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FULLY DEVELOPED TURBULENT PIPE FLOW 

Himadri Pai MAZUMDER1, Bikash Chandra MANDAL2 

We investigate the problems of boundary layer in a fully developed turbulent 
pipe flow. In establishing the structure of turbulent boundary layer, we have used 
the Spalding’s (1961) law of the wall in the inner region and Persen’s (1974) law in 
the wake region. The constants, namely the value of intercept and the Von Kármán 
constant of log-law were chosen to be the same as that used by McKeon et al. (2004) 
in his turbulent pipe flow analysis. It is found that both Spalding’s law and Persen’s 
law nicely described the velocity profile. The computed friction factors are 
compared with the recent data of Zagarola and Smits (1998), Swanson et al. (2002) 
and McKeon et al. (2004). The agreement was found highly satisfactory. 
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1. Introduction 

Prandtl [6] concluded that time mean velocity, u  near the smooth wall 
must depend upon density ρ  and viscosity μ  of the fluid, the shear stress at the 
wall wτ  and on the distance from the wall, y . Thus, near the smooth wall there is 
a functional relationship  

                           ),,( , yuu wτμρ=                                                              (1) 
 From dimensional analysis, the functional relationship can be written in 

the from  

   )(  *

* ν
yvf

v
u
=                                                                                    (2) 

in which shear velocity, ρτ /2
* wv =  and kinemetic viscosity, ρμν /= . 

Introducing u+ = */ vu  and +y = */ vy  equation (2) can be written as  
              )( ++ = yfu                                                                                (3) 

Equation (3) is called law of the wall. Spalding [7] has given a special 
form of (3) 
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where, 
                .5.5 4.0,1108.0)exp( ===−= andBBA κκ               (5) 

The unique feature of Spalding’s equation is that it presents +y  as a 
function of +u  rather than +u  as a function of +y .  

Spalding [6] used the constants of logarithmic law given in equation (5) 
and compared his law (4) with the data of Laufer [2] for fully developed pipe flow 
for Reynolds number 50000 to 500000. 

Zagarola and Smith [9] found appropriate values of κ  = 0.436 and B  = 
6.15 for their measurements in fully developed pipe flow for Reynolds numbers in 
the range 31000 to 35000000. Recently, McKeon et al. [4] reported the values of 
κ  = 0.421 and B  = 5.6 for their measurements in fully developed pipe flow for 
Reynolds numbers in the range 74000 to 35000000. 

Spalding [7] pointed out that the constants used in equation (4) must not 
be regarded as sacrosanct. The constants, κ  = 0.421 and B  = 5.6 are used to fit 
the equation (4) with the profiles of McKeon et al. [4] measured for pipe flow 
(Fig. 1). From Fig. 1 one can see that law of the wall cannot trace the data for the 
whole boundary layer.   

 
Fig. 1. Law of the wall compared with the experimental data. 

 
2. Coles’ wake function [4] 
 
Fig.1 shows a clear picture of existence of wake function and equation (4) 

is too simple for describing the wake region. Accordingly, based on the idea of 
Coles [1], equation (4) should be replaced by     

       )()()( ηwxAyfu += ++                                                                     (6)  
where ( )xA  is the amplitude function, ( )ηw  is the wake function and Ry /=η , 
R  being the radius of the pipe. 

The wake function is generally defined as the difference between the 
measured data in the outer region of the boundary layer and extension of 
logarithmic law in this region. The method to be followed here will be somewhat 
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different. Values of wake are determined as difference between the measured data 
in the outer region of the boundary layer and values obtained from equations (4) 
(with κ  = 0.421 and B  = 5.6) in that region. As +y → +

oy = +R = *Rv /ν, η→ 1 
one then obtains from equation (6) the relation  

     )1()()( 0 wxAyf += +ξ                                                            (7) 
The maximum value of wake, maxw and its position mη  at which it occurs 

are found by fitting a parabola through three points around the maximum value. 
Form now the wake function ( )ηw  is defined such that  

     maxw)(    ,    1)( == xAw η                                  (8) 
Position of maxw , mη  is plotted against Reynolds number in Fig. 2. It can 

be seen that the position of  mη  varies within a narrow range, the average being 
value is 0.777. 

 
Fig. 2. mη  as function of Re  

 
Variation of maximum value of wake maxw  is shown in Fig. 3 with Re .  It 

reveals that maxw is independent of Reynolds number at large Reynolds number.  

 

Fig. 3. Plot of maxw   as function of Re . 

In the present study, it is adopted that the flow field of a two-dimensional 
turbulent boundary layer may be split up into two regions only: I. near to wall 
region where Spalding’s [7] law with  κ  = 0.421 and B  = 5.6 governs the flow 
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and II. wake region where Persen’s [5] wake law governs the flow. The near to 
wall region is characterized by the fact that it is considered influenced by outside 
manipulations of the layer while the wake region is characterized by the fact that 
the influence of outside manipulations. 

3. Persen’s wake law 

Persen [5] presented a formulation for the wake function for representation 
of the data-points in wake region and that may take care of outside manipulation if 
any.    

Persen [5] proposed the following expression for wake law   
    ]/)yy(exp[)u/()uu( o
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∞u  = constant, cU  is the centerline velocity and  
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Here ( +

1u  , +
1y ) is the point where law of the wall meets with the law of 

the wake. The boundary layer ends up at the centerline of the pipe at +y  = 
+

oy = +R = ν/*Rv , for which centerline velocity +u  =ξ . It is to be mentioned that 
the Spalding’s formulation for the law of the wall (4) with values of constants, A  
and κ  determined by McKeon et al. [4] has an undisputed advantage that it 
satisfies no-slip condition at the wall and the proposed wake law exhibits a 
horizontal tangent at the outer edge ( +u  =ξ , +y  = +

oy ) of the boundary layer 
and that applies also for the manipulated boundary layer (adverse pressure 
gradient etc.). An elaborate discussion on Persen’s two dimensional turbulent 
boundary layer theory has been given in [3].  

4. Data: pipe flow [4] 

Experiments were made in an aluminium pipe with nominal diameter of 
129mm. The pipe was mounted in a closed loop with compressed-air facility. 
Readers may consult [9] for detailed description of the facility. 

We now turn to draw velocity profiles in the light of McKeon et al. data 
[4]. Experimental data for velocity profiles are fitted with the law of the wall (4) 
with the value of κ  = 0.421 and B  = 5.6 and law of the wake (9). The equation 
(4) is valid for +u ≤  +

1u  while equation (9) is valid for +
1u  ≤ +u ≤ ξ. Because +

1u , 
+

1y  is a common point on the two curves, the following relation holds 
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          )( 11
++ = yfu                                                                             (12) 

The two curves must have a common tangent at that point. This tangent is 
given by αtan , where 
                   +++++ == dyduyyddu /))(ln(/tanα  

From equation (3) 

    )(tan ++ ′= yfyα                                              (13) 
and, from equation (9), it follows that 
               

++++
∞

+ −−= yyyuu o ))()(/2(tan 2αα                                                                     (14) 

These expressions for tanα must be equal at the point: +u = +
1u , +y = +

1y : 
Thus, 
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Once the values of ξ and +
oy   are known, +

1u  and +
1y  can be determined 

from equations (12), (15). The value of +
∞u  turns out to be 60 for a good fit to the 

experimental data.  
The velocity profiles for various Reynolds number are displayed in figure 

4.  Experimental data of McKeon et al. [4] are found to be in good agreement both 
with the law of the wall (4, 5) and law of the wake (9).  

 

Fig. 4. The law of the wall and law of the wake compared with the McKeon [4] data at four 

different Reynolds numbers. The    points ( +
1u , +

1y  ) and ( ξ , +R  ) are shown as closed circle 
and  open circle, respectively. 

 

Locus of ξ  (that is plot of +R  vs.  ξ ) is plotted in Fig. 5.  A linear relation 
between ξ  and +R  is found out for the present case as 



104                                       Himadri Mazumdar, Bikash Mandal 

 

9995.0   ,1570212.7)ln(3450201.2 2 =+= + RRξ                                        (16) 
 

 
Fig. 5. Locus of ξ 

 

It would certainly be of interest how +
1y  and +R  vary with Reynolds 

numbers, Re . The plots of measured +R  against Re  are shown in figure 6. A best 
fit curve through the data points is represented by 

    
    9996.0       ,Re059454617.0 291899701.0 ==+ RR                                    (17) 

where 2R  is the coefficient of determination. 
  In the same figure the values of +

1y  calculated theoretically are also 
plotted against Re . A best fit line is obtained in this case as  

  9956.0    ,Re010158002.0 291630839.0
1 ==+ Ry                                                (18) 

 

 
Fig. 6. +

1y  and +R  plotted as function Reynolds number 
 

It can be seen that both quantities are increasing functions of Reynolds 
number, Re  and the rate of increment is more or less the same. So, it is expected 
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that the ratio +
1y / +

oy  may be independent of the Reynolds number as it can be 

seen from Fig. 7. In fact, the ratio +
1y / +

oy is a measure of the non-dimensional 
quantity Ry /  from the wall below which law of the wall (4, 5) governs the flow 
and above which law of the wake (9) takes over. Physically, this implies that with 
the increase of Reynolds number, the region near to wall becomes a constant 
fraction of the +R . 

 

Fig. 7. +
1y / +R  as function of Reynolds number 

Variations of ξ  and +
1u  against Re  are shown in Fig. 8. Considering ξ  

values and the Reynolds numbers, Re , a best fit straight line is determined as 
   9995.0   ,5375054.0ln(Re)155108.2 2 =+= Rξ                             (19) 

and +
1u  may be computed with a high degree of accuracy as  

   9997.0   ,0838937.5ln(Re)163576.2 2
1 =−=+ Ru                               (20) 

 

Fig. 8. +
1u ,ξ  plotted as function of Re  

A linear relationship between +
1u  and  ξ can be obtained from equations 

(19) and (20) as 
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  9986.0   ,597233.50030959.1 2
1 =−=+ Ru ξ                                             (21) 
Both ξ  and +

1u  are found to increase with Re , but the rate of increase for 
both cases are more or less similar. The value of ratio +

1u /ξ  is found to be a 
slowly increasing function of Re  (Fig. 9).  

 

Fig. 9. Variation of +
1u /ξ  against Reynolds number 

It is worth noticing that the ratio +
1u /ξ  varies within a narrow range 

between 0.774 and 0.863 with an average value 0.823. This indicates clearly that 
flow within the pipe shifts over from law of the wall to law of the wake when the 
velocity ‘u ’ in the pipe reached a value within the range 0.774 cU  - 0.863 cU . 

The equations (4), (16), (19), (21) and +
∞u = 60 now permits evaluation of 

the law of the wake (9) with Reynolds number, Re  as single input. This has been 
done the data from [9] and the result is shown in Fig. 10. 

       

Fig.10 (a)  Fig. 10 (b) 
Fig. 10. The data [9] for given values Re  compared with the proposed law of the wall (continous 

curve) and the law of the wake (dashed curve). 
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5. Friction factor for turbulent pipe flow 

 The condition of equilibrium in a horizontal pipe flow requires that the 
pressure force 2RPπΔ− acting on the end faces of a pipe of length L  is equal to 
the shear wRτπ2  acting on the circumferential area, whence we obtain 

           
2
R

L
P

w
Δ−

=τ                                                                                       (22) 

where PΔ  represents pressure drop, and R  is the radius of pipe. The pressure 
drop decreases in the direction of flow so that PΔ  has a negative value.  
Putting fghP ρ=Δ− , we get 

                 
2
R

L
gh f

w
ρ

τ =                                                                                     (23) 

where fh  is the loss due to friction, g  is the gravity. The shear stress wτ is related 
to the average velocity V  through the cross-section area  

                                 
2
V 

4
f 2ρτ =w                                                                      (24) 

where ‘ f ’ is the Darcy-Weisbach friction factor. Introducing the energy gradient 
LhS f /=  and HRR 2= , we can get from equation (23) and (24)  

           4f 2V
SgRH=                                                                                       (25) 

where hydraulic radius is: HR = A (cross-section area)/ P (wetted perimeter).  
The Reynolds number Re  is defined as  

                       Re
ν

HVD
=                                                                                     (26) 

 where the hydraulic diameter is: HH RD 4= . For the pipe RDH 2= , then: 

                                 2Re
ν
VR

=                                                                (27) 

The average velocity through the pipe may be defined in terms of radial 
co-ordinate r or wall co-ordinate y, where rRy −=  and drdy −= . The distance 
‘ y ’ is measured from the wall while r  is measured from the center of the pipe. 

  ∫∫∫ −==
RRR

uydy
R

duu
R

drur
R

V
02002            22   21 π

π
                               (28) 

 Now by introducing +u = */ vu , +y = ν/*yv  and +R = ν/*Rv  in equation 
(28) it becomes 
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Equation (29) can be rewritten as 
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or,  
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Integrands I and III are computed from law of the wall while integrands II 
and IV are computed from law of the wake.   

Now, equation (25) can be rewritten as 
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where sgRv H=* .  
The values of Re  and ‘f” have been computed from equations (30) and 

(32) . The computed values are compared with measured data from [4, 8, 9] in 
Figs. 11, 12 and 13. The computed results are joined by a solid line.The 
agreement of the computed results with the data is excellent.  

 

 
Fig. 11. The computed values of friction factor from equations (30) and (32) (continous curve) 

compared with [9]. 
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Fig. 12. The computed values of friction factor from equations (30) and (32) (fully drawn curve) 

compared with [8]. 
 

 
Fig. 13. The computed values of friction factor from equations (30) and (32) (fully drawn curve) 

compared with [4] . 

6. Conclusion  

From the above calculations, the following conclusions may be drawn: 
i) The turbulent pipe flow profile can be divided into a region where 

Spalding’s law is applied and a region governed by the Persen’s wake law, which 
are quite appropriate for the description of the entire flow profile. 

ii) The flow in the outer region is considered to be wake type. The wake 
law proposed [5], in analogy to jet flow is a unique choice as it describes the 
McKeon’s experimental data precisely within a similarity framework. 

 iii) The common point ( +
1u ,  +

1y ) between two regions has been determined 
by employing the measured velocity data from both regions and satisfying a 
geometrical constraint. 

iv) it has been shown that the co-ordinates (ξ , +
oy ) at the end of the 

profile layer lie on a curve, called the ‘locus of ξ ’ e.g., equation (4.5).  
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v) Evaluation of the wake law (3.1) is clearly possible, taking equations 
(4.5), (4.8), (4.10) and (1.4) with +

∞u  = 60 and a single input for Re. 
vi) Further, it is clear that the proposed theory depends mainly on the 

parameters e.g., +
1u , +

∞u  and +
oy  which are determined with high accuracy 

through mathematical procedure vis-à-vis the experimental information. 
vii) Near to wall region described by law of the wall, represents a more or 

less constant portion of the total boundary layer as the Reynolds number 
increases.  

vii) The friction factor computed from equation (5.9) and (5.11) is 
compared to experimental data from [4, 8, 9]. It is found that agreement is 
excellent. 

A remark may finally be made that Spalding’s law of the wall [6] and 
Persen’s law of the wake, [5] are capable of explaining the structures of 
turbulence that prevail throughout the entire turbulent pipe flow boundary layer.  
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