorities in heating steel processes are productivity, raw materials and the quality of products.

In this context, at ISPAT-SIDEX, an important steel plant in Eastern Europe, a program of modernization was launched in order to feed the plant's blast furnaces with hot air from the cowpers ensemble.

---

\* Lecturer, Lecturer, Dept. of Automatics and Computer Science, University POLITEHNICA of Bucharest, Romania

The cowper's operating process has three work phases: heating, aeration and cooling. Using efficient synchronization and adequate technological switching, the cowpers are continuously feeding the blast furnace with hot air. Some particularities of the process can be noticed. The large dimensions of the installation imply a plant model with large delays and distributed parameters, engaging important flow materials.

The used fuel has many components: methane gas, coke gas and furnace gas, with different caloric powers. A convenient recipe must be calculated in order to feed the burners.

The quality of the combustion gas and the process nonlinearities introduce important disturbances in exploitation. To evaluate the combustion process, the composition of the flue gases is analyzed; more precisely, the concentration of O<sub>2</sub> and CO are measured and computed.

Our major interest was to improve the cowper's efficiency using an adequate automation solution.

The work has been focused on two main directions:

- Design of a data acquisition and control system in order to maintain the installation in a nominal operating point;
- Optimization of the burning process, important consumer of fuel gas.

The old conventional control solution, based on analogical systems [9], was replaced with numerical control. The numerical solution was conceived using the model based - control design procedure, by poles-allocation methods for PID algorithms [3].

During the identification step, recursive least square (RLS) methods were introduced, using the standard algorithms:

$$\begin{aligned}\hat{\theta}(k+1) &= \hat{\theta}(k) + F(k+1)\phi(k)\varepsilon^0(k+1), \forall k \in \mathbb{N} \\ F(k+1) &= F(k) - \frac{F(k)\phi(k)\phi^T(k)F(k)}{1 + \phi^T(k)F(k)\phi(k)}, \forall k \in \mathbb{N} \\ \varepsilon^0(k+1) &= y(k+1) - \hat{\theta}^T(k)\phi(t), \forall k \in \mathbb{N}\end{aligned}\tag{1}$$

with the following initial conditions:

$$F(0) = \frac{1}{\delta}I = (GI)I, 0 < \delta < 1\tag{2}$$

The estimated  $\hat{\theta}(k)$  represents the parameters of the polynomial plant model. In the control design phase, the RST control algorithms were evaluated by

poles allocation methods, covering both reference tracking and disturbances rejection:

$$u(k) = \frac{T(z^{-1})}{S(z^{-1})} r(k) - \frac{R(z^{-1})}{S(z^{-1})} y(k) \quad (3)$$

Before the implementation stage, the performances of the designed systems have been verified by simulation. The authors had to make some improvements of the nominal control system using adaptive and robust control, to preserve the real-time performances [2]. Closed-loop system design was achieved with dedicated software, PIM-PCREG, which performs the identification and model based control design.

At the supervisor level, a mathematical global model has been obtained to describe the combustion process, using least square (LS) methods, based on the standard LS algorithm:

$$\hat{p} = (x^T x)^{-1} x^T z \quad (4)$$

where  $\hat{p}$  is the vector of estimated parameters,  $x$  is the input data acquisition matrix, and  $z$  is the output data acquisition vector.

An optimization problem was built in restrictive conditions. The oxygen concentration in flue gases was chosen as quality criterion, depending of fuel gas flow  $x_1$  and combustion air flow  $x_2$ :

$$\hat{z}(\%O_2) = f(x_1, x_2) \quad (5)$$

with the following technological constraints:

$$\begin{aligned} x_{1L} &\leq x_1 \leq x_{1H} \\ x_{2L} &\leq x_2 \leq x_{2H} \\ \hat{z}_{1L} &\leq \hat{z}_1(x_1, x_2) \leq \hat{z}_{1H} \\ \hat{z}_{2L} &\leq \hat{z}_2(x_1, x_2) \leq \hat{z}_{2H} \\ \hat{z}_{3L} &\leq \hat{z}_3(x_1, x_2) \leq \hat{z}_{3H} \end{aligned} \quad (6)$$

The implicit constraints, evaluated by the same LS identification procedure, are imposed for the functions  $\hat{z}_1$  (%CO),  $\hat{z}_2$  (cowper cupola temperature),  $\hat{z}_3$  (flue gases temperature), evaluated as the criterion function  $\hat{z}(\%O_2)$ .

The solution  $(x_1^*, x_2^*)$  of the optimization problem (3), (4) was obtained using Boxe method and SISCON software package [5].

The software, written in C++ language, solves the global optimization problem and determines also the mathematical decision models of the systems. These may be linear or non-linear ones. The syntactic analyzer, which reads and interprets the functions, handles almost any type of non-linearity. The user can select the optimization method, depending of the specific optimization problem.

### 1. Acquisition and control level design

The chosen automation solution assures the heating control, and the recipe of fuel gas composition. Twenty-one parameters are measured, and seven of them are controlled [6], [4].

#### Combustion Process Control:

The combustion control provides two separated control systems, one for the fuel flow (FRC-1) and the other for combustion air flow (FRC-2) in order to maintain an operating combustion point (FRC - float recording controller). The quality of the combustion process is evaluated measuring the quality of flue gases (%O<sub>2</sub>, %CO).

Considering the importance of FRC-1 and FRC-2, time-response graphics and control module for these two systems will be presented.

For FRC-1 the following model has been identified:

$$\begin{aligned}\hat{B}_1 &= 0.19033 z^{-1} \\ \hat{A}_1 &= 1 - 0.90484 z^{-1}\end{aligned}\tag{7}$$

The correspondent numerical RST algorithm has been calculated:

$$\begin{aligned}R_1 &= 0.0956 - 0.856 z^{-1} \\ S_1 &= 0.4758 - 0.4758 z^{-1} \\ T_1 &= 1 - 1.809 z^{-1} + 0.819 z^{-2}\end{aligned}\tag{8}$$

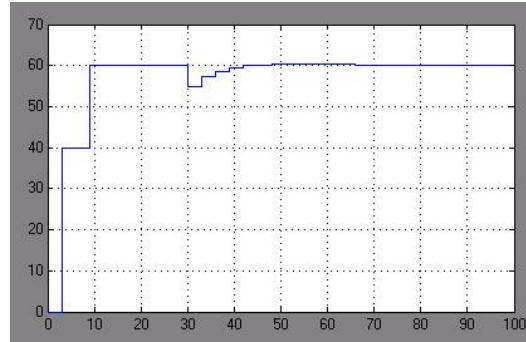



Fig. 1. FRC-1 - Reference tracking and disturbance rejection

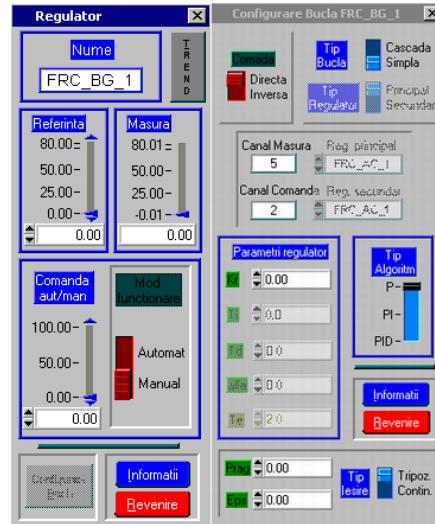



Fig. 2. FRC-1 – Control module

During the implementation phase, the control algorithm was used in an adaptive version, as follows:

$$(\hat{A}_1^k, \hat{B}_1^k) \rightarrow (\hat{A}_1^{k+1}, \hat{B}_1^{k+1}) \quad (9)$$

$$(R_1^k, S_1^k) \rightarrow (R_1^{k+1}, S_1^{k+1}) \quad (10)$$

For FRC-2 system a similar model has been identified:

$$\begin{aligned}\hat{B}_2 &= 0.1903 z^{-1} \\ \hat{A}_2 &= 1 - 0.904 z^{-1}\end{aligned}\quad (11)$$

The correspondent RST algorithm was,

$$\begin{aligned}R_2 &= 0.5907 - 0.4731 z^{-1} \\ S_2 &= 0.1903 - 0.1903 z^{-1} \\ T_2 &= 1 - 1.314094 z^{-1} + 0.43171 z^{-2}\end{aligned}\quad (12)$$

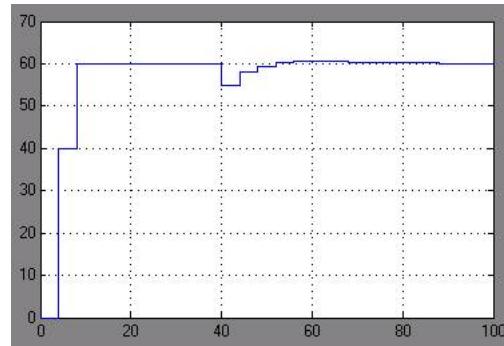



Fig. 3. FRC-2 - Reference tracking and disturbance rejection

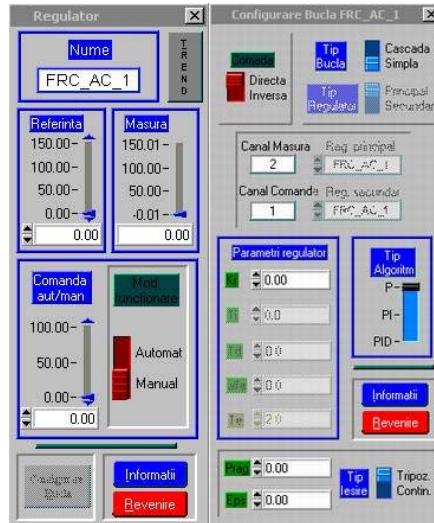



Fig. 4. FRC-2 – Control module

The optimal values for the fuel flow and the combustion air flow are calculated at the supervisor level and transferred automatically in the configuration of the two control loops. Hereby is assured an optimal flow ratio for the combustion process.

### Heating Process Control:

Two control systems are provided, one to control the cold air flow (which must be heated) and the other to control the temperature of the hot air exiting the cowper. For FRC-3 (cold air flow control system), the identified model is:

$$\begin{aligned}\hat{B}_3 &= 0.06777z^{-1} + 0.05188z^{-2} \\ \hat{A}_3 &= 1 - 1.3299z^{-1} + 4.49258z^{-2}\end{aligned}\tag{13}$$

and the RST algorithm was implemented:

$$\begin{aligned}R_3 &= 8.35702 - 11.111503z^{-1} + 3.754475z^{-2} \\ S_3 &= 1 - 0.5663z^{-1} - 0.4336z^{-2} \\ T_3 &= 8.35702 - 11.111503z^{-1} + 3.754475z^{-2}\end{aligned}\tag{14}$$

For hot air temperature control system TRC-4 the following model was identified:

$$\begin{aligned}\hat{B}_4 &= 0.00123 + 0.000139z^{-1} \\ \hat{A}_4 &= 1 - 1.37198z^{-1} + 0.37623z^{-2}\end{aligned}\tag{15}$$

and the correspondent algorithm was implemented

$$\begin{aligned}R_4 &= 1.76889 - 2.03422z^{-1} + 0.51875z^{-2} \\ S_4 &= 0.00123 + 0.000605z^{-1} - 0.001643z^{-2} \\ T_4 &= 1 - 0.99317z^{-1} + 0.24660z^{-2}\end{aligned}\tag{16}$$

The non-linear components of the system structure imposed a robust implementation of this algorithm. Robust design was based on sensitivity function, disturbance-output. To assure a specific shaping of the sensitivity function, pre-specified polynomials  $H_{R4}$ ,  $H_{S4}$  were introduced.

Consequently, the implemented algorithm became:

$$R_4 = R_4 H_{R4} \quad (17)$$

$$S_4 = S_4 H_{S4} \quad (18)$$

Finally, the fuel gas flow recipe is assured by systems controlling the ratio between furnace gas flow, methane gas flow and coke flow.

The control systems FRC-5, FRC-6 and FRC-7 respectively have been calculated during the design phase. For the most important control system, FRC-6, time response and control module are presented.

The model and output control for FRC-5:

$$\begin{aligned} \hat{B}_5 &= 0.03807 z^{-1} \\ \hat{A}_5 &= 1 - 0.9084 z^{-1} \end{aligned} \quad (19)$$

$$\begin{aligned} R_5 &= 0.27 - 0.23387 z^{-1} \\ S_5 &= 0.038065 - 0.038065 z^{-1} \\ T_5 &= 1 - 1.63476 z^{-1} + 0.67099 z^{-2} \end{aligned} \quad (20)$$

The model and output control for FRC-6:

$$\begin{aligned} \hat{B}_6 &= 0.0314 z^{-1} \\ \hat{A}_6 &= 1 - 0.90484 z^{-1} \end{aligned} \quad (21)$$

$$\begin{aligned} R_6 &= 0.27 - 0.233846 z^{-1} \\ S_6 &= 0.0314 - 0.0314 z^{-1} \\ T_6 &= 1 - 1.63476 z^{-1} + 0.670991 z^{-2} \end{aligned} \quad (22)$$

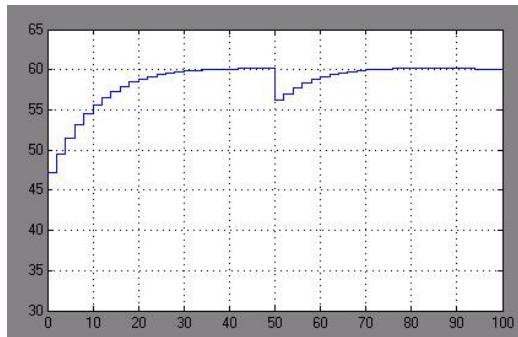



Fig. 5. FRC-6 - Reference tracking and disturbance's rejection

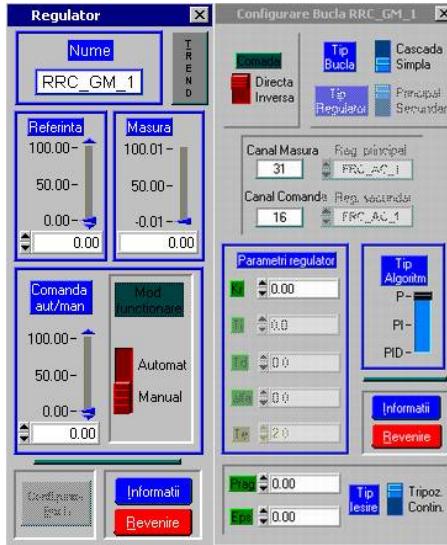



Fig. 6. FRC-6 – Control module

Finally, for FRC-7:

$$\begin{aligned}\hat{B}_7 &= 0.47581 z^{-1} \\ \hat{A}_7 &= 1 - 0.90484 z^{-1}\end{aligned}\tag{23}$$

$$\begin{aligned}R_7 &= 0.095682 - 0.85697 z^{-1} \\ S_7 &= 0.475813 - 0.475813 z^{-1} \\ T_7 &= 1 - 1.809155 z^{-1} + 0.819142 z^{-2}\end{aligned}\tag{24}$$

The hardware implementation for the data acquisition and control level was accomplished on a two 16-bits micro-controllers configuration connected to the process.

## 2. Optimization level design

The purpose of the decision level is to optimize the combustion process in restrictive technological conditions [10], [7].

First of all, a supervisory model  $z(\%O_2) = f(x_1, x_2)$  has been evaluated, and after that, the constraints models: CO concentration  $\hat{z}_1$ , cowper cupola

temperature  $\hat{z}_1$  and flue gases temperature  $\hat{z}_3$  depending on fuel flow  $x_1$  and combustion air flow  $x_2$  were calculated:

$$\begin{aligned}\hat{z}_1(\%CO) &= f_2(x_1, x_2) \\ \hat{z}_2(T_{cowper\,cupola}) &= f_3(x_1, x_2) \\ \hat{z}_3(T_{flow\,gas}) &= f_4(x_1, x_2)\end{aligned}\quad (25)$$

These models have been computed using LS experimental identification method [Popescu, 1989].

The procedure of data acquisition is accomplished during the first interval of cowper heating phase, on an imposed duration, with an acquisition rate of 2 seconds and a resolution of 256 observations.

For the usual data set, measured in real-time conditions, following non-linear models are estimated:

$$\begin{aligned}\hat{z} &= -9.665 + 0.229 x_1 - 0.0009 x_1^2 + 0.010 x_2 \\ \hat{z}_1 &= 4282.875 - 21.566 x_1 - 0.077 x_1^2 - 21.500 x_2 \\ \hat{z}_2 &= 1277.613 + 0.001 x_1^2 - 0.387 x_2 \\ \hat{z}_3 &= 499.161926 - 0.002147 x_1^2 - 3.49945 x_2\end{aligned}\quad (26)$$

A parametric optimization problem was built, which, for the considered example, is stated as follows:

$$\min z = -9.665 + 0.229 x_1 - 0.0009 x_1^2 + 0.010 x_2 \quad (27)$$

with the following restrictions:

$$\begin{aligned}0 \leq \hat{z}_1 &\leq 450 \text{ ppm} \\ 0 \leq \hat{z}_2 &\leq 1300^\circ C \\ 0 \leq \hat{z}_3 &\leq 340^\circ C \\ 96.309 \leq x_1 &\leq 102.452 \\ 46.602 \leq x_2 &\leq 57.992\end{aligned}\quad (28)$$

The solution is the optimal operating point for the combustion process.

$$\begin{aligned}x_1^* &= 97469.85 \text{ m}^3/\text{h} - \text{fuel flow} \\ x_2^* &= 47804.16 \text{ m}^3/\text{h} - \text{air combustion flow}\end{aligned}$$

for which it results a minimum value of O<sub>2</sub> concentration in flue gases

$$z_{\min} (\% O_2) = 4.65\% \quad (29)$$

Using the paper's approach, the fuel gas consumption was reduced by 7.2%. At the same time, corresponding values are obtained for

$$\begin{aligned} z_1 (\% CO) &= 415.73 \text{ ppm} \\ z_2 (T_{cupola}) &= 1273.25^\circ C \\ z_3 (T_{flow\ gas}) &= 311.47^\circ C. \end{aligned} \quad (30)$$

The computed optimal point, meaning optimal decision  $(x_1^*, x_2^*)$ , is automatically transferred as reference  $(r_1^* = x_1^*, r_2^* = x_2^*)$  to the inferior control level, which has the task to bring the combustion process in this optimal exploitation point. The decision level is implemented on the operator console of the equipment.

### Conclusions

This paper presents a numerical control and optimization solution for air heating installations (cowpers) in a steel plant in Romania.

The system was implemented as a hierarchical structure, organized on two interconnected levels, data acquisition and control level, and supervisor level, respectively.

For the first level, the design methodology uses software resources, based on experimental identification techniques and on pole-allocation methods to compute the control algorithms.

To improve control systems performances, adaptive and robust mechanisms were used during the implementation phase.

The second hierarchical level evaluates the optimal decision for the combustion process, solving a parametric optimization problem.

The system is implemented as a real time industrial application, on the blast furnace no. 5 in ISPAT-SIDEX Galati.

### R E F E R E N C E S

1. *M.T. Avoy, S.L.J. Juonela, R. Patton, M. Perrier, C. Georgakis*, IFAC Milestone Report on Industrial Applications, Barcelona, 2000.
2. *I.D. Landau*, "Identification et Commande des Systems", Ed. Hermes, Paris, 1995.
3. *D.Popescu*, "Optimization for Industrial Control", Ed.Tehnica, Bucharesti, 1989.

4. *D. Popescu, G. Tambozi, C. Petrescu*, “Some considerations about the refinements and the accuracy of PID controllers”, IFAC Workshop on Digital Control, Terrassa,2000.
5. *D. Popescu, M. Serbanescu*, “Software Package for Optimal Decisions on Large Scale Systems”, IFAC Symposium LSS 2001, Bucharest, pp. 225 – 230, 2001.
6. *D. Popescu, A. Fanea*, “Refinement and accuracy of PID Algorithms”, IFAC Symposium on System Structure and Control, LSS Prague, .2001.
7. *P.D.Roberts*, “Optimal Control using Integrated System Optimization and Parameter Estimation”, Proceedings of IFAC Symposium on Large Scale Systems, LSS 2001, Bucharest, pp.1-13 , 2001.
8. *D.Taloi*, “Optimization of Metallurgical Processes, Ed.Tehnica, Bucharest, 1993.
9. *W.B. Weight, J.H.C Scrimgeour*, “Modeling steel mills on a digital computer”, Iron and Steel Eng., 1962.
10. *D.A.Wismer*, “Optimization Methods for Large Seale Systems with Applications”, McGraw-Hill Inc., 1972.