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IMPRESSIVE FREQUENCY BEHAVIOR OF RAYLEIGH 

HYPER-ELASTIC MICRO-BEAM IN COMPARISION WITH 

EULER-BERNOULLI THEORY 

Saeed DANAEE BARFOROOSHI1, Ardeshir KARAMI MOHAMMADI2 

Hyper-elastic micro-beam that is sandwiched between two compliant 

electrodes is considered here. The hyper-elastic behavior is introduced by Yeoh 

model and von-Karman strain-displacement relationship is used to consider 

geometric nonlinearity. Governing equation is derived based on Rayleigh beam 

theory, and Lindstedt-Poincare method is the solution procedure. The results are 

compared with Euler-Bernoulli beam theory and show different behavior of hyper-

elastic beam from usual beams. In addition, the effects of some parameters are 

studied on nonlinear frequency. 
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1. Introduction 

            Dielectric elastomers are particular class of electro-active polymers that 

have received a great deal of attention recently. They have high-energy output, 

large strains, outstanding combination of flexibility, low cost and chemical, 

simplicity of structure and robustness due to the use of stable and commercially 

available polymer materials [1-3]. These properties make dielectric elastomers as 

a first-rate candidate for applications such as artificial muscles, sensors, 

generators, loudspeakers, micro air vehicles, energy harvesting, actuators and 

resonators [4-5]. Dielectric elastomer as a hyperelastic and rubber material 

includes material nonlinearity and it should be modeled correctly. Few articles are 

reported in accounting this property and majority of them deal with only 

geometric nonlinearity. Mason and Maluleke [6] derived three non-linear 

differential equations for radial oscillations in radial, tangential and longitudinal 

transversely isotropic thin-walled cylindrical tubes of generalized Mooney–Rivlin 

material. They reduced radial and tangential transversely isotropic tubes 

differential equations to Abel equations of the second kind. Verron et al [7] 

analyzed dynamic inflation of hyperelastic spherical membranes of a Mooney–
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Rivlin material. In addition, they examined the conditions for oscillatory inflation 

around the static fixed point and found that, for a given material, the frequency of 

oscillation exhibits a maximum at some pressure level, which tends to increase for 

materials closer to neo-Hookean behavior. Ogden and Roxburgh [8] studied plane 

incremental vibrations superimposed on the pure homogeneous deformation of 

a rectangular block of incompressible isotropic elastic material. They obtained 

frequency equations, which determine the frequencies of symmetric and anti-

symmetric modes of vibration in respect of a general form of strain-

energy function. The plate that was their case study had rectangular shape and it 

was assumed incompressible, so the third strain invariant was equal to one in their 

formulation. . Karami mohammadi and Danaee Barforooshi [9] Studied nonlinear 

forced vibration of dielectric elastomer micro-beam. They used Yeoh hyper-

elastic model to include material nonlinearity beside geometric nonlinearity. They 

showed that micro-beam with Yeoh model has hardening behavior. In addition 

they showed direct effect of force amplitude and mode number on hardening 

behavior of hyper-elastic micro-beam. Zhu et al. [10] analyzed a membrane of a 

dielectric elastomer, prestretched and mounted on a rigid circular ring. They 

showed that the natural frequencies of dielectric elastomers are tunable by varying 

the prestretch, pressure, or voltage, when driven by a sinusoidal voltage. Also, 

superharmonic, harmonic and subharmonic responses were founded in their 

analysis.  

            Danaee Barforooshi and Karami Mohammadi [11] considered a micro-

bridge resonator with geometric and material nonlinearity. Geometric 

nonlinearities were introduced by von-Karman and for material nonlinearity; the 

Yeoh and neo-Hookean models were used. They showed that neo-Hookean model 

is not suitable for this case, because of insufficient terms in its strain-energy 

function. They used perturbation technique for solution of nonlinear governing 

equation and achieved good agreement between analytical and numerical method. 

They showed the significant influence of mode number on normalized frequency 

so that the higher the mode number, the more the influence of aspect ratio. 

            In this article, another suitable hyper-elastic model is used to study 

dielectric-elastomer microbeam behavior. In addition to study the behavior of 

system based on Rayleigh theory, a comparison of linear and nonlinear frequency 

will be done between this theory and Euler-Bernoulli theory. 

 

2. Governing equation based on Rayleigh theory 

In this section, governing equation of free vibration of hyper-elastic micro-

beam will be derived. As it is shown in Fig.1, elastomer-based beam has uniform 

thickness d   , length L  , width b   and density . 

http://www.sciencedirect.com/science/article/pii/002072259390079A
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Fig. 1. Schematic of hyper-elastic DE micro-beam 

  

As we know, rotary inertia is included in Rayleigh’s theory. The reason is 

that since the cross section remains plane during motion, the axial motion of 

points located in any cross section undergoes rotary motion about the y  axis [12].  
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 stands for the angle of 

rotation of the beam cross section about y-axis. 

According to large deformation, we cannot use classic strain tensor and 

Green-Lagrange strain deformation is a good choice. 
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In accordance with equation (2), strain components are: 
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For deriving equation of motion in free vibration via Hamiltonian 
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Yeoh developed a hyper-elastic material model that only depends on the 

first strain invariants. This model is based on a series expansion and its series is 

truncated after the first three terms. Therefore, its strain energy density function 

is: 
3

1

1

(I 3)i
i

i

W c


   (6) 

Where ic  are material constants and 1I  is the first strain invariant that is related to 

principle stretches and right Cauchy- Green strain tensor as follows: 
2 2 2

1 1 2 3 (C)I tr       (7) 

It should be mentioned that ( 1, 2,3)i i   are square root of the right 

Cauchy- Green strain tensor ( C ) and C is related to strain tensor that its 

components introduced in equation (3). 

 

2C E I   (8) 
Substituting equations (4) and (5) into Lagrange equation and applying 

Hamilton principle, leads to following governing equations: 

 
342 2 4 2 2

1 2 3 32 2 2 2 4 2 2

2 23 2 4 2

3 3 23 2 4 2

4

2 8  30   24

96 24 12 0

w w w w w w w
A I c A c I c A c I

t x t x x x x x

w w w w w w w
c I c I c A

x x x x x x x

 
        

       
          

         
     

         
  

(9) 

with boundary conditions  
2 2

2 2
(0) 0, (L) 0, (0) 0, (L) 0

w w
w w

x x

 
   

 
 . 

Equation of motion and boundary conditions can be normalized with 

proper non-dimensional parameters: 

dim, ,
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l d
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dim  is the linear dimensional natural frequency of micro-beam that is 

achieved by linearization of equation (9). 

Therefore, we have: 
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with normalized boundary conditions 
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3. Lindstedt-Poincare method 

In accordance with Lindstedt-Poincare technique, small perturbation 

parameter and time transformations are introduced by  w    and 
*t   

respectively. So Eq. (11) in free vibration form will be: 
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Both the non-dimensional deflection and frequency can be expanded into 

series forms as: 
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that 0  is the frequency of linear governing equation. 

Calculating linear frequency ( 0 ) is exactly as the procedure in section 3, 

but the equation is: 
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So the linear non-dimensional frequency will be: 
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Substituting Eqs. (14) into Eq. (13) and arranging them, based on different 

orders of i , one has the following perturbation equations:  

2 2 4 4
1 2 20 0 0 0

0 2 1 0 32 2 2 2 4
: 0

x x x

   
     

 

   
   

    
 (17) 



166                       Saeed Danaee Barforooshi, Ardeshir Karami Mohammadi 

2 2 4 4
2 2 21 1 1 1

0 2 3 1 02 2 4 2 2

2 4

0 0
0 1 1 0 12 2 2

:

2 2 0

x x x

x

   
     

 

 
    

 

   
  

    

 
  

  

 (18) 

42 2
3 2 2 02 2

0 2 0 2 12 2 2 2

4 4 4
21 2 2

1 0 1 1 0 32 2 2 2 4

22 42
2 0 0 01

0 1 0 2 1 52 2 4

3 2

0 0 0
5 53 2

: (2 )

2

2 (2 )

4

x x

x x x

x x

x x x

 
     

 

  
     

 

  
     

 

  
 

 
  

   

   
    

     

     
      

     

      
    

     
2

3 22 2

0 0 0
6 2

0
x xx

  




     
     

      

 (19) 

 

Deflection function in each of these equations can be expressed as the 

products of two separated functions: 
* * *(x , t) T ( ) U (x ) 0,1, 2 U (x ) 2 sin(n x)im im im imi      (20) 

in which *

imU (x )  is the trial function of the simply-supported micro-beam[19]. 

Substituting Eq. (20) into Eqs. (17), (18) and (19) and then applying the 

Galerkin method, the so-called PDE will be reduced to ODE and then it can be 

solved. It should be mentioned that the initial conditions are 
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maxA  is the maximum normalized amplitude of deflection that max
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Solution of equation (20) is: 
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Solution of equation (18) is: 

1 0   (23) 

Eliminating the terms that leads to secular terms, will give: 

1 0   (24) 

Solution of equation (19) is: 
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that 
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Eliminating the terms that leads to secular terms, will give: 
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 Total deflection response of the micro-resonator is the sum of all of the 

above solutions.  
After applying the transformation *w   final solution will be: 
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4. Numerical results and comparison with Euler-Bernoulli theory 

For discussing about frequency curves, we use geometrical and material 

properties. For this purposes we introduce geometrical and material properties in 

table 1. Material constants are based on uni-axial tension test [13]. 

 
Table 1 

 Micro-beam geometrical and material properties 

Geometric properties Material properties 

30l m
 

10b m
 

3d m
 

1 0.24162c MPa
 

2 0.19977c MPa
 

3 0.00541c MPa 
 

 

At the first step, we survey the effect of length on frequency curves. The 

length of the beam is considered from 30 m  to 100 m . It should be mentioned 

that the thickness of the beam will be constant as wrote in table one. Maximum 

amplitude is considered as 0.6 of the thickness. 

The Fig. 2 shows the effect of beam length on nonlinear frequency at the 

first three modes. 
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As it is seen, in all modes the frequency decreases as larger lengths are 

considered and tends to linear frequency. In addition, the rate of change is bigger 

in higher modes. Comparison of frequency in these modes shows that quantity of 

frequency is larger at higher modes.  

 
Figure2. Effect of beam length on nonlinear frequency at the first three modes 

 

Although the linear frequency ( 0 ) achieved by Rayleigh and Euler-

Bernoulli theory are so close to each other, but as it is expected the linear 

frequency predicted  by Euler-Bernoulli is larger than Rayleigh one. These 

frequencies are presented in table 2 for the first three modes. It should be 

mentioned that the geometric properties are as table 1. 

 
Table2 

Comparison linear frequency in Rayleigh and Euler-Bernoulli theory 

Mode number Rayleigh Euler-Bernoulli 
n=1 0.9959  1 

n=2 2.0446  2.0779  
n=3 3.1867  3.3025  

 

For nonlinear frequency, unlike the linear one, the quantity predicted by 

Rayleigh theory is larger than Euler-Bernoulli. This comparison is expressed for 

the first three modes in table 3. 
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Table3 

Comparison nonlinear frequency in Rayleigh and Euler-Bernoulli theory  

Mode number Rayleigh Euler-Bernoulli 
n=1 1.2520  1.0321 
n=2 2.3239  3.9877  
n=3 9.2293  4.0790  

 

This result is also shown in figure (3) for the first three modes. While the 

behavior of frequency is the same in both of theories but Rayleigh theory predicts 

larger nonlinear frequencies in all lengths and modes. It can be concluded from 

table 3 and figure (5) that the difference between two theories gets larger at higher 

modes. In this figure, R and E-B stand for Rayleigh and Euler-Bernoulli, 

respectively. 

This is the outstanding different between ordinary and hyper-elastic beams 

and can be related to material nonlinearity characteristic that hyper-elastic beams 

show. 

 
Figure 3. Comparison nonlinear frequency between Rayleigh and Euler-Bernoulli theories for the 

first three modes 

 

Also it can be shown that the rate of nonlinear frequency difference, 

between Euler-Bernoulli and Rayleigh theories has a direct relationship with 

maximum amplitude of beam and inverse relationship with aspect ratio( /L d ). 

 At the first step of comparison, we compare the latter results with the new 

maximum amplitude (0.8 of thickness). 
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Table4 

Comparison nonlinear frequency in Rayleigh and Euler-Bernoulli theory with max 0.8w d
 

Mode number Rayleigh Euler-Bernoulli 

n=1 1.4512  1.0571 
n=2 5.4990  2.5152  
n=3 13.9291 4.6829  

 

As it is obvious, quantity of nonlinear frequency, get larger in Rayleigh 

theory with increasing in maximum amplitude. 

In addition, a comparison between the quantities in table 1 and new aspect 

ratio can be done. New geometrical properties are shown in table 5 so that the 

aspect ratio becomes smaller. 

 
Table 5 

New micro-beam aspect ratio 

Geometric properties Material properties 

30l m
 

10b m
 

6d m
 

1 0.24162c MPa
 

2 0.19977c MPa
 

3 0.00541c MPa 
 

 

Table 6 shows that nonlinear frequencies depicted by new smaller aspect 

ratio are larger in comparison with table 3.  Also from table 4 and table 6 it can be 

concluded that the effect of aspect ratio on nonlinear frequency is more than 

maximum amplitude. 

 
Table6 

Comparison nonlinear frequency in Rayleigh and Euler-Bernoulli theory with max 0.6w d
  

Mode number Rayleigh Euler-Bernoulli 

n=1 1.9191 1.1184  
n=2 8.3538   3.0898   
n=3 19.9083   6.2629   
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5. Conclusions 

Microbeam with dielectric elastomer sandwiched between two compliant 

electrodes was considered in this research. The boundary condition was simply-

supported, so von-Karman strain-displacement relationship was used for 

geometric nonlinearity. Yeoh model was the suitable hyper-elastic model for 

involving material nonlinearity. Deriving equation was based on Rayleigh theory 

and influence of length of beam was studied on nonlinear frequency. As it was 

shown, the frequency decreases when the length get larger. In addition, a 

comparison between Rayleigh and Euler-Bernoulli theories was done. Results 

showed that the linear frequency predicted by Rayleigh theory is smaller than 

Euler-Bernoulli in all modes but nonlinear frequency is larger in Rayleigh theory 

and difference of predictions is more visible at higher modes. Also it was shown 

that the rate of nonlinear frequency difference, between Euler-Bernoulli and 

Rayleigh theories has a direct relationship with maximum amplitude of beam and 

inverse relationship with aspect ratio( /L d ) so that the effect of aspect ratio as 

more. 
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