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CONGRUENCES INDUCED BY CERTAIN RELATIONS ON

AG**-GROUPOIDS

by Faisal Yousafzai1, Murad-ul-Islam Khan2, Kar Ping Shum3 and Kostaq Hila4

We introduce the concept of partially inverse AG**-groupoids which is almost
parallel to the concepts of E-inversive semigroups and E-inversive E-semigroups. Some

characterization problems are provided on partially inverse AG**-groupoids. We give

necessary and sufficient conditions for a partially inverse AG**-subgroupoid E to be a
rectangular band. Furthermore we determine the unitary congruence η on a partially

inverse AG**-groupoid and show that each partially inverse AG**-groupoid possesses an

idempotent separating congruence µ. We also study anti-separative commutative image
of a locally associative AG**-groupoid. Finally, we give the concept of completely N-

inverse AG**-groupoid and characterize a maximum idempotent separating congruence.
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1. Introduction

An AG-groupoid is a useful non-associative and a noncommutative algebraic struc-
ture, midway between a groupoid and a commutative semigroup. Commutative law is given
by abc = cba in ternary operations. By putting brackets on the left of this equation, i.e.
(ab)c = (cb)a, in 1972, M. A. Kazim and M. Naseeruddin introduced a new algebraic struc-
ture called a left almost semigroup abbreviated as an LA-semigroup [14]. This identity is
called the left invertive law. Several others authors that have contributed on left almost
semigroups, can be found in references. Cho et al. [4] studied this structure under the name
of right modular groupoid. Holgate [12] studied it as left invertive groupoid. P.V. Protić and
N. Stevanović called the same structure an Abel-Grassmann’s groupoid abbreviated as an
AG-groupoid [26]. AG-groupoids have a variety of applications in flocks theory, finite math-
ematics, geometry and other algebras ([2, 25, 31, 33]). AG-groups also have a geometrical
interpretation that gives a rise to their application in the context of parallelogram spaces
[32].

This structure is closely related to a commutative semigroup because a commutative
AG-groupoid is a semigroup [21]. It was proved in [14] that an AG-groupoid S is medial,
that is, ab · cd = ac · bd holds for all a,b,c,d ∈ S. An AG-groupoid may or may not contains
a left identity. The left identity of an AG-groupoid permits the inverses of elements in
the structure. If an AG-groupoid contains a left identity, then this left identity is unique
[21]. In an AG-groupoid S with left identity (unitary AG-groupoid), the paramedial law
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ab · cd = dc · ba holds for all a,b,c,d ∈ S. By using medial law with left identity, we get
a · bc = b · ac for all a,b,c ∈ S. It is important to mention here that if an AG-groupoid
contains identity or even right identity, then it becomes a commutative monoid.

We should genuinely acknowledge that much of the ground work has been done by
M.A. Kazim, M. Naseeruddin, Q. Mushtaq, M.S. Kamran, P.V. Protić, N. Stevanović, M.
Khan, W.A. Dudek and R.S. Gigon. One can be referred to [6, 7, 15, 16, 17, 21, 22, 26, 35]
in this regard.

In [22], Q. Mushtaq and S.M. Yusuf introduced the concept of a locally associative
AG-groupoid. Several fundamental theorems were proved in this paper. An exponential
semigroup is a semigroup satisfying the identity (xy)m = xmym(m ≥ 2) and it was intro-
duced by T. Tamura and T. Nordhal in [36]. It is noteworthy that a locally associative
AG-groupoid is exponential. In 1967, T.S. Frank [9] asked the question, whether or not
there exists a subtractive group? Plainly speaking, the nature of operations of subtraction
and division is such that they are non-associative and as such any structure based upon
them would be the same. It wasn’t till 1987 when this question was answered by Q. Mush-
taq and M.S. Kamran in [13] when they successfully defined a non-associative group called
an AG-group and verified some important and known results of group theory. P.V. Protic
and N. Stevanovic have done a lot of research on AG-groupoids. The generalization of a
unitary AG-groupoid was called as an AG**-groupoid. They showed that a non-associative
left simple (right simple, simple) AG*-groupoid does not exist. They introduced the notion
of an AG-band. They also introduced congruences in AG*-groupoids, AG**-groupoids and
AG-bands, and decomposed the structures using these congruences in [27] and [28]. P.V.
Protić and N. Stevanović introduced a useful technique for verification of AG**-groupoids,
AG*-groupoids and AG-groupoids [35]. They defined ideals in [34], and added many inter-
esting results to the theory of AG-groupoids in [35]. In [15], M. Khan has studied many
interesting properties of AG-groupoids, AG*-groupoids and AG**-groupoids in his doctoral
thesis. He has studied M-systems and P-systems in AG-groupoids and characterized simple
and 0-simple AG-groupoids. In [6], W.A. Dudek and R.S. Gigon have shown that the set
of all idempotents of a completely inverse AG**-groupoid A forms a semilattice and the
Green’s relations H, L, R, D and J coincide on A. The main result of this note says that
any completely inverse AG**-groupoid meets the famous Lallement’s Lemma for regular
semigroups. They have shown that the Green’s relation H is both the least semilattice
congruence and the maximum idempotent separating congruence on any completely inverse
AG**-groupoid. In [7], they have determined certain fundamental congruences on a com-
pletely inverse AG**-groupoid; namely: the maximum idempotent separating congruence,
the least AG-group congruence and the least E-unitary congruence. They have investigated
the complete lattice of congruences of a completely inverse AG**-groupoid. Some other re-
sults on congruences on completely inverse AG**-groupoids have been obtained recently in
[16, 17].

Many authors studied various congruences on some special classes of AG-groupoids
and described the corresponding quotient algebras as semilattices of some subgroupoids
[6, 7, 15, 20, 23, 24, 27, 28]. In this paper, we introduce and study some basic results on
partially inverse AG**-groupoids and completely N -inverse AG**-groupoid. These concepts
allow us to study some congruences on certain classes of AG**-groupoids that have been
previously explored in the structure of E-inversive semigroups, E-inversive E-semigroups
and eventually regular semigroups [1, 8, 10, 18, 37, 38].

2. Congruences on partially inverse AG**-groupoids

A congruence is determined in a group if we know a single congruence class, in partic-
ular, if we know the normal subgroup. Similarly, in a ring a congruence is determined if we
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know the ideal. In semigroups there is no such fortunate occurrence, and we are therefore
faced with the necessity of studying congruences and hence the theory of semigroups.

In this section, we give some basic results on partially inverse AG**-groupoids. Some
characterization problems are provided on a partially inverse AG**-groupoid. We study some
congruences on a partially inverse AG**-groupoid in terms of a semilattice E. At the begin-
ning we determine the unitary congruence η on a partially inverse AG**-groupoid. Also, we
give necessary and sufficient conditions for a partially inverse AG**-subgroupoid E to be a
rectangular band. Furthermore, we provide some equivalent conditions for a partially inverse
AG**-groupoid and characterized a unitary congruence η. Finally we prove that a unitary
congruence τ on a partially inverse AG**-groupoid is uniquely determined by a relation ∼
and the set of idempotents. We show that each partially inverse AG**-groupoid possesses an
idempotent separating congruence µ.

2.1. Basic results. A semigroup S is called E-inversive if for every a ∈ S there exists
some x ∈ S such that ax is idempotent [18]. This concept was introduced by G. Thierrin in
1955. In [11], E-inversive semigroups are also called E-dense semigroups. Basic properties of
E-inversive semigroups were given by Catino and Miccoli [3], and Mitsch and Petrich [19].

Zheng and Zhang [38] have studied some idempotent separating congruences on E-
inversive semigroups whose idempotents form a rectangular band. In [10], Gigon have
studied ideals and congruences in E-inversive semigroups, and also proved that E-inversive
semigroup is strictly closed. In [37], Weipoltshammer have investigated a least group congru-
ence, a semilattice congruence and an idempotent separating congruence on an E-inversive
E-semigroup.

In this paper, we have generalized the concept of E-inversive semigroups and E-
inversive E-semigroups. Some basic properties of E-inversive semigroups in a partially in-
verse AG**-groupoid have been transformed and studied different congruences on a partially
inverse AG**-groupoid. It is important to note that unlike semigroup, the concepts of par-
tially inverse AG**-groupoid and partially inverse E-AG**-groupoid coincide in a structure
of an AG-groupoid.

Thus in this paper, we have actually tried to generalize the work done for associative
structures such as semigroups to non-associative structures such as AG-groupoids.

Let us introduce the concept of soft inverses in an AG**-groupoid as follows:
For an AG**-groupoid, U(a) = {x ∈ S|x = xa · x and xa = ax} is the set of all soft

inverses of a ∈ S.

Definition 2.1. An AG**-groupoid S is called partially inverse if for all a ∈ S, there exists
x ∈ S such that ax and xa are idempotents.

In [3], E-inversive semigroup was characterized by Catino and Miccoli as follows:
A semigroup S is E-inversive if and only if W (a) 6= ∅ for all a ∈ S, where W (a) = {x ∈
S / x = xax} is the set of all weak inverses of a ∈ S.

By contrast, we obtain the following result in general.

Lemma 2.1. An AG**-groupoid S is partially inverse if and only if U(a) 6= ∅ for all a ∈ S.

Proof. Necessity. Let a ∈ S. Then there exists x ∈ S such that ax and xa are idempotents.
Thus, we have

ax · x = (ax · ax)x = (ax · ax)(ax) · x = (x · ax)(ax · ax) = (a · xx)(aa · xx)

= (xx · aa)(xx · a) = (aa · xx)(x2a) = a2x2 · x2a = (x2a · a)(x2a)

= (ax · x)a · (ax · x).

Moreover, (ax · x)a = ax · ax = a(ax · x). It follows that ∀a ∈ S, U(a) 6= ∅.



86 F. Yousafzai, M.-I. Khan, K.P. Shum and K. Hila

Sufficiency. Assume that U(a) 6= ∅, for all a ∈ S. Since x = xa · x and ax = xa
for some x ∈ S, then ax = a(xa · x) = xa · ax = ax · ax, which shows that S is partially
inverse. �

The above fact will be used frequently without mention in the sequel.
A semigroup S is E-semigroup if the set E of idempotents of S forms a subsemigroup

[1]. It is noteworthy that every AG**-groupoid is E-AG**-groupoid which can be easily
followed from the following Lemma 2.2.

Lemma 2.2. [27] Let S be an AG**-groupoid. Then E is a semilattice.

Example 2.1. Let us define a set S = {a, b, c, d} under the binary operation “·” as follows:

· a b c d
a b b d d
b b b b b
c a b c d
d a b a b

By routine calculation, it is easy to see that (S, ·) is a partially inverse AG**-groupoid
as well as a partially inverse E-AG**-groupoid.

We now provide some properties of a partially inverse AG**-groupoid.

Lemma 2.3. Let S be a partially inverse AG**-groupoid. Then the following conditions
hold:

(i) ea
′ ∈ U(a) if a

′ ∈ U(a) and e ∈ E;

(ii) a
′
f · e ∈ U(a) if a

′ ∈ U(a) and e, f ∈ E;

(iii) a
′2f · e ∈ U(a2) if a

′ ∈ U(a) and e, f ∈ E.

Proof. (i) : Let a
′ ∈ U(a) and e ∈ E, then

ea
′

= (ee)(a
′
a · a

′
) = (e · a

′
a)(ea

′
) = (ee · a

′
a)(ea

′
)

= (aa
′
· ee)(ea

′
) = (aa

′
· e)(ea

′
) = (ea

′
· a)(ea

′
),

and a · ea′
= e · aa′

= ee · aa′
= aa

′ · e = ea
′ · a.

(ii) : Let a
′ ∈ U(a) and e, f ∈ E, then

a
′
f · e = (a

′
a · a

′
)(ff) · e = (a

′
a · f)(a

′
f) · ee = (a

′
a · f)e · (a

′
f)e

= (ef · a
′
a) · (a

′
f)e = (aa

′
· fe) · (a

′
f)e = (fe · a

′
)a · (a

′
f)e

= (ef · a
′
)a · (a

′
f)e = (a

′
f · e)a · (a

′
f)e,

and a(a
′
f · e) = a

′
f · ae = a

′
a · fe = aa

′ · ef = ae · a′
f = (a

′
f · e).

(iii) : Let a
′ ∈ U(a) and e, f ∈ E, then

a
′2f · e = (a

′
a

′
· f)e = ef · a

′
a

′
= (ef) · (a

′
a · a

′
)(a

′
a · a

′
)

= (ef) · (a
′
a · a

′
a)(a

′
a

′
) = (ef) · (aa

′
· aa

′
)(a

′
a

′
)

= (ef)(a2a
′2 · a

′2) = (fe)(a
′2a

′2 · a2) = (ff · a
′2a

′2)(ea2)

= (a
′2a

′2 · ff)(ea2) = (a
′2f · a

′2f)(ea2) = (a2e)(a
′2f · a

′2f)

= (a
′2f · a

′2f)(ee) · a2 = (a
′2f · e)(a

′2f · e) · a2

= (aa)(a
′2f · e) · (a

′2f · e) = (e · a
′2f)(aa) · (a

′2f · e)
= (fa

′2 · e)a2 · (a
′2f · e) = (a

′2f · e)a2 · (a
′2f · e),

and

a2(a
′2f · e) = a

′2f · a2e = a
′2a2 · fe = a2a

′2 · ef = (ef · a
′2)a2 = (a

′2f · e)a2.
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�

Definition 2.2. Let S be an AG**-groupoid. For any H,B ⊆ S, we define H$B
= {a ∈ S :

ba ∈ H for some b ∈ B}.

If B = H, then H$H
will be denoted by H$ and it is called closure of H. An AG**-

subgroupoid H of an AG**-groupoid S is called closed if H = H$.

Proposition 2.1. Let S be a partially inverse AG**-groupoid. Then E is partially inverse
if E is closed.

Proof. Let e ∈ E and e
′ ∈ U(e). Since ee

′ ∈ E, then e
′ ∈ E$. Also E is closed, which follows

that e
′ ∈ E. Hence E is partially inverse. �

In general, the converse of the above proposition does not hold. The following example
shows it.

Example 2.2. Let (S, ·) be the partially inverse AG**-groupoid of Example 2.1. Clearly
E = {b, c} is a partially inverse subset of S, but it is not closed.

Lemma 2.4. Let S be an AG**-groupoid. If ab = e for all a, b ∈ S and e ∈ E, then
b2e · a2 = e.

Proof. Let a, b ∈ S and e ∈ E. Then by given assumption, we get

b2e · a2 = (bb · e)(aa) = (eb · b)(aa) = (eb · a)(ba) = (ab)(a · eb) = (ab)(e · ab) = e.

�

Definition 2.3. Let S be an AG**-groupoid. Define a relation “∼” on S as follows:

For a ∈ S and e ∈ E, e ∼ a ⇔ e = xa for some x ∈ S.

For a ∈ S, a subset E(a) of S is defined by E(a) = {e ∈ E / e ∼ a}.

Lemma 2.5. Let S be an AG**-groupoid. For all a ∈ S and e ∈ E, e ∼ a if and only if
e ∈ Sa.

Proof. It is simple, hence is omitted. �

Now, we will make use of the following description of a partially inverse AG**-groupoid
whose idempotents form a rectangular band.

Definition 2.4. An AG**-groupoid S is called rectangular if Ssatisfies the identity x = xy ·x
for all x, y ∈ S.

Example 2.3. Let us consider an AG**-groupoid S = {a, b, c, d} in the following multipli-
cation table:

· a b c d
a a b c d
b b a d c
c d c a b
d c d b a

It can be verified that it is a rectangular AG**-groupoid.

By an AG-band we mean an AG-groupoid whose elements are idempotent.

Lemma 2.6. Let S be an AG**-groupoid and E be a rectangular band. Then E is a singleton
set.

Proof. It is simple, hence is omitted. �
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Lemma 2.7. Let S be a partially inverse AG**-groupoid. Then the following conditions are
equivalent:

(i) E is a rectangular band;
(ii) For all a, b ∈ S, U(a) ∩ U(b) 6= ∅ implies U(a) = U(b).

Proof. (i) =⇒ (ii) : Take any a, b ∈ S and x ∈ U(a) ∩ U(b). Then x = xa · x, xa = ax
and x = xb · x, xb = bx. Since xa, xb ∈ E, then by using Lemma 2.6, xa = xb and thus
U(a) = U(b).

(ii) =⇒ (i) : It is trivial to observe that if (ii) holds, then for all e, f ∈ E, U(e) ∩
U(f) 6= ∅ implies U(e) = U(f). Let x ∈ U(ef), that is, x = (x · ef)x and x · ef = ef · x.
Then

(xf · e)e · (xf · e) = (e · xf)(xf · e) = (x · ef)(ef · x) = (ef · x)(x · ef) = ((x · ef)x)(ef) = x · ef = ef · x = xf · e,
and

(xf · e)e = (xf · e)(ee) = (ee)(e · xf) = e(x · ef) = e(ef · x) = e(xf · e).
Similarly we can show that (xf · e)f · (xf · e) = xf · e and (xf · e)f = f(xf · e). Thus

xf · e ∈ U(e) ∩ U(f), whence U(e) = U(f). Since e ∈ U(e), then it follows that ef · e = e.
Hence E is a rectangular band. �

2.2. Unitary congruences. The basic definitions of congruences on an AG-groupoid are
given in [20] and those definitions are analogous with those in semigroup theory. A congru-
ence σ on an AG**-groupoid S is an equivalence relation if σ is right (left) compatible, that
is, acσbc (caσcb) for each c in S.

Definition 2.5. A congruence σ on an AG-groupoid S is said to be a unitary congruence
if S/σ contains a left identity.

The group congruence σ on an E-inversive E-semigroup S was characterized by Rei-
ther [30] as follows: aσb⇐⇒ ea = bf, for some e, f ∈ E.

Now we will provide a theorem which will show the existence of a unitary congruence
on a partially inverse AG**-groupoid as follows:

Theorem 2.1. Let S be a partially inverse AG**-groupoid. Then the relation η = {(a, b) ∈
S × S / ea2 = b2f for some e, f ∈ E} is a unitary congruence on S.

Proof. It is easy to show that η is reflexive and symmetric.
Suppose that aηb and bηc. Then ea2 = b2f and e

′
b2 = c2f

′
for some e, f, e

′
, f

′ ∈ E.
Now

e
′
e · a2 = a2e · e

′
= ea2 · e

′
= b2f · e

′
e
′

= e
′
e
′
· fb2 = e

′
· fb2 = f · e

′
b2

= f · c2f
′

= c2 · ff
′
,

which follows that aηc. Thus η is transitive.
Let aηb and c ∈ S, then ea2 = b2f for some e, f ∈ E. Thus

e(ac)2 = ee · a2c2 = c2a2 · ee = c2a2 · e = ea2 · c2 = b2f · c2 = c2f · bb
= bb · fc2 = b2 · fc2 = f · b2c2 = f(bc)2.

Thus we showed that η is right compatible. Similarly, we can show that η is left
compatible. Hence η is a congruence on S.

Claim that for any e ∈ E, eη is the left identity of S/η. Let x ∈ S and x
′ ∈ U(x).

Then (x
′
x)(ex)2 = x

′
x · e2x2 = x

′
x · x2e2 = x2(x

′
x · e), therefore (ex, x) ∈ η. Thus η is a

unitary congruence on S. �

Example 2.4. Let us consider a partially inverse AG**-groupoid S = {1, 2, 3, 4, 5} in the
following multiplication table:
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· 1 2 3 4 5
1 2 1 1 1 1
2 1 2 2 2 2
3 1 2 4 5 3
4 1 2 3 4 5
5 1 2 5 3 4

If we take E = {2, 4} and consider η = {(1, 1), (1, 2), (2, 2), (3, 1)}, then it is easy to show
that η is a unitary congruence on S.

Corollary 2.1. Let S be a partially inverse AG**-groupoid and let E be closed. Then η =
{(a, b) ∈ E × E / ea = bf for some e, f ∈ E} is the least unitary congruence on E.

Proof. From Proposition 2.1 and Theorem 2.1, η is a unitary congruence on E. To show
that η is least on E, let ψ be an arbitrary unitary congruence on E and (a, b) ∈ ψ. Then
ea = bf for some e, f ∈ E. Thus

aη = eη · aη = (ea)η = (bf)η = (b2f2)η = (f2b2)η = (fb)η = fη · bη = bη,

which implies that (a, b) ∈ η. Hence η is the least unitary congruence on E. �

The following characterization problem gives us an alternative description of Theorem
2.1.

Theorem 2.2. Let S be a partially inverse AG**-groupoid. Then the unitary congruence η
on S is given by aηb⇔ U(a2) ∩ U(b2) 6= ∅.
Proof. Necessity. Let a, b ∈ S such that aηb. Then by Theorem 2.1, there exist e, f ∈ E
with ea2 = b2f. Let a

′ ∈ U(a). Then by Lemma 2.3 (iii), a
′2f · e ∈ U(a2) ∩ U(b2), whence

U(a2) ∩ U(b2) 6= ∅.
Sufficiency. Let x ∈ U(a2) ∩ U(b2). Then xa2 = a2x and xb2 = b2x. It is easy to see

that b2x, xa2 ∈ E. Thus b2x · a2 = a2x · b2 = bb · xa2 = b · xa2. Hence by Theorem 2.1,
aηb. �

Corollary 2.2. Let S be a partially inverse AG**-groupoid and let E be closed. Then the
unitary congruence η on E is given by η = {(a, b) ∈ E ×E / U(a) = U(b)} if and only if E
is a rectangular band.

Proof. Necessity. Let e, f ∈ E. From Corollary 2.1, η is a unitary congruence on E, eηf.
By hypothesis, therefore we have U(a) = U(b). Since e ∈ U(e) = U(f), then it follows that
ef · e = e. Thus E is a rectangular band.

Sufficiency. Let aηb and E be a rectangular band. By Theorem 2.2, U(a2)∩U(b2) 6= ∅,
whence by Lemma 2.7, U(a) = U(b). Conversely, if U(a) = U(b), then U(a)∩U(b) = U(a) 6=
∅ (see Lemma 2.1) which implies that U(a2) ∩ U(b2) 6= ∅. Hence by Theorem 2.2, aηb. �

Definition 2.6. A subset H of an AG**-groupoid S is called full if E ⊆ H. An AG**-
subgroupoid H of an AG**-groupoid S is called softly self conjugate if for all a ∈ S, x ∈ H,
a

′ ∈ U(a); a′x · a, a′ · xa ∈ H, ax = xa, a
′
x = xa

′
.

Example 2.5. Let S be the partially inverse AG**-groupoid of Example 2.4. Consider
E = {2, 4} and H = {2}. Then it is easy to verify that H is a softly self conjugate subset of
S.

For an AG**-groupoid S, the following notations will be used: P is the class of all
full and softly self conjugate AG**-subgroupoids of S and P ∗ is the set of all closed AG**-
subgroupoids of S.

If we consider H ∈ P instead of E in Theorem 2.1, then we can get some important
characterization problems connected to a unitary congruences of a partially inverse AG**-
groupoid.
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Theorem 2.3. Let S be a partially inverse AG**-groupoid and H ∈ P . Then the relation
ΩH = {(a, b) ∈ S × S / xa2 = b2y for some x, y ∈ H} is a unitary congruence on S.

Proof. To show that ΩH is a congruence on S, let a, b, c ∈ S such that a
′ ∈ U(a). It is easy

to see that a
′
a, aa

′ ∈ E and since H is full, then a
′
a, aa

′ ∈ H. Thus aa
′ ·a2 = a2 ·a′

a, which
shows that aΩHa.

Suppose that aΩHb. Then xa2 = b2y for some x, y ∈ H. Let b
′ ∈ U(b). Thus

(b
′
y · b)(aa

′
) · b2 = (b2 · aa

′
)(by · b

′
) = (b2 · by)(aa

′
· b

′
) = (b · b2y)(aa

′
· b

′
)

= (b · xa2)(aa
′
· b

′
) = (b

′
· aa

′
)(xa2 · b) = (xa2) · (b

′
· aa

′
)b

= b(b
′
· aa

′
) · (a2x) = a2 · (b(b

′
· aa

′
))x = x(b(b

′
· aa

′
)) · a2

= a2(b(b
′
· aa

′
)) · x = b(a2(b

′
· aa

′
)) · x = b(b

′
(a2 · aa

′
)) · x

= b(b
′
(a

′
a · a2)) · x = b(a

′
a · b

′
a2) · x = (a

′
a)(b · b

′
a2) · x

= (b
′
a2 · b)(aa

′
) · x = (x · aa

′
)(b

′
a2 · b) = (x · a

′
a)(b

′
a2 · b)

= (a
′
· xa)(b

′
a2 · b) = (b

′
a2) · (a

′
· xa)b = b

′
(a

′
· xa) · (a2b)

= a2 · (b
′
(a

′
· xa))b.

Since (b
′
y · b)(aa′

), (b
′
(a

′ · xa))b ∈ H, then bΩHa.
Again suppose that aΩHb and bΩHc. Then xa2 = b2y and zb2 = c2w for some

w, x, y, z ∈ H. Since

(xw · zy)a2 = (a2 · zy)(xw) = (a2x)(zy · w) = (w · zy)(xa2) = (w · zy)(b2y)

= (z · wy)(b2y) = (zb2)(wy · y) = (c2w)(y2w) = (y2w · w)c2

= w2y2 · c2 = c2 · y2w2,

then it follows that aΩHc.
Let aΩHb and c ∈ S. Then xa2 = b2y for some x, y ∈ H. Let b

′ ∈ U(b) and c
′ ∈ U(c).

Then

x(bb
′
· cc

′
) · (ac)2 = x(bb

′
· cc

′
) · (a2c2) = (xa2) · (bb

′
· cc

′
)c2

= (b2y) · (bb
′
· cc

′
)c2 = (b2y) · c2(cc

′
· bb

′
)

= (b2c2) · y(cc
′
· bb

′
) = (bc)2 · y(cc

′
· bb

′
),

which shows that ΩH is right compatible. Similarly, we can show that ΩH is left compatible.
Hence ΩH is a congruence on S.

Fix x ∈ H and claim that xΩH is the left identity of S/ΩH . Let a ∈ S and a
′ ∈ U(a).

Then (x2 · aa′
)a2 = (a

′
a · x2)a2 = a2x2 · a′

a = (xa)2(a
′
a), which implies that (a, xa) ∈ ΩH .

Hence ΩH is a unitary congruence on S. �

Theorem 2.4. Let S be a partially inverse AG**-groupoid with H ∈ P ∗. If a, b ∈ S, then
the following statements are equivalent:

(i) For all b
′ ∈ U(b), a2b

′2 ∈ H;

(ii) For all a
′ ∈ U(a), a

′2b2 ∈ H;

(iii) For all a
′ ∈ U(a), b2a

′2 ∈ H;

(iv) For all b
′ ∈ U(b), b

′2a2 ∈ H;

(v) For all b
′ ∈ U(b), there exists x ∈ H such that a2x · b′2 ∈ H;

(vi) For all a
′ ∈ U(a), there exists x ∈ H such that a

′2x · b2 ∈ H;

(vii) For all a
′ ∈ U(a), there exists x ∈ H such that b2x · a′2 ∈ H;

(viii) For all b
′ ∈ U(b), there exists x ∈ H such that b

′2x · a2 ∈ H;
(ix) There exist x, y ∈ H such that xa2 = b2y;
(x) There exist x, y ∈ H such that a2x = yb2;



Congruences induced by certain relations on AG**-groupoids 91

(xi) Ha2 ∩Hb2 6= ∅.

Proof. (i) =⇒ (ii) : Let a
′ ∈ U(a) and b

′ ∈ U(b). Then a2b
′2 = ab

′ · ab′ ∈ H implies

ab
′ ∈ H$ = H and

(a
′2 · a2b

′2)a2 = ((a
′
a

′
)(ab

′
· ab

′
))(aa) = ((a

′
· ab

′
)(a

′
· ab

′
))(aa)

= (a
′
· ab

′
)a · (a

′
· ab

′
)a ∈ H.

Now

(a
′2 · a2b

′2)a2 · (a
′2b2) = ((a

′
· ab

′
)a · (a

′
· ab

′
)a)(a

′
b · a

′
b)

= ((a
′
· ab

′
)a · (a

′
b))((a

′
· ab

′
)a · (a

′
b)) = ((ab

′
· a

′
)a · (a

′
b))((ab

′
· a

′
)a · (a

′
b))

= ((aa
′
· ab

′
)(a

′
b))((aa

′
· ab

′
)(a

′
b)) = ((a

′
b · ab

′
)(aa

′
))((a

′
b · ab

′
)(aa

′
))

= ((a
′
a)(ab

′
· a

′
b))((a

′
a)(ab

′
· a

′
b)) = ((aa

′
)(aa

′
· bb

′
))((aa

′
)(aa

′
· bb

′
)) ∈ HH ⊆ H.

It follows that a
′2b2 ∈ H$ = H.

(ii) =⇒ (i) : It is similar to the proof of (i) =⇒ (ii).
The proof of (ii)⇐⇒ (iii)⇐⇒ (iv) are similar to the proof of (i)⇐⇒ (ii).

(iv) =⇒ (v) : Let b
′ ∈ U(b) and a

′ ∈ U(a). Then b
′2a2 = b

′
a · b′a ∈ H, which implies

that b
′
a ∈ H$ = H and (b

′2 · a2a′2)b2 ∈ H. Thus

(a2 · (b
′2 · a2a

′2)b2)b
′2 = (b

′2 · a2a
′2)(a2b2) · b

′2 = ((b
′
· aa

′
)(b

′
· aa

′
) · (a2b2))b

′2

= ((b
′
· aa

′
)(ab) · (b

′
· aa

′
)(ab))b

′2

= ((b
′
· aa

′
)(ab) · b

′
)((b

′
· aa

′
)(ab) · b

′
)

= ((b
′
· ab)(b

′
· aa

′
))((b

′
· ab)(b

′
· aa

′
))

= ((a · b
′
b)(b

′
· aa

′
))((a · b

′
b)(b

′
· aa

′
))

= ((b
′
· aa

′
)(bb

′
) · a)((b

′
· aa

′
)(bb

′
) · a)

= ((b
′
b)(aa

′
· b

′
) · a)((b

′
b)(aa

′
· b

′
) · a)

= (a(aa
′
· b

′
) · (b

′
b))(a(aa

′
· b

′
) · (b

′
b))

= ((aa
′
· ab

′
)(b

′
b))((aa

′
· ab

′
) · (b

′
b))

= ((b
′
a · a

′
a)(b

′
b))((b

′
a · a

′
a) · (b

′
b)) ∈ HH ⊆ H.

(v) =⇒ (iv) : Let a
′ ∈ U(a) and b

′ ∈ U(b). Then there exists x ∈ H such that

x2 ∈ H, which follows that a2x2 · b′2 ∈ H. Since a
′
(a2x2 · b′2) · a ∈ H, then

a
′
(a2x2 · b

′2) · a = (a2x2 · a
′
b
′2)a = (x2a2 · a

′
b
′2)a

= (b
′2a2 · a

′
x2)a = (a · a

′
x2)(b

′2a2) ∈ H.

Thus we showed that b
′2a2 ∈ H$ = H.

(v) =⇒ (vi) : Let a
′ ∈ U(a) and b

′ ∈ U(b). Then there exists x ∈ H such that

a2x · b′2 ∈ H. Therefore

a
′2(a2x · b

′2) · b2 = b2(a2x · b
′2) · a

′2 = (a2x · b2b
′2)a

′2 = (b
′2b2 · xa2)a

′2

= (a
′2 · xa2)(b

′2b2) = (x · a
′2a2)(b

′2b2) ∈ H.

(vi) =⇒ (v) : It is similar to the proof of (v) =⇒ (iv).
Again, we can show that (vi)⇐⇒ (vii)⇐⇒ (viii).
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(viii) =⇒ (ix) : Let a
′ ∈ U(a) and b

′ ∈ U(b). Then there exists x ∈ H such that

b
′2x · a2 ∈ H. Since (a

′
(bb

′ · x) · a)(b2b
′2), ((b

′2x)a2)(b
′
b · aa′

) ∈ H, then we have

(a
′
(bb

′
· x) · a)(b2b

′2) · a2 = (b2 · (a
′
(bb

′
· x) · a)b

′2)a2 = (a2 · (a
′
(bb

′
· x) · a)b

′2)b2

= b2 · ((a
′
(bb

′
· x) · a)b

′2)a2 = b2 · (a2b
′2)(a

′
(bb

′
· x) · a)

= b2 · (a2b
′2)((bb

′
· x)a

′
· a) = b2 · (a2b

′2)((aa
′
)(bb

′
· x))

= b2 · (a2b
′2)((x · bb

′
)(a

′
a)) = b2 · (a2b

′2)((a
′
a · bb

′
)x)

= b2 · (a2(a
′
a · bb

′
))(b

′2x) = b2 · ((b
′
b · aa

′
)a2)(b

′2x)

= b2 · ((b
′2x)a2)(b

′
b · aa

′
).

(ix) =⇒ (x) : Let a
′ ∈ U(a) and b

′ ∈ U(b). By assumption there exist x, y ∈ H such

that xa2 = b2y. We know that (bb
′
)(a

′
x · a), (aa

′ · b′b)y ∈ H. Thus

a2 · (bb
′
)(a

′
x · a) = a2 · (bb

′
)(xa

′
· a) = a2 · (bb

′
)(aa

′
· x) = a2 · (aa

′
)(bb

′
· x)

= (aa
′
) · a2(bb

′
· x) = (aa

′
)(bb

′
· a2x) = (aa

′
)(xa2 · b

′
b)

= (aa
′
)(b2y · b

′
b) = (b2y)(aa

′
· b

′
b) = (aa

′
· b

′
b)y · b2.

(x) =⇒ (xi) : Suppose that a2x = yb2 for some x, y ∈ H. Then

y2x2 · a2 = a2x2 · y2 = x2a2 · y2 = (a2x · x)y2 = (yb2 · x)y2

= y2x · yb2 = b2y · xy2 = (xy2 · y)b2,

which implies that Ha2 ∩Hb2 6= ∅.
(xi) =⇒ (v) : Suppose that Ha2 ∩ Hb2 6= ∅. Let xa2 = yb2 for some x, y ∈ H and

a
′ ∈ U(a), b

′ ∈ U(b). Then

(aa
′
)(xa2 · a

′2) = (aa
′
)(a

′2a2 · x) = (aa
′
) · (a

′
a · a

′
a)x ∈ H.

It follows that

a2((aa
′
)(xa2 · a

′2)) · b
′2 = a2((aa

′
)(yb2 · a

′2)) · b
′2 = (aa

′
)(a2(yb2 · a

′2)) · b
′2

= (aa
′
)(yb2 · a2a

′2) · b
′2 = (aa

′
)((yb2)(aa

′
· aa

′
)) · b

′2

= (aa
′
)((aa

′
· aa

′
)(b2y)) · b

′2 = b
′2(aa

′
· b2y) · (aa

′
)

= (aa
′
)(b

′2 · b2y) · (aa
′
) = (aa

′
)(yb2 · b

′2) · (aa
′
)

= (aa
′
)(b

′2b2 · y) · (aa
′
) ∈ H.

�

Corollary 2.3. Let S be a partially inverse AG**-groupoid with H ∈ P ∗ and a, b ∈ S. Then
aΩHb if and only if one of the equivalent conditions in Theorem 2.4 holds.

Theorem 2.5. Let S be a partially inverse AG**-groupoid. Then the relation τ = {(a, b) ∈
S × S / E(a) = E(b)} is a unitary congruence on S .

Proof. Clearly, τ is an equivalence relation.We shall show that τ is compatible. Let a, b, c ∈ S
be such that aτb. Suppose that e ∈ E with e ∼ ac. Then there exists x ∈ S such that
x · ac = e. By Lemma 2.4, we have

e = (ac)2e · x2 = (a2c2 · e)x2 = x2e · a2c2 = (aa)(x2e · c2) = (x2e · c2)a · a.
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Hence e ∼ a. Since E(a) = E(b), e ∼ b and therefore there exists y ∈ S such that
yb = e. Thus (yb)(x · ac) = e. Now by using Lemma 2.4, we have

e = (x · ac)2e · (yb)2 = (x2 · a2c2)e · y2b2 = (x2 · c2a2)e · y2b2

= (c2 · x2a2)e · y2b2 = (e · x2a2)c2 · y2b2 = b2y2 · c2(e · x2a2)

= b2c2 · y2(e · x2a2) = (bc)(bc) · y2(e · x2a2) = (y2(e · x2a2) · bc)(bc),

which implies that e ∼ bc. Thus E(ac) ⊆ E(bc). Similarly we can show that E(bc) ⊆ E(ac).
Hence E(ac) = E(bc), which follows that acτbc. The similar argument will holds for caτcb.
Therefore τ is a congruence on S.

To show that xτ is a left identity of S/τ for some x ∈ E, let a ∈ S. If e ∼ a, then
there exists x ∈ S such that e = xa. By Lemma 2.4, we have

e = a2e · x2 = x2 · ea2 = e · x2a2 = e(xa · xa) = e(ax · ax)

= (ax)(e · ax) = (ax · e)(xa).

Thus we showed that e ∼ xa and so E(a) ⊆ E(xa). Similarly we can show that
E(xa) ⊆ E(a). Hence (a, xa) ∈ τ, and thus τ is a unitary congruence on S. �

2.3. Idempotent separating congruences. We investigate an idempotent separating
congruence on a partially inverse AG**-groupoid S concerning centralizer Hϑ of H in S,
where Hϑ = {x ∈ S / xh = hx for all h ∈ H}.

Definition 2.7. A congruence σ on an AG**-groupoid is called idempotent separating if
each σ-class contains at most one idempotent.

Theorem 2.6. Let S be a partially inverse AG**-groupoid and H ∈ P. Then the relation
λ = {(a, b) ∈ S × S / for each a

′ ∈ U(a), there exists b
′ ∈ U(b) (for all b

′ ∈ U(b), there

exists a
′ ∈ U(a)) such that a

′
x ·a = b

′
x ·b and a

′ ·xa = b
′ ·xb for all x ∈ H} is an idempotent

separating congruence on S.

Proof. Obviously λ is reflexive and symmetric. Take any a, b, c ∈ S with aλb and bλc. Let
a

′ ∈ U(a). Then there exists b
′ ∈ U(b) such that a

′
x · a = b

′
x · b and a

′ · xa = b
′ · xb for

all x ∈ H. Since bλc and b
′ ∈ U(b), then there exists c

′ ∈ U(c) such that b
′
x · b = c

′
x · c

and b
′ · xb = c

′ · xc for all x ∈ H. Thus a
′
x · a = c

′
x · c and a

′ · xa = c
′ · xc for all x ∈ H.

Similarly we can show that for all c
′ ∈ U(c), there exists a

′ ∈ U(a) such that a
′
x · a = c

′
x · c

and a
′ · xa = c

′ · xc for all x ∈ H. Thus we showed that λ is transitive.
Let a, b, c ∈ S with aλb and let a

′ ∈ U(a). Then there exists b
′ ∈ U(b) such that

a
′
x · a = b

′
x · b and a

′ · xa = b
′ · xb for all x ∈ H. Let c

′ ∈ U(c). Then by (ac)
′ ∈ U(ac),

(bc)
′ ∈ U(bc) and for all x ∈ H, we get

((ac)
′
· x)(ac) = (ac · x)(a

′
c
′
) = (xc · a)(a

′
c
′
) = (c

′
a

′
)(a · xc) = (c

′
a

′
)(a · cx)

= (c
′
a

′
)(c · ax) = (c

′
c)(a

′
· ax) = (cc

′
)(a

′
· ax) = (ca

′
)(c

′
· ax)

= (ax · c
′
)(a

′
c) = (ax · a

′
)(c

′
c) = c

′
· (ax · a

′
)c = c

′
· (a

′
x · a)c

= c
′
· (b

′
x · b)c = c

′
· (bx · b

′
)c = (bx · b

′
)(c

′
c) = (bx · c

′
)(b

′
c)

= (cb
′
)(c

′
· bx) = (cc

′
)(b

′
· bx) = (c

′
c)(b

′
· bx) = (c

′
b
′
)(c · bx)

= (c
′
b
′
)(b · cx) = (c

′
b
′
)(b · xc) = (xc · b)(b

′
c
′
) = (bc · x)(b

′
c
′
) = ((bc)

′
· x)(bc),



94 F. Yousafzai, M.-I. Khan, K.P. Shum and K. Hila

and

(ac)
′
(x · ac) = (a

′
c
′
)(x · ac) = (a

′
x)(c

′
· ac) = (xa

′
)(c

′
· ac) = (xc

′
)(a

′
· ac)

= a
′
(xc

′
· ac) = a

′
(xa · c

′
c) = a

′
(ax · c

′
c) = a

′
· (c

′
c · x)a

= b
′
· (c

′
c · x)b = b

′
(bx · c

′
c) = b

′
(xb · c

′
c) = b

′
(xc

′
· bc)

= (xc
′
)(b

′
· bc) = (xb

′
)(c

′
· bc) = (b

′
x)(c

′
· bc) = (b

′
c
′
)(x · bc) = (bc)

′
(x · bc),

which shows that acλbc and therefore λ is right compatible. Similarly we can show that λ
is left compatible as well. Hence λ is a congruence relation on S.

Let e, f ∈ E such that eλf. Then for any e ∈ U(e), there exists some f ∈ U(f) such

that ex · e = f
′

x · f for all x ∈ H. As H is full, e ∈ H and e = ee · e = f
′

e · f, we have

ef = (f
′

e · f)f = ff · f
′
e = f · f

′
e = f

′
· fe = f

′
· ef = fe · f

′

= f
′

e · f = e.

Now if f ∈ U(f), then there exists e
′ ∈ U(e) such that fx · f = e

′
x · e for all x ∈ H.

Since f ∈ H,then we have f = ff · f = e
′
f · e. It follows that

ef = e(e
′
f · e) = e(ef · e

′
) = ef · ee

′
= e

′
e · fe = e

′
f · ee = e

′
f · e = f.

Thus e = f , and so λ is an idempotent separating congruence on S. �

Theorem 2.7. Let S be a partially inverse AG**-groupoid with H ∈ Pand let µ be the
relation given by µ = {(a, b) ∈ S × S / for each a

′ ∈ U(a), there exists b
′ ∈ U(b) (for all

b
′ ∈ U(b), there exists a

′ ∈ U(a)) such that a
′
a = b

′
b, a

′
b ∈ Hϑ for all x ∈ H}. If H is

commutative, then µ is an idempotent separating congruence on S.

Proof. Let a, b ∈ S with aλb and let a
′ ∈ U(a). Then there exists b

′ ∈ U(b) such that

a
′
x · a = b

′
x · b and a

′ · xa = b
′ · xb for all x ∈ H. Also note that a

′
a ∈ E ⊆ H. Thus it

follows that

a
′
a = (a

′
a · a

′
)a = aa

′
· a

′
a = a

′
(aa

′
· a) = b

′
(aa

′
· b) = aa

′
· b

′
b = bb

′
· a

′
a

= (a
′
a · b

′
)b = b

′′
b,

where by Lemma 2.3 (i), a
′
a · b′ ∈ U(b). For any h ∈ H, we have

a
′
b · h = (a

′
a · a

′
)b · h = (hb)(a

′
a · a

′
) = (h · a

′
a)(ba

′
) = (a

′
a · h)(ba

′
)

= (a
′
a · b)(ha

′
) = (a

′
a · b)(a

′
h) = (a

′
a · a

′
)(bh) = (a

′
a · a

′
)(hb)

= h · (a
′
a · a

′
)b = h · a

′
b.

Therefore a
′
b ∈ Hϑ. Similarly we can prove it for the second case as well. Hence λ ⊆ µ.

Now we further suppose that a, b ∈ S such that aµb and a
′ ∈ U(a). Then there

exists b
′ ∈ U(b) such that a

′
a = b

′
b, a

′
b ∈ Hϑ for all x ∈ H. By Lemma 2.3 (ii), b

′′
=

(b
′ · a′

a)(a
′
a) ∈ U(b). Indeed, if x ∈ H, then

a
′
x · a = (a

′
a · a

′
)x · a = (b

′
b · a

′
)x · a = (a

′
b · b

′
)x · a = (xb

′
· a

′
b)a

= (b
′
x · a

′
b)a = (a

′
b · x)b

′
· a = (x · a

′
b)b

′
· a = (ab

′
)(x · a

′
b)

= (ab
′
)(a

′
· xb) = (xb · a

′
)(b

′
a) = (b

′
a · a

′
)(xb) = (bx)(a

′
· b

′
a)

= (a
′
· b

′
a)x · b = (x · b

′
a)a

′
· b = (b

′
· xa)a

′
· b = (a

′
· xa)b

′
· b

= (x · a
′
a)b

′
· b = (a

′
a · x)b

′
· b = (b

′
x · a

′
a) · b = (xb

′
· a

′
a) · b

= (a
′
a · b

′
)x · b = ((a

′
a · a

′
)a · b

′
)x · b = ((b

′
a)(a

′
a · a

′
) · x)b

= ((b
′
· a

′
a)(a

′
a) · x)b = b

′′
x · b,
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and since aa
′ ∈ E ⊆ H, then

a
′
· xa = (a

′
a · a

′
)(xa) = (xa · a

′
)(a

′
a) = (a

′
a · x)(a

′
a) = (aa

′
· x)(a

′
a)

= (xa
′
· a)(a

′
a) = (a

′
x · a)(a

′
a) = (a

′
a)(a

′
x · a) = (a · a

′
x)(aa

′
)

= (a
′
· ax)(aa

′
) = (aa

′
)(a

′
· ax) = (bb

′
)(a

′
· xa) = (bb

′
)(x · a

′
a)

= (bx)(b
′
· a

′
a) = (a

′
a · b

′
)(xb) = ((a

′
a · a

′
)a · b

′
)(xb)

= (b
′
a)(a

′
a · a

′
) · xb = (a

′
a)(b

′
a · a

′
) · xb = (a

′
a)(a

′
a · b

′
) · xb

= (b
′
· a

′
a)(a

′
a) · xb = b

′′
· xb.

Similarly we can easily show that for every b
′ ∈ U(b), there exists a

′ ∈ U(a) such that

a
′
x · a = b

′′
x · b and a

′ · xa = b
′′ · xb, for all x ∈ H. It follows that aλb and hence µ ⊆ λ.

Thus it was shown that µ is an idempotent separating congruence on S. �

3. Maximal anti-separative decomposition of locally associative
AG**-groupoids

Recall that an AG-groupoid S is called a locally associative AG-groupoid if a · aa =
aa · a, for all a ∈ S [23].

Definition 3.1. A locally associative AG**-groupoid is an AG**-groupoid S satisfying an
identity a · aa = aa · a, for all a ∈ S.

It is easy to note that every locally associative AG**-groupoid is a partially inverse
AG**-groupoid, but the converse implication is not true in general which can be followed
from Example 2.1.

The following basic facts will be used frequently without mention in the sequel and
can be found in [23, 22, 24].

Lemma 3.1. Every locally associative AG**-groupoid S has associative powers, that is,
aan = ana, ∀a ∈ S and n ∈ N .

Lemma 3.2. In an AG**-groupoid S, aman = am+n, ∀a ∈ S and m,n ∈ N.
Lemma 3.3. In a locally associative AG**-groupoid S, (am)n = amn, ∀a ∈ S and m,n ∈ N.
Lemma 3.4. If S is a locally associative AG**-groupoid and a, b ∈ S, then (ab)n = anbn

for any n ≥ 1 and (ab)n = bnan for any n ≥ 2.

Note that an−1a = ((((aa)a)a)...a)a and aan−1 = a((((aa)a)a)...a).

Lemma 3.5. Let S be a locally associative AG**-groupoid. Then an = an−1a = aan−1,
∀a ∈ S and ∀n > 1.

Lemma 3.6. If S is a locally associative AG**-groupoid and a, b ∈ S, then anbm = bman

for m,n > 1.

Let define a relation τ as aτb ⇐⇒ abn = bn+1 and ban = an+1, ∀a, b ∈ S and n ∈ N .

Lemma 3.7. The relation τ on a locally associative AG**-groupoid S is a congruence
relation.

Proof. Clearly τ is reflexive and symmetric. For transitivity, let aτb and bτc. Then there
exist positive integers m,n such that abn = bn+1, ban = an+1 and bcm = cm+1, cbm = bm+1.
Let k = (n+ 1)(m+ 1)− 1, that is, k = n(m+ 1) +m. Then

ack = acn(m+1)+m = a · cn(m+1)cm = a · (cm+1)ncm = a · (bcm)ncm

= a · (bncmn)cm = bncmn · acm = bna · cmncm = cmcmn · abn

= cmcmn · bn+1 = cmcmn · bnb = bbn · cmncm = bn+1cm(n+1)

= (bcm)n+1 = (cm+1)n+1 = c(m+1)(n+1) = ck+1.
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Similarly, we can show that cak = ak+1. Thus τ is an equivalence relation. To show
that τ is compatible, assume that aτb and let c ∈ S. Then (ac)(bc)n = ac · bncn = abn · ccn =
bn+1cn+1 = (bc)n+1.

Similarly, we can show that (bc)(ac)n = (ac)n+1. Hence τ is a congruence relation on
S. �

Definition 3.2. A congruence σ is said to be anti-separative congruence in S, if abσa2 and
baσb2 implies that aσb.

Theorem 3.1. Let S be a locally associative AG**-groupoid. Then S/τ is a maximal anti-
separative commutative image of S.

Proof. It is easy to see that if abm = bm+1 and ban = an+1 for a, b ∈ S and positive integers
m,n such that n > m, then aτb. Let a, b ∈ S such that abτa2 and baτb2. Then by definition of
τ , there exist positive integers m and n such that (ab)(a2)m = (a2)m+1, a2(ab)m = (ab)m+1,
and (ba)(b2)n = (b2)n+1, b2(ba)n = (ba)n+1. It follows that

ba2m+1 = b · a2ma = a2m · ba = amam · ba = ab · amam = ab · a2m

= (ab)(a2)m = (a2)m+1 = a2m+2,

and

ab2n+1 = a · b2nb = b2n · ab = bnbn · ab = ba · bnbn = ba · b2n

= (ba)(b2)n = (b2)n+1 = b2n+2.

which implies that aτb. Thus τ is anti-separative, and hence S/τ is anti-separative. We now
show that τ is contained in every anti-separative congruence relation ξ on S. Let aτb so that
there exists a positive integer n such that, abn = bn+1 and ban = an+1.

We need to show that aξb, where ξ is any anti-separative congruence on S. Let k be
a positive integer such that, abkξbk+1 and bakξak+1.

Suppose that k > 2, then (abk−1)2 = abk−1 · abk−1 = aa · bk−1bk−1 = a2b2k−2,

a2b2k−2 = aa · bk−2bk = abk−2 · abkξabk−2 · bk+1

= abk−2 · bkb = abk · bk−2b = abk · bk−1,

and from above, it follows that

a2b2k−2ξabk · bk−1 = bk−1bk · a = bkbk−1 · a = abk−1 · bk.

Thus (abk−1)2ξabk · bk−1. Since abkξbk+1 implies that abk · bk−1ξbk+1 · bk−1. Hence
(abk−1)2ξ(bk)2. It further implies that (abk−1)2ξa2b2k−2 = b2k−2a2ξ(bk)2.

Thus it was shown that abk−1ξbk. Similarly, we can show that bak−1ξak.
By induction down from k, it follows that for k = 1, abξb2 and baξa2. Also it is easy

to see that τ is commutative. Hence by using anti-separativity and commutativity, it follows
that S/τ is a maximal anti-separative commutative image of S. �

3.1. Maximum idempotent separating congruences on a completely N-inverse
AG**-groupoid. In this section, we introduce the concept of a completely N -inverse AG**-
groupoid. We study some properties of a completely N -inverse AG**-groupoid. Also, a
maximum idempotent separating congruence on a completely N -inverse AG**-groupoid is
studied.

A completely N -inverse AG**-groupoid S is a locally associative AG**-groupoid sat-
isfying the identity xan = anx, where x is a unique inverse of an, that is, an = anx · an, x =
xan · x, for all a ∈ S.

Example 3.1. Let S = {x, y, z} be an AG-groupoid defined in the following multiplication
table:
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· x y z
x z y z
y x z z
z z z z

Then S is a locally associative AG**-groupoid. It can be verified that S is a completely
N -inverse AG**-groupoid.

Note that an = anx ·an implies that an is a regular element of a completely N -inverse
AG**-groupoid. It is easy to see that xan is idempotent in S.

Recall that if S is a locally associative AG**-groupoid, then an = an−1a = aan−1 for
all a ∈ S and n > 1, and (ab)n = anbn for all a, b ∈ S and n ≥ 1. These basic facts are
obviously valid in a completely N -inverse AG**-groupoid and will be used without mention
in the sequel.

By convention, if we write xa0 or a0x, for some x ∈ S, then we mean x.

Lemma 3.8. Let S be a completely N -inverse AG**-groupoid and a ∈ S. Then for any
n ∈ N such that an is regular:

(i) |V (an)| = 1, that is, an has a unique inverse that we denote by a−n;
(ii) aa−n · an−1, a · a−nan−1 ∈ E;
(iii) af · a−nan−1 ∈ E, for all f ∈ E;
(iv) If a, b ∈ S such that an and bm are regular for some m, n ∈ N, then anbm is

regular with inverse a−nb−m;
(v) (ab)−n = a−nb−n, for all a, b ∈ S.

Proof. Let a, b ∈ S and m, n ∈ N such that an and bm are regular.
(i) : Let y, z ∈ V (an), then

y = yan · y = y(anz · an) · y = (anz · yan)y = (zan · yan)y = (yan · an)z · y
= (yz)(any · an) = yz · an = (yz)(anz · an) = (y · anz)(zan) = (an · yz)(anz)
= (zan)(yz · an) = (yz · an)an · z = (anan · yz)z = (any · anz)z = (any · zan)z

= z(any · an) · z = zan · z = z.

(ii) : Let n > 2 and suppose that a−n is the inverse of an, then

(aa−n · an−1)(aa−n · an−1) = (an−1 · aa−n)(an−1 · aa−n)

= (an−2a · aa−n)(an−1 · aa−n) = (a−na · aan−2)(an−1 · aa−n)

= (a−na · an−1)(an−2a · aa−n) = (an−1a · a−n)(a−na · aan−2)

= (ana−n)(a−na · an−1) = (an−1 · a−na)(a−nan)

= (a−nan · a−na)an−1 = (a−na−n · ana)an−1.

Since ana = an−1a · a = aa · an−2a = aan−2 · aa = a(aan−2 · a) = aan, then it follows
from above that,

(aa−n · an−1)(aa−n · an−1) = (a−na−n · aan)an−1 = a(a−na−n · an) · an−1

= a(ana−n · a−n) · an−1 = a(a−nan · a−n) · an−1 = aa−n · an−1.

Thus it was shown that aa−n ·an−1 ∈ E. Similarly, we can show that a ·a−nan−1 ∈ E.
(iii) : Let f ∈ E and n > 2. Then

(af · a−nan−1)(af · a−nan−1) = (aa−n · fan−1)(af · a−nan−1)

= (aa−n)(ff · an−2a) · (af · a−nan−1) = (aa−n)(aan−2 · ff) · (af · a−nan−1)

= (aa−n · an−1f)(af · a−nan−1) = (aan−1 · a−nf)(an−1a−n · fa)

= (an · a−nf)(an−1a−n · fa) = (an · an−1a−n)(a−nf · fa).
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Since

a−nf = (a−nan · a−n)f = f(a−n · a−nan) = a−n(f · a−nan) = a−n(ana−n · f)

= a−n(a−nan · f) = a−n(fan · a−n) = a−n(anf · a−n) = anf · a−na−n

= a−na−n · fan = f(a−na−n · an) = f(ana−n · a−n) = f(a−nan · a−n)

= fa−n,

then it follows that,

(af · a−nan−1)(af · a−nan−1) = (an · an−1a−n)(a−nf · fa)

= (an · an−1a−n)(fa−n · fa) = (an · an−1a−n)(f · a−na)

= (a−na · f)(an−1a−n · an) = (fa · a−n)(ana−n · an−2a)

= (fa · a−n)(aan−2 · a−nan) = (fa · a−n)(an−1 · ana−n)

= (fa · an−1)(a−n · a−nan) = (a−nan · a−n)(an−1 · fa)

= a−n(an−1 · fa) = (an−2a)(a−n · fa) = (fa · a−n)an−1 = (an−1a−n)(fa)

= (af)(a−nan−1).

Thus it is shown that af · a−nan−1 ∈ E.
(iv) : Suppose that an and bm are regular with inverses a−n and b−m, then

(anbm · a−nb−m)(anbm) = (ana−n · bmb−m)(anbm) = (ana−n · an)(bmb−m · bm) = anbm.

Similarly, we can show that (a−nb−m · anbm)(a−nb−m) = a−nb−m. Moreover anbm ·
a−nb−m = a−nb−m · anbm, which is what we set out to prove.

(v) : It is simple. �

Note that if σ is a congruence relation on a completely N -inverse AG**-groupoid S,
then S/σ is a completely N -inverse AG**-groupoid and if (a, b) ∈ σ, then (a−n, b−n) ∈ σ
and conversely.

Theorem 3.2. Let S be a completely N -inverse AG**-groupoid. Then the relation ω defined
as aωb if and only if ana−n · e = bnb−n · e is a maximum idempotent separating congruence
on S, where n ≥ 1 and e ∈ E.

Proof. It is easy to see that ω is an equivalence relation on S. Now let aωb, then ana−n · e =
bnb−n · e, for every e ∈ E. Thus

(ac)n(ac)−n · e = (ac)−n(ac)n · e = e(ac)n · (ac)−n = (ee · (ac)n−1(ac))(ac)−n

= ((ac)(ac)n−1 · ee)(ac)−n = (ac)ne · (ac)−n = (ac)−ne · (ac)
= (a−nc−n · ee)(ac)n = (a−ne · c−ne)(ancn) = (a−ne · an)(c−ne · cn)

= (ane · a−n)(cne · c−n) = (ean · a−n)(ecn · c−n)

= (a−nan · e)(c−ncn · e) = (ana−n · e)(cnc−n · e) = (bnb−n · e)(cnc−n · e)
= (bnb−n · cnc−n)(ee) = (bncn · b−nc−n)e = (bc)n(bc)−n · e.

Thus acωbc. Similarly, we can show that caωcb. Hence ω is a congruence relation on
S.

Furthermore, let eωf for e, f ∈ E. Then for every g ∈ E, ene−n · g = fnf−n · g, and
therefore en = ene−n · en = fnf−n · en. Thus

ef = enf = (fnf−n · en)f = fen · fnf−n = enf · fnf−n = (fnf−n · f)en

= (f−nfn · f)en = (ffn · f−n)en = fnf−n · en = en = e,

and similarly, we can show that ef = f, which shows that e = f. Hence ω is an idempotent
separating congruence on S.
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Now let $ be any other idempotent separating congruence on S. We shall show
that $ ⊆ ω. Let x$y. Then clearly xn$yn. Also x−n$y−n, and therefore x−n · exn =
e · x−nxn$y−n · eyn = e · y−nyn, but both e · x−nxn and e · y−nyn are idempotents, and so
it follows that e · x−nxn = e · y−nyn, which implies that xnx−n · e = yny−n · e. Thus xωy.
Hence ω is maximum. �

Theorem 3.3. Let S be a completely N -inverse AG**-groupoid and let ω be the idempotent
separating congruence on S. Then for n ≥ 1, (a, b) ∈ ω if and only if a−nan = b−nbn and
anb−n ∈ Hϑ.

Proof. Let (a, b) ∈ ω. Then ana−n · e = bnb−n · e for all e ∈ E. From

(ana−n · e)(ana−n · e) = (bnb−n · e)(bnb−n · e),

it follows that (ana−n · ana−n)e = (bnb−n · bnb−n)e. Thus

a−nan = (a−nan · a−n)(ana−n · an) = (ana−n · ana−n)(a−nan)

= (bnb−n · bnb−n)(a−nan) = bnb−n · a−nan.

Similarly, we can show that b−nbn = bnb−n ·a−nan. Thus we have shown that a−nan =
b−nbn.

Since ana−n ·e = bnb−n ·e, for all e ∈ E, then an(ana−n ·e) · b−n = an(bnb−n ·e) · b−n,
whence

an(ana−n · e) · b−n = (ana−n · ane) · b−n = (b−n · ane)(ana−n) = (b−n · ean)(ana−n)

= (e · b−nan)(ana−n) = (anb−n · e)(ana−n) = (ana−n · e)(anb−n).

Similarly, we can show that an(bnb−n·e)·b−n = (anb−n)(ana−n·e). Hence anb−n ∈ Hϑ.
Conversely, let a−nan = b−nbn and anb−n ∈ Hϑ. Then e · anb−n = anb−n · e, ∀e ∈ E,

which further implies that a−n(e · anb−n) · bn = a−n(anb−n · e) · bn. Thus

a−n(e · anb−n) · bn = bn(e · anb−n) · a−n = e(bn · anb−n) · a−n = e(an · bnb−n) · a−n

= (ee)(an · ana−n) · a−n = (ana−n · an)(ee) · a−n = ane · a−n

= ean · a−n = a−nan · e = ana−n · e,

a−n(anb−n · e) · bn = a−n(anb−n · ee) · bn = a−n(ane · b−ne) · bn

= (ane)(a−n · b−ne) · bn = (b−ne · a−n)(ean) · bn

= (b−ne · e)(a−nan) · bn = (eb−n)(a−nan) · bn

= (eb−n)(b−nbn) · bn = (bn · b−nbn)(eb−n)

= (b−ne)(b−nbn · bn) = (b−ne)(bnb−n · bn)

= b−ne · bn = bne · b−n = ebn · b−n

= b−nbn · e = bnb−n · e.

It follows that ana−n · e = bnb−n · e. Hence aωb. �
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[35] N. Stevanović and P.V. Protić, Composition of Abel-Grassmann’s 3-bands. Novi Sad J. Math. 34

(2004), no. 2, 175-182.
[36] T. Tamora and T. Nordhal, On exponential semigroups, Proc. Japan. Acad. 48(1972), 474-478.
[37] B. Weipoltshammer, Certain Congruences on E-inversive E-semigroups. Semigroup Forum 65 (2002),

no. 2, 233-248.
[38] H. Zheng and Y. Zhang, Idempotent-separating congruences on E-inversive semigroups. Southeast

Asian Bull. Math. 35 (2011), no. 4, 741-751.


