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IMPRESSIVE FREQUENCY BEHAVIOR OF RAYLEIGH
HYPER-ELASTIC MICRO-BEAM IN COMPARISION WITH
EULER-BERNOULLI THEORY

Saeed DANAEE BARFOROOSHI!, Ardeshir KARAMI MOHAMMADI?

Hyper-elastic micro-beam that is sandwiched between two compliant
electrodes is considered here. The hyper-elastic behavior is introduced by Yeoh
model and von-Karman strain-displacement relationship is used to consider
geometric nonlinearity. Governing equation is derived based on Rayleigh beam
theory, and Lindstedt-Poincare method is the solution procedure. The results are
compared with Euler-Bernoulli beam theory and show different behavior of hyper-
elastic beam from usual beams. In addition, the effects of some parameters are
studied on nonlinear frequency.
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1. Introduction

Dielectric elastomers are particular class of electro-active polymers that
have received a great deal of attention recently. They have high-energy output,
large strains, outstanding combination of flexibility, low cost and chemical,
simplicity of structure and robustness due to the use of stable and commercially
available polymer materials [1-3]. These properties make dielectric elastomers as
a first-rate candidate for applications such as artificial muscles, sensors,
generators, loudspeakers, micro air vehicles, energy harvesting, actuators and
resonators [4-5]. Dielectric elastomer as a hyperelastic and rubber material
includes material nonlinearity and it should be modeled correctly. Few articles are
reported in accounting this property and majority of them deal with only
geometric nonlinearity. Mason and Maluleke [6] derived three non-linear
differential equations for radial oscillations in radial, tangential and longitudinal
transversely isotropic thin-walled cylindrical tubes of generalized Mooney-Rivlin
material. They reduced radial and tangential transversely isotropic tubes
differential equations to Abel equations of the second kind. Verron et al [7]
analyzed dynamic inflation of hyperelastic spherical membranes of a Mooney—
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Rivlin material. In addition, they examined the conditions for oscillatory inflation
around the static fixed point and found that, for a given material, the frequency of
oscillation exhibits a maximum at some pressure level, which tends to increase for
materials closer to neo-Hookean behavior. Ogden and Roxburgh [8] studied plane
incremental vibrations superimposed on the pure homogeneous deformation of
arectangular block of incompressible isotropic elastic material. They obtained
frequency equations, which determine the frequencies of symmetric and anti-
symmetric modes of vibration in respect of a general form of strain-
energy function. The plate that was their case study had rectangular shape and it
was assumed incompressible, so the third strain invariant was equal to one in their
formulation. . Karami mohammadi and Danaee Barforooshi [9] Studied nonlinear
forced vibration of dielectric elastomer micro-beam. They used Yeoh hyper-
elastic model to include material nonlinearity beside geometric nonlinearity. They
showed that micro-beam with Yeoh model has hardening behavior. In addition
they showed direct effect of force amplitude and mode number on hardening
behavior of hyper-elastic micro-beam. Zhu et al. [10] analyzed a membrane of a
dielectric elastomer, prestretched and mounted on a rigid circular ring. They
showed that the natural frequencies of dielectric elastomers are tunable by varying
the prestretch, pressure, or voltage, when driven by a sinusoidal voltage. Also,
superharmonic, harmonic and subharmonic responses were founded in their
analysis.

Danaee Barforooshi and Karami Mohammadi [11] considered a micro-
bridge resonator with geometric and material nonlinearity. Geometric
nonlinearities were introduced by von-Karman and for material nonlinearity; the
Yeoh and neo-Hookean models were used. They showed that neo-Hookean model
IS not suitable for this case, because of insufficient terms in its strain-energy
function. They used perturbation technique for solution of nonlinear governing
equation and achieved good agreement between analytical and numerical method.
They showed the significant influence of mode number on normalized frequency
so that the higher the mode number, the more the influence of aspect ratio.

In this article, another suitable hyper-elastic model is used to study
dielectric-elastomer microbeam behavior. In addition to study the behavior of
system based on Rayleigh theory, a comparison of linear and nonlinear frequency
will be done between this theory and Euler-Bernoulli theory.

2. Governing equation based on Rayleigh theory

In this section, governing equation of free vibration of hyper-elastic micro-
beam will be derived. As it is shown in Fig.1, elastomer-based beam has uniform
thickness d , length L , width b and density p.
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Fig. 1. Schematic of hyper-elastic DE micro-beam

As we know, rotary inertia is included in Rayleigh’s theory. The reason is
that since the cross section remains plane during motion, the axial motion of
points located in any cross section undergoes rotary motion about the y axis [12].

ow(x,t)

71—,
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where u is the axial displacement of the centroid of the sections along Ox and w

denotes the lateral deflection of the beam along Oz. aw(x.t) stands for the angle of
OX

v=0, w=w(xt) (1)

rotation of the beam cross section about y-axis.
According to large deformation, we cannot use classic strain tensor and
Green-Lagrange strain deformation is a good choice.
. ou;
"C"ij =1 %4__]_}_%% (2)
2{ 0x;  Ox  OXj OX
In accordance with equation (2), strain components are:
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For deriving equation of motion in free vibration via Hamiltonian
principle, we need kinetic and potential energy that are as follows, respectively:

1t . 0w,
T=2 !pA(E) dx (4)

H:IWdV (5)



164 Saeed Danaee Barforooshi, Ardeshir Karami Mohammadi

Yeoh developed a hyper-elastic material model that only depends on the
first strain invariants. This model is based on a series expansion and its series is
truncated after the first three terms. Therefore, its strain energy density function
IS:

W=> (-3 (6)

Where ¢, are material constants and 1, is the first strain invariant that is related to
principle stretches and right Cauchy- Green strain tensor as follows:
L =4"+2,"+ 4" =tr(C) (7)
It should be mentioned that 4 (i=123) are square root of the right
Cauchy- Green strain tensor (C) and cCis related to strain tensor that its
components introduced in equation (3).

C=2E+1 (8)
Substituting equations (4) and (5) into Lagrange equation and applying
Hamilton principle, leads to following governing equations:
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Equation of motion and boundary conditions can be normalized with
proper non-dimensional parameters:
X e w g U =toy, (10)

@y, 1S the linear dimensional natural frequency of micro-beam that is

achieved by linearization of equation (9).
Therefore, we have:
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3. Lindstedt-Poincare method

In accordance with Lindstedt-Poincare technique, small perturbation

parameter and time transformations are introduced by w" =& and r=at
respectively. So Eq. (11) in free vibration form will be:
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Both the non-dimensional deflection and frequency can be expanded into
series forms as:

n=1,(x",7)+en (X', 7) +&n,(X", ) +... (14-1)
©=a,+E0,+EW, +... (14-2)
that a, is the frequency of linear governing equation.
Calculating linear frequency (@, ) is exactly as the procedure in section 3,
but the equation is:
a)zgg — e’ af:gtz —a,E ng +a,e (Z::Z =0 (15)
So the linear non-dimensional frequency will be:
o = n*z’ (e, +a;n’z’) (16)
1+ n’s?
Substituting Egs. (14) into Eq. (13) and arranging them, based on different
orders of &, one has the following perturbation equations:
L 2O —a O’y PR 3", 8"y -0 (17)
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Deflection function in each of these equations can be expressed as the
products of two separated functions:

B (X ) =T U () =012 U, (x)=+2sin(nzx)  (20)

in which U, (x") is the trial function of the simply-supported micro-beam[19].
Substituting Eq. (20) into Egs. (17), (18) and (19) and then applying the
Galerkin method, the so-called PDE will be reduced to ODE and then it can be
solved. It should be mentioned that the initial conditions are T(0)= A, T(0)=0.

A is the maximum normalized amplitude of deflection that A _ Avac |
o d

Solution of equation (20) is:

1, =~2sin(nzx) A, cos(x/7) (21)
that
= n27r§(052 +a,;n227r2) (22)
@, 1+ oyn°7”)
Solution of equation (18) is:
m =0 (23)
Eliminating the terms that leads to secular terms, will give:
@ =0 (24)

Solution of equation (19) is:

1, :\/E%Sin(nzzx)cos(&/ﬁlr) (25)
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that
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Eliminating the terms that leads to secular terms, will give:
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Total deflection response of the micro-resonator is the sum of all of the
above solutions.
After applying the transformation w™ = &7 final solution will be:

W= ZgﬂOm (X', 7)+ 52771m (x",7)+ 53772m(X*:T) (28)

m=1
4. Numerical results and comparison with Euler-Bernoulli theory

For discussing about frequency curves, we use geometrical and material
properties. For this purposes we introduce geometrical and material properties in
table 1. Material constants are based on uni-axial tension test [13].

Table 1
Micro-beam geometrical and material properties
Geometric properties Material properties
I =30um ¢, =0.24162 MPa
b=10um ¢, =0.19977 MPa
d=3um c; =—0.00541MPa

At the first step, we survey the effect of length on frequency curves. The
length of the beam is considered from 30 zm to 100 zm. It should be mentioned
that the thickness of the beam will be constant as wrote in table one. Maximum
amplitude is considered as 0.6 of the thickness.

The Fig. 2 shows the effect of beam length on nonlinear frequency at the
first three modes.
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As it is seen, in all modes the frequency decreases as larger lengths are
considered and tends to linear frequency. In addition, the rate of change is bigger
in higher modes. Comparison of frequency in these modes shows that quantity of
frequency is larger at higher modes.

----- First mode
= = =Second mode
= Third mode

Length

9 10
=107

Figure2. Effect of beam length on nonlinear frequency at the first three modes

Although the linear frequency (w,) achieved by Rayleigh and Euler-

Bernoulli theory are so close to each other, but as it is expected the linear
frequency predicted by Euler-Bernoulli is larger than Rayleigh one. These
frequencies are presented in table 2 for the first three modes. It should be

mentioned that the geometric properties are as table 1.

Table2
Comparison linear frequency in Rayleigh and Euler-Bernoulli theory
Mode number Rayleigh Euler-Bernoulli
n=1 0.9959 1
n=2 2.0446 2.0779
n=3 3.1867 3.3025

For nonlinear frequency, unlike the linear one, the quantity predicted by
Rayleigh theory is larger than Euler-Bernoulli. This comparison is expressed for

the first three modes in table 3.
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Table3
Comparison nonlinear frequency in Rayleigh and Euler-Bernoulli theory
Mode number Rayleigh Euler-Bernoulli
n=1 1.2520 1.0321
n=2 2.3239 3.9877
n=3 9.2293 4.0790

This result is also shown in figure (3) for the first three modes. While the
behavior of frequency is the same in both of theories but Rayleigh theory predicts
larger nonlinear frequencies in all lengths and modes. It can be concluded from
table 3 and figure (5) that the difference between two theories gets larger at higher
modes. In this figure, R and E-B stand for Rayleigh and Euler-Bernoulli,
respectively.

This is the outstanding different between ordinary and hyper-elastic beams
and can be related to material nonlinearity characteristic that hyper-elastic beams
show.

—— R-first mode
= = = E-B- first mode
——R-second mode
= = =E-B- second mode
——R-third mode
= = =E-B- third mode
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Figure 3. Comparison nonlinear frequency between Rayleigh and Euler-Bernoulli theories for the
first three modes

Also it can be shown that the rate of nonlinear frequency difference,
between Euler-Bernoulli and Rayleigh theories has a direct relationship with
maximum amplitude of beam and inverse relationship with aspect ratio(L/d ).

At the first step of comparison, we compare the latter results with the new
maximum amplitude (0.8 of thickness).
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Table4
: : . : . w_ =0.8d
Comparison nonlinear frequency in Rayleigh and Euler-Bernoulli theory with =~ max
Mode number Rayleigh Euler-Bernoulli
n=1 1.4512 1.0571
n=2 5.4990 2.5152
n=3 13.9291 4.6829

As it is obvious, quantity of nonlinear frequency, get larger in Rayleigh
theory with increasing in maximum amplitude.

In addition, a comparison between the quantities in table 1 and new aspect
ratio can be done. New geometrical properties are shown in table 5 so that the
aspect ratio becomes smaller.

Table 5
New micro-beam aspect ratio
Geometric properties Material properties
I =30um ¢, =0.24162 MPa
b=10um c, =0.19977 MPa
d=6um c; =—0.00541MPa

Table 6 shows that nonlinear frequencies depicted by new smaller aspect
ratio are larger in comparison with table 3. Also from table 4 and table 6 it can be
concluded that the effect of aspect ratio on nonlinear frequency is more than
maximum amplitude.

Table6
. . . . , w_ =0.6d
Comparison nonlinear frequency in Rayleigh and Euler-Bernoulli theory with =~ max
Mode number Rayleigh Euler-Bernoulli
n=1 1.9191 1.1184
n=2 8.3538 3.0898
n=3 19.9083 6.2629
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5. Conclusions

Microbeam with dielectric elastomer sandwiched between two compliant
electrodes was considered in this research. The boundary condition was simply-
supported, so von-Karman strain-displacement relationship was used for
geometric nonlinearity. Yeoh model was the suitable hyper-elastic model for
involving material nonlinearity. Deriving equation was based on Rayleigh theory
and influence of length of beam was studied on nonlinear frequency. As it was
shown, the frequency decreases when the length get larger. In addition, a
comparison between Rayleigh and Euler-Bernoulli theories was done. Results
showed that the linear frequency predicted by Rayleigh theory is smaller than
Euler-Bernoulli in all modes but nonlinear frequency is larger in Rayleigh theory
and difference of predictions is more visible at higher modes. Also it was shown
that the rate of nonlinear frequency difference, between Euler-Bernoulli and
Rayleigh theories has a direct relationship with maximum amplitude of beam and
inverse relationship with aspect ratio(L/d ) so that the effect of aspect ratio as
more.
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