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FULLY DEVELOPED TURBULENT PIPE FLOW

Himadri Pai MAZUMDER?, Bikash Chandra MANDAL?

We investigate the problems of boundary layer in a fully developed turbulent
pipe flow. In establishing the structure of turbulent boundary layer, we have used
the Spalding’s (1961) law of the wall in the inner region and Persen’s (1974) law in
the wake region. The constants, namely the value of intercept and the Von Karman
constant of log-law were chosen to be the same as that used by McKeon et al. (2004)
in his turbulent pipe flow analysis. It is found that both Spalding’s law and Persen’s
law nicely described the velocity profile. The computed friction factors are
compared with the recent data of Zagarola and Smits (1998), Swanson et al. (2002)
and McKeon et al. (2004). The agreement was found highly satisfactory.

Key words: turbulent boundary layer, law of the wall, law of the wake,
Reynolds number and friction factor

1. Introduction

Prandtl [6] concluded that time mean velocity, u near the smooth wall
must depend upon density p and viscosity x of the fluid, the shear stress at the
wall 7, and on the distance from the wall, y. Thus, near the smooth wall there is
a functional relationship

u =U(,0,,U,Twyy) (1)

From dimensional analysis, the functional relationship can be written in

the from
u_; (yv*

V* V

) )

in which shear velocity, V.2 =7,/p and Kkinemetic viscosity,v=ul/p.
Introducing u™= u/v. and y*=y/v. equation (2) can be written as
ut="f(y") @)

Equation (3) is called law of the wall. Spalding [7] has given a special
form of (3)

y =fUu)=u"+Alexp(cu®)-1-(ku")?/2-(ku)3/6- (k- u™)*/24] (4)
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where,
A=exp(—«B) =0.1108,x =0.4 andB =5.5. (5)
The unique feature of Spalding’s equation is that it presents y* as a
function of u” rather than u™ as a function of y* .

Spalding [6] used the constants of logarithmic law given in equation (5)
and compared his law (4) with the data of Laufer [2] for fully developed pipe flow
for Reynolds number 50000 to 500000.

Zagarola and Smith [9] found appropriate values of x = 0.436 and B =
6.15 for their measurements in fully developed pipe flow for Reynolds numbers in
the range 31000 to 35000000. Recently, McKeon et al. [4] reported the values of
x =0.421 and B = 5.6 for their measurements in fully developed pipe flow for
Reynolds numbers in the range 74000 to 35000000.

Spalding [7] pointed out that the constants used in equation (4) must not
be regarded as sacrosanct. The constants, x = 0.421 and B = 5.6 are used to fit
the equation (4) with the profiles of McKeon et al. [4] measured for pipe flow
(Fig. 1). From Fig. 1 one can see that law of the wall cannot trace the data for the
whole boundary layer.
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Fig. 1. Law of the wall compared with the experimental data.

2. Coles’ wake function [4]

Fig.1 shows a clear picture of existence of wake function and equation (4)
is too simple for describing the wake region. Accordingly, based on the idea of
Coles [1], equation (4) should be replaced by

ut = f(y")+AXw(n) (6)

where A(x) is the amplitude function, w(z) is the wake function and 7 = y/R,
R being the radius of the pipe.

The wake function is generally defined as the difference between the

measured data in the outer region of the boundary layer and extension of
logarithmic law in this region. The method to be followed here will be somewhat
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different. Values of wake are determined as difference between the measured data
in the outer region of the boundary layer and values obtained from equations (4)

(with « =0.421 and B =5.6) in that region. As y* — y,"=R"=Rv./v, n > 1
one then obtains from equation (6) the relation

&=1(yo" )+ AW() (7)

The maximum value of wake, w,,, and its position 7, at which it occurs

are found by fitting a parabola through three points around the maximum value.
Form now the wake function w(z) is defined such that

wim) =1, A(X) =W, (8)

Position ofw, ., 7,, is plotted against Reynolds number in Fig. 2. It can

be seen that the position of 7, varies within a narrow range, the average being
value is 0.777.

- 0.777

0.1t
Re

100000 1000000 10000000
Fig. 2. 77, as function of Re

Variation of maximum value of wake w,,, is shown in Fig. 3 withRe. It
reveals that w, . is independent of Reynolds number at large Reynolds number.
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Fig. 3. Plot of W__as function of Re .

In the present study, it is adopted that the flow field of a two-dimensional
turbulent boundary layer may be split up into two regions only: I. near to wall
region where Spalding’s [7] law with x = 0.421 and B = 5.6 governs the flow
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and Il. wake region where Persen’s [5] wake law governs the flow. The near to
wall region is characterized by the fact that it is considered influenced by outside
manipulations of the layer while the wake region is characterized by the fact that
the influence of outside manipulations.

3. Persen’s wake law

Persen [5] presented a formulation for the wake function for representation
of the data-points in wake region and that may take care of outside manipulation if
any.

Persen [5] proposed the following expression for wake law

(u'—u, ) (&-u,")=exp[~(y, ~y' )/ a’] 9)
u—-U,asy—->R
where . N N
u" > U /v.=&asy > Rwu/v=y, (10)

u," = constant, U, is the centerline velocity and
Ve =[In(¢ ~u,,") =In(u," —u,, /Y, ~ ") (11)
Here (u,” ,y,") is the point where law of the wall meets with the law of
the wake. The boundary layer ends up at the centerline of the pipe at y"™ =

Y, =R"= Rv.. /v, for which centerline velocityu™ =¢&. It is to be mentioned that

the Spalding’s formulation for the law of the wall (4) with values of constants, A
and x determined by McKeon et al. [4] has an undisputed advantage that it
satisfies no-slip condition at the wall and the proposed wake law exhibits a
horizontal tangent at the outer edge (u* =&, y* = vy,") of the boundary layer
and that applies also for the manipulated boundary layer (adverse pressure
gradient etc.). An elaborate discussion on Persen’s two dimensional turbulent
boundary layer theory has been given in [3].

4. Data: pipe flow [4]

Experiments were made in an aluminium pipe with nominal diameter of
129mm. The pipe was mounted in a closed loop with compressed-air facility.
Readers may consult [9] for detailed description of the facility.

We now turn to draw velocity profiles in the light of McKeon et al. data
[4]. Experimental data for velocity profiles are fitted with the law of the wall (4)
with the value of ¥ =0.421 and B = 5.6 and law of the wake (9). The equation
(4) is valid for u* < u;" while equation (9) is valid for u,” <u* <& Because u,”,

y,” is a common point on the two curves, the following relation holds
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u” = f(y") (12)
The two curves must have a common tangent at that point. This tangent is
given by tan o , where

tana =du™ /d(In(y")) =y du” /dy"
From equation (3)

tana =y f'(y") (13)
and, from equation (9), it follows that
tana = (2/a®)(u* -u, )y, -y )y" (14)
These expressions for tana must be equal at the point: u™=u,", y* =y, :
Thus,
y, f(y") = (2/052)(Ul+ U, )Y =Y N (15)

Once the values of £andy,” are known, u,” and y,” can be determined

from equations (12), (15). The value of u_" turns out to be 60 for a good fit to the
experimental data.

The velocity profiles for various Reynolds number are displayed in figure
4. Experimental data of McKeon et al. [4] are found to be in good agreement both
with the law of the wall (4, 5) and law of the wake (9).
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Fig. 4. The law of the wall and law of the wake compared with the McKeon [4] data at four

different Reynolds numbers. The points (u1+, yf yand ( &, R™ ) are shown as closed circle
and open circle, respectively.

Locus of & (that is plot of R™ vs. &) is plotted in Fig. 5. A linear relation
between & and R™ is found out for the present case as



104 Himadri Mazumdar, Bikash Mandal

£ =2.3450201In(R*) +7.1570212, R? =0.9995 (16)
36 ,r//‘//
3 _ /
32 /(,ﬁ/(’”/‘
78 //,/
24 4
R+
1000 10000 100000

Fig. 5. Locus of &

It would certainly be of interest how y,” and R* vary with Reynolds

numbers, Re. The plots of measured R™ against Re are shown in figure 6. A best
fit curve through the data points is represented by

R* =0.059454617Re®*®®  R? =0.9996 (17)

where R? is the coefficient of determination.
In the same figure the values of y,” calculated theoretically are also
plotted against Re . A best fit line is obtained in this case as
y,” =0.010158002Re****%* = R? =0.9956 (18)
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Fig. 6. yl+ and R™ plotted as function Reynolds number

It can be seen that both quantities are increasing functions of Reynolds
number, Re and the rate of increment is more or less the same. So, it is expected
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that the ratio y,"/y,” may be independent of the Reynolds number as it can be

seen from Fig. 7. In fact, the ratio y," /y," is a measure of the non-dimensional
quantity y/R from the wall below which law of the wall (4, 5) governs the flow

and above which law of the wake (9) takes over. Physically, this implies that with
the increase of Reynolds number, the region near to wall becomes a constant

fraction of theR™.
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Fig. 7. ;" /R™ as function of Reynolds number

Variations of & and u,” against Re are shown in Fig. 8. Considering &
values and the Reynolds numbers, Re, a best fit straight line is determined as
& =2.155108In(Re) +0.5375054, R’ =0.9995 (19)

and u,” may be computed with a high degree of accuracy as
u,” =2.163576In(Re)—5.0838937, R?=0.9997 (20)
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Fig.8. U,", & plotted as function of Re

A linear relationship between u,” and &can be obtained from equations
(19) and (20) as
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u," =1.0030959¢ —~5.597233, R? =0.9986 (21)
Both & and u,” are found to increase with Re, but the rate of increase for

both cases are more or less similar. The value of ratio u,”/ & is found to be a
slowly increasing function of Re (Fig. 9).
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Fig. 9. Variation of u1+/§ against Reynolds number

It is worth noticing that the ratio u,”/& varies within a narrow range

between 0.774 and 0.863 with an average value 0.823. This indicates clearly that
flow within the pipe shifts over from law of the wall to law of the wake when the
velocity “u’ in the pipe reached a value within the range 0.774 U - 0.863U .

The equations (4), (16), (19), (21) and u_ "= 60 now permits evaluation of

the law of the wake (9) with Reynolds number, Re as single input. This has been
done the data from [9] and the result is shown in Fig. 10.

28/ Re=2.3046E+05 Re = 1.0238E+06

Zagarola & Smits(1998) A 32 Zagarola & Smits (1998)
24{ Re as single input Re as single input AN

............................................. "y/ -t =
36 u* L ut /..-.5/

Pl 24 7
- 7
]0 _./") ‘//
o2 20 et
12 y* ~ y*
~
100 1000 100 1000 10000

Fig.10 (a) Fig. 10 (b)
Fig. 10. The data [9] for given values Re compared with the proposed law of the wall (continous

curve) and the law of the wake (dashed curve).



Fully developed turbulent pipe flow 107

5. Friction factor for turbulent pipe flow

The condition of equilibrium in a horizontal pipe flow requires that the
pressure force — APzR?acting on the end faces of a pipe of length L is equal to
the shear 2zR 7, acting on the circumferential area, whence we obtain

, _—APR

TooL o2
where AP represents pressure drop, and R is the radius of pipe. The pressure
drop decreases in the direction of flow so that AP has a negative value.

Putting — AP = pgh; , we get
;o mhe R
YL 2
where h; is the loss due to friction, g is the gravity. The shear stress z,, is related
to the average velocity V through the cross-section area
2
L'
4 2
where “ f* is the Darcy-Weisbach friction factor. Introducing the energy gradient
S=h; /L and R=2R,, we can get from equation (23) and (24)

(22)

(23)

(24)

49R, S
f= g\/? (25)
where hydraulic radius is: Ry = A(cross-section area)/ P (wetted perimeter).
The Reynolds number Re is defined as
Re = VD (26)
14
where the hydraulic diameter is: D,, = 4R, . For the pipe D, = 2R, then:
Re= 2R 27)
14

The average velocity through the pipe may be defined in terms of radial
co-ordinate r or wall co-ordinate y, where y =R —r and dy =—dr. The distance

'y’ is measured from the wall while r is measured from the center of the pipe.
1 (r 2 (R 2 (R
VZFJO erudrzﬁjo udu—?J'O uydy (28)

Now by introducing u”=u/v., y"=yv./v and R"= Rv./v in equation
(28) it becomes
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2VR R" + At 4 (R Ayt
:T=4IO u*dy _FL uty*dy (29)

Equation (29) can be rewritten as

Re =4 J.ul+u+deu*+ R+u*dy+ -4
0 du* y

Re

" + + dy+ + R RV (Vhd
. o .[0 uf(u )Wdu +j'y1+u y'dy

(30)
or,

Re =4l +||]—%[|||+|v] (31)

Integrands | and Il are computed from law of the wall while integrands Il
and 1V are computed from law of the wake.
Now, equation (25) can be rewritten as

2 + 72
fo f‘/”; =32{%} (32)

where v. = /gRyS .

The values of Re and ‘f” have been computed from equations (30) and
(32) . The computed values are compared with measured data from [4, 8, 9] in
Figs. 11, 12 and 13. The computed results are joined by a solid line.The
agreement of the computed results with the data is excellent.
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Fig. 11. The computed values of friction factor from equations (30) and (32) (continous curve)

compared with [9].
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Fig. 12. The computed values of friction factor from equations (30) and (32) (fully drawn curve)
compared with [8].
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Fig. 13. The computed values of friction factor from equations (30) and (32) (fully drawn curve)
compared with [4] .
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6. Conclusion

From the above calculations, the following conclusions may be drawn:

i) The turbulent pipe flow profile can be divided into a region where
Spalding’s law is applied and a region governed by the Persen’s wake law, which
are quite appropriate for the description of the entire flow profile.

ii) The flow in the outer region is considered to be wake type. The wake
law proposed [5], in analogy to jet flow is a unique choice as it describes the
McKeon’s experimental data precisely within a similarity framework.

iii) The common point (u,”, y,") between two regions has been determined

by employing the measured velocity data from both regions and satisfying a
geometrical constraint.

iv) it has been shown that the co-ordinates (&,y,") at the end of the
profile layer lie on a curve, called the “locus of £’ e.g., equation (4.5).
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v) Evaluation of the wake law (3.1) is clearly possible, taking equations
(4.5), (4.8), (4.10) and (1.4) withu_" = 60 and a single input for Re.

vi) Further, it is clear that the proposed theory depends mainly on the
parameters e.g., u,", u,” and y,~ which are determined with high accuracy

through mathematical procedure vis-a-vis the experimental information.

vii) Near to wall region described by law of the wall, represents a more or
less constant portion of the total boundary layer as the Reynolds number
increases.

vii) The friction factor computed from equation (5.9) and (5.11) is
compared to experimental data from [4, 8, 9]. It is found that agreement is
excellent.

A remark may finally be made that Spalding’s law of the wall [6] and
Persen’s law of the wake, [5] are capable of explaining the structures of
turbulence that prevail throughout the entire turbulent pipe flow boundary layer.
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