

DETERMINATION OF POLYCHLORINATED BIPHENYL COMPOUNDS THROUGH GAS CHROMATOGRAPHY COUPLED WITH MASS SPECTROMETRY METHOD

Adriana Mariana BORŞ, C.A. CIUCULESCU, Aurelia MEGHEA*

Lucrarea urmărește determinarea concentrației unor probe din uleiuri dielectrice contaminate cu compuși bifenil policlorurați (PCB), precum și identificarea diferențierelor tipuri de PCB prin metoda gaz-cromatografie cuplată cu spectrometrie de masă (GC/MS). În acest scop este utilizată metoda extracției ionilor moleculari din cromatogramă cu masa specifică $m/z = 324, 358$ și 392 .

Lucrarea prezintă prelucrarea cromatogramelor în funcție de ionii specifici și spectrele lor de masă. Pe baza spectrelor obținute s-a realizat identificarea fragmentelor specifice în bibliotecile standard NIST și WILEY.

Această metodă oferă eficiență maximă în identificarea și determinarea concentrației diferențierelor tipuri de PCB în urme, din uleiurile dielectrice așa cum s-a demonstrat experimental pe probele prelevate și analizate.

The present paper aims to offer a Gas Chromatography with Mass Spectrometry Detection (GC/MS) method to determine the PCB concentration in dielectric oils. In addition, this method allows PCB type identification.

The respective method is based on molecular ion extraction; the specific masses m/z are 324, 358 and 392 of the ions from chromatograms.

The paper presents the processing of chromatograms according to the specific ions and their mass spectra. Based on the obtained spectra the identification of specified fragments from standard library NIST and WILEY has been performed.

This method provides an optimal efficiency in the identification and determination of the concentration to the different types of PCBs in traces, in oil capacitors, as it has been experimentally demonstrated on collected and analyzed samples.

Keywords: biphenyl polychlorinated (PCB), molecular ion/specific mass (m/z), Gas Chromatography with Electron Capture Detector (GC/ECD).

Introduction

Most transformers and capacitors use dielectric fluid based on polychlorinated biphenyl compounds (PCBs) [1, 9].

*Chemist, National Research Development Institute for Environmental Protection-ICIM Bucharest; Chemist, C.D. Nenițescu Organic Chemistry Centre of the Romanian Academy; Prof., University POLITEHNICA of Bucharest, Romania

Allthough they have some advantages and characteristics which make them usable in electric equipment (especially, due to their reduced flammability), these substances present some major disadvantages as well. These disadvantages are related to the toxic nature of PCBs and to their potential of contamination, namely their transformation into dibenzofuran [10, 16].

Their negative biological effects have been put into evidence during long periods of research and studies and now they are very well known.

Unfortunately, dielectric oils with PCBs are still widely used in transformers and capacitors, which have been introduced on the market 40 years ago; at present they must be eliminated through practical and efficient solutions [17-29].

Due to the wide use of electric equipment with fluids containing PCBs, especially of electric transformers and condensers, it was allowed, as an exception to this prohibition, in the frame policies of Stockholm Convention, to continue the use of these equipment until 2025, provided that the signatory parts of the Convention do their best to eliminate the production and use of these oils with PCBs [30-43].

Experimental

1. Materials and method

An extremely important problem is the separation and identification of persistent organic pollutants, such as PCBs, which implies two stages:

- preliminary monitoring in order to obtain information on the nature of the substances existing in the samples,
- identification through Gas Chromatography coupled with Mass Spectrometric detector (GC-MS).

In the first stage gas chromatography with specific or selective detectors, such as electron capturing detector (GC-ECD), is used for preliminary monitoring.

The system used is GC 9000, with capillary column and ECD detector which is highly sensitive as regards PCB, giving a disproportionately ample response in relation to the other compounds, which is indicative of their presence.

For the second stage the apparatus used for analyses is the gas chromatograph coupled with Varian Saturn type 3900/2100T mass spectrometer.

The gas-chromatograph is equipped with a split-splitless injector, a capillary column Factor Four VF-5ms, with $d_1 = 0.25\text{mm}$, $L=30\text{m}$, film stationary phase = $0.25\mu\text{m}$ or capillary column of SE-54 type (25m X 0.32 mm inside diameter and $0.25\mu\text{m}$ film thickness) and it requires the following conditions:

- temperature regime of the column: 60°C (1min) - $15^\circ\text{C}/\text{min}$ - 300°C (13min);
- injector temperature: $t_{\text{inj}} = 250^\circ\text{C}$;

- detector temperature: $t_{det} = 280^{\circ}\text{C}$;
- program temperature: $t_{int} = 40^{\circ}\text{C}$; isothermal one minute;
- temperature rate: $10^{\circ}\text{C}/\text{minute}$ up to 280°C , then isothermal 10 min.
- supporting gas: helium quality 6.0 (ultra pure);
- start delay (s d): 3 min;
- splitting rate: 2 mL/minute up to 4 minutes, then 25 mL/minute.

As mobile phase, one can use helium or hydrogen with a flow rate of 1-2 mL/minute.

The mass spectrometer has a ionic trap type detector with a sensitivity of 10 pg. HCB (hexachlorobenzene). The injected sample quantity is 1-2 μ L PCB solution in hexane.

Passing it over a Florisil element processed a maximal quantity of 1 mL transformer oil. After all oil has flown through the cartridge, halogenated products are driven with 1-2 mL hexane of GC quality and the solution gets diluted in a measuring bottle of 10 mL. An aliquot of 1-2 μ L solution is injected in hexane and the characteristic areas are measured for PCBs.

The total of these areas is marked in a diagram with the given co-ordinates (measured area of PCBs and PCB percentage concentration), and PCB concentration is read.

2. Results and discussion

The analysis was conducted on 5 oil samples containing PCBs (I – IV) collected from the same area, but having different locations.

Sample I chromatogram is presented in Fig. 1. It shows the presence of a large series of PCBs, from trichlorobenzene to heptachlorobiphenyl.

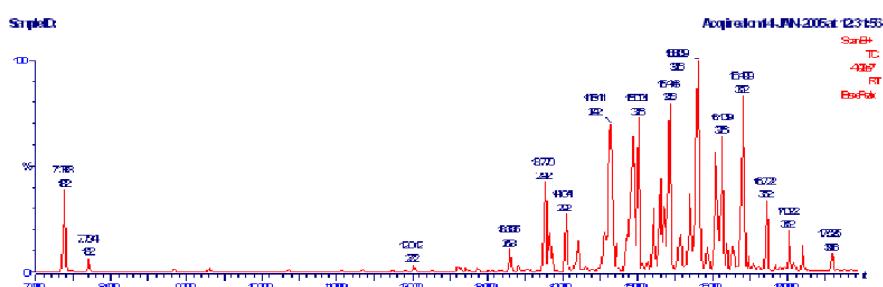
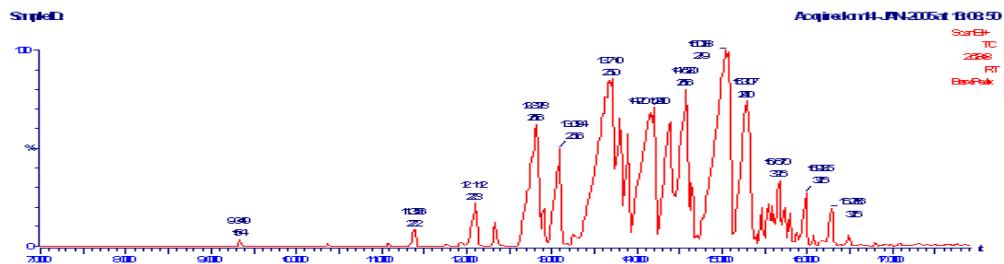



Fig.1. Chromatogram of the sample I

The sample II was collected from a condenser and its chromatogram is shown in Fig. 2. It shows that the PCBs content varies from monochlorobiphenyl to hexachlorobiphenyl, having an average chlorine concentration over 50 %.

number of chlorine atoms (4 to 7). Moreover, they degrade more easily to form new chemical structures and are less susceptible to bio-concentration.

The European and national legislation defines “material contaminated by PCBs” any material which contains more than 50 ppm PCBs (0.005 %).

According to literature data dielectric oils contaminated with PCBs have a chlorine content between 0 % and 60 %.

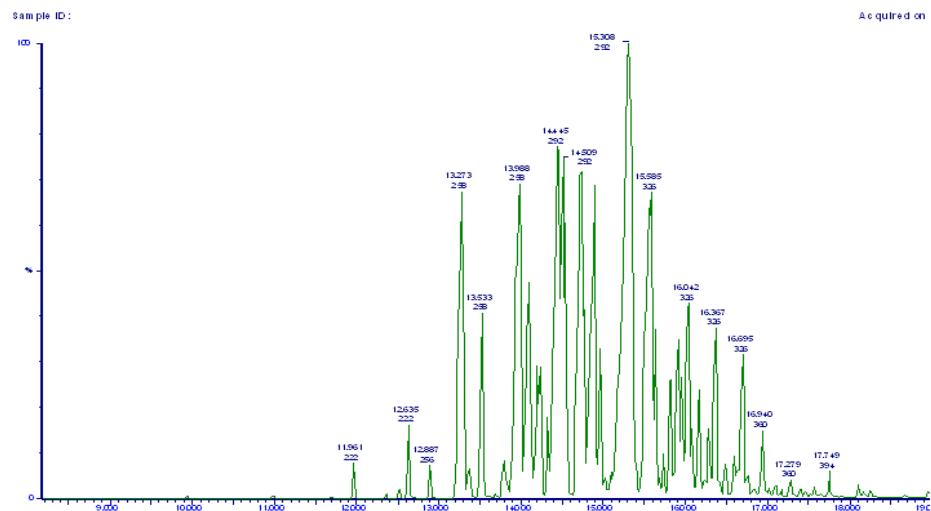


Fig.4. Processed chromatogram of sample IV from transformer oil

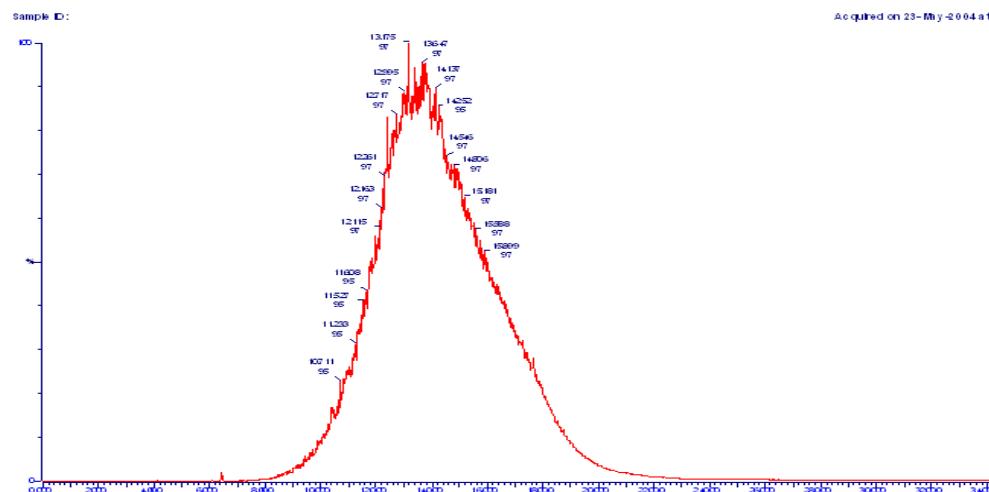


Fig.5. Chromatogram of sample V from transformer oil

The processed chromatogram of the samples shows the PCB lack in the sample V (fig.5). This leads to a Gaussian increase of the recorded chromatogram, showing the rise of paraffin content which cannot be separated by this method.

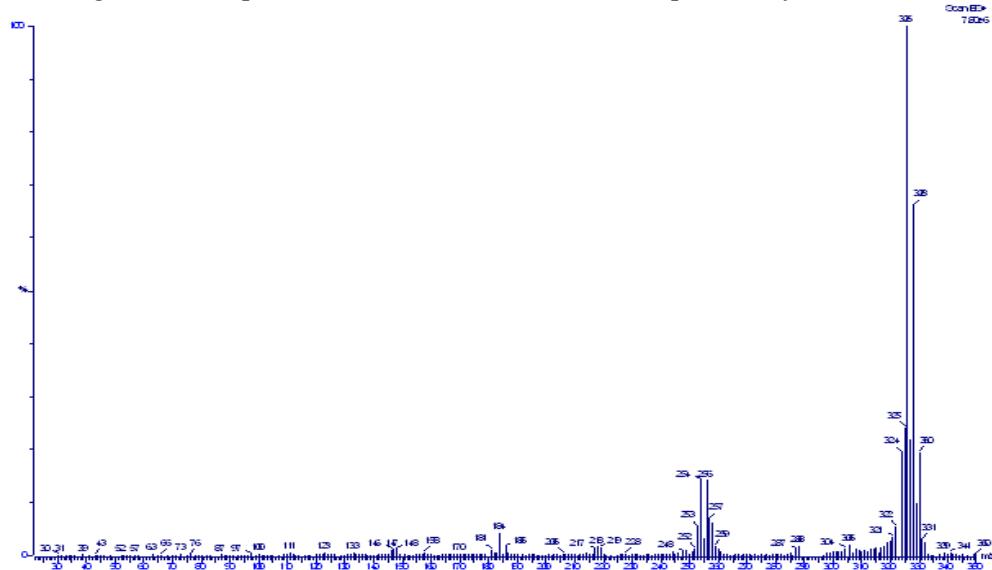


Fig.6. Mass spectrum of the sample IV from transformer oil in relation to the specific ion $m/z = 324$

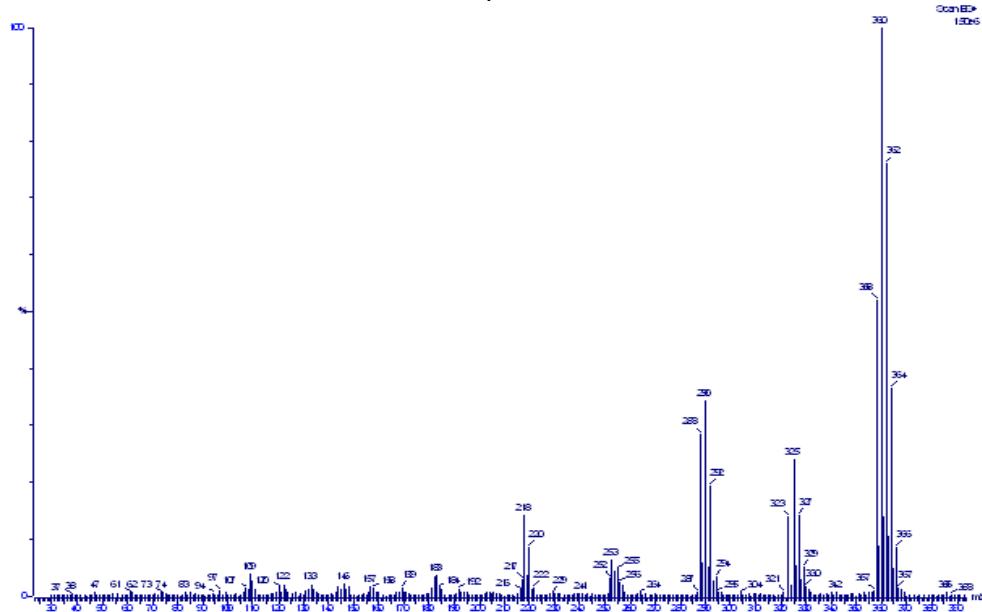
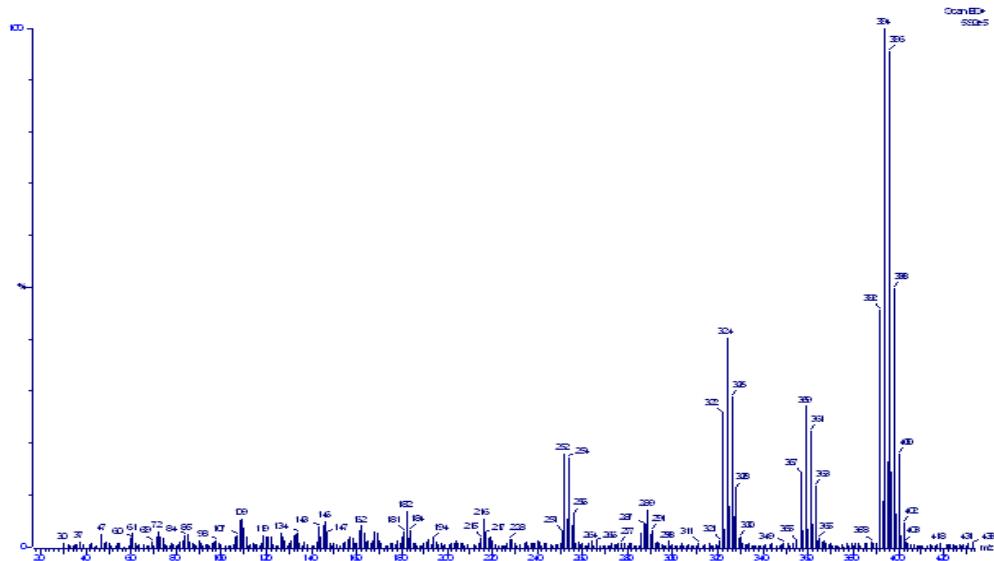
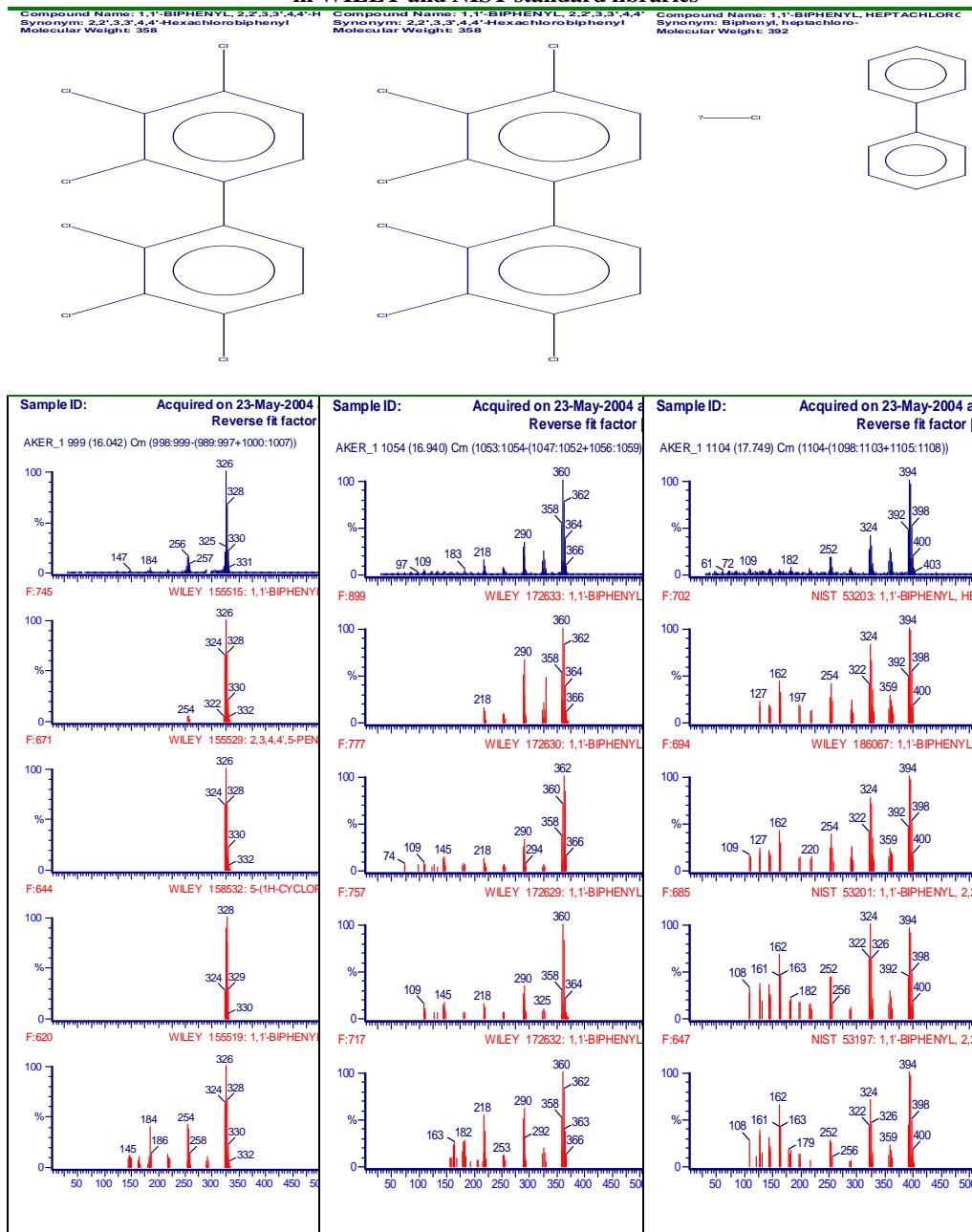


Fig.7. Mass spectrum of the sample IV from transformer oil in relation to the specific ion $m/z = 358$




Fig.8. Mass spectrum of the sample IV from transformer oil
in relation to the specific ion $m/z = 392$

Mass spectra for 324, 358 and 392 fragments (Fig.6, 7 and 8) have been developed based on specific ions.

Fragments structures and identification of mass spectra in WILEY and NIST standard libraries (Table 1) are presented.

The method requires the use of PC–MassLab program which is a fast and precise method for determining and identifying traces of various PCB types in dielectric oils.

Table 1

Structure and identification of specific ions $m/z=324$, 358 and 392 in WILEY and NIST standard libraries

The method of specific ions extraction from a chromatogram has been used for identifying and determining the concentration of different PCB types in collected and analysed samples.

This paper presents the processed chromatogram of the sample IV from transformer oil.

It is shown the presence of various PCB types in transformer oil having an average chlorine concentration lower than 50%. The fourth sample (Fig. 4) consists in a PCBs distribution ranging from monochloro- to heptachlorobiphenyl.

Global areas (in area units $u\ a$) of all PCB's peaks in the chromatogram (Fig. 4) are measured in order to determinate the PCB concentration in the sample. Linear regression is used to draw the concentration diagram.

The areas and concentrations corresponding to the calibration chromatograms peaks are given in Table 2.

Table 2

Areas and concentration of calibration chromatograms peaks		
Run. No	Corresponding Concentration of PCBs (mg/mL)	Area ($u\ a$)
1.	0.001786	11867
2.	0.003572	14964
3.	0.019644	66131
4.	0.039288	95906
5.	0.216084	404091
6.	0.432168	715706
7.	2.376923	6010577
8.	26.14615	81109154

The concentration on the 0-30 mg/mL range in relation to PCB measured areas has been plotted by the linearization method using the Microcal Origin 6.0 Demo program.

Comparing the data related to the area sum of all specific mass fragments peaks (with $m/z = 324, 358, 392$) for the sample IV, with the areas values corresponding to the calibration chromatograms, it has been noticed that the 78123411 $u\ a$ value corresponding to a 25.21699 mg/mL concentration is less than the 81109154 $u\ a$ value corresponding to a concentration lower than 30 mg/mL.

Conclusions

The paper presents the chromatograms of samples collected from different sites on the same area pointing out a wide range of PCB compounds ranging from trichlorobenzene to heptachlorobiphenyls.

As a result of the chromatogram processing of the sample taken from transformer oil, a wide range of different PCB concentrations has been determined and identified using an original method for specific ions extraction from the chromatogram.

Based on the molecular ions with $m/z = 324, 358$ and 392 specific mass, mass spectra have been obtained and the specific fragments from NIST and WILEY standard libraries have been identified.

R E F E R E N C E S

1. United Nations Environment Programmed – “PCB Transformers and Capacitors From Management to Reclassification and Disposal”, May 2002.
2. University of Auckland, New Zealand – “Destruction and Decontamination Technologies for PCBs and Other POPs Wastes.
3. Chemical Abstracts **vol. 122/1995**, 88501 k, “Comparative feasibilities of process for the destruction of organochlorines.
4. Chemical Abstracts **vol. 122/1995**, 169274 r, “Apparatus for detoxification of hazardous chlorine compounds by light irradiation”.
5. Chemical Abstracts **vol. 122/1995**, 37886 g, “Management of PCB waste”.
6. Chemical Abstracts **vol. 122/1995**, 141138 a, “Thermal stability of PCBs”.
7. Chemical Abstracts **vol. 122/1995**, 62878 p, “Estimated annual emission of PCDD, PCDF and non- orthochlorine substituted coplanar PCB from flue gases from urban waste incinerators in Japan”.
8. Chemical Abstracts **vol. 122/1995**, 213513 u, “Reaction kinetics of PCB destruction by the base catalyzed decomposition process”.
9. Chemical Abstracts **vol. 121/1994**, 13485 d, “Evaluation of safe burning conditions of fuel contained trace amounts of PCB”.
10. *Capatina M.*, “Influence of post-combustion temperatures profiles on PCDD, PCDF and PCB obtaining in a pilot incinerator in “Industrial ecology”, Chiminform magazine no. 4/1994.
11. *Piersol, P.*, “Assessment of mobile and stationary plants for polychlorinated biphenyls destruction” Ortech.
- 12 ***Corporation for Environment Canada, Report EPS 3/HA/5, 1989.
13. *Kalman, J.*, “Discharge of polychlorinated biphenyls existing in the electric condensers”, Industrial Waste Management, Austria, 1992.

14. ***OECD, "PCB waste control", Environment monograph no. 12/1987.
15. *Rak, M.*, "Incineration of polychlorinated biphenyls" in *Vodni Hospodarstvi* no.12/1990.
16. *Truhaut, R.*, "Toxicology of polychlorinated biphenyls, a present issue of the industrial hygiene" in *Ghiiena Seria Express – Information*, no. 9/1989.
17. "Options to treat /destroy the polychlorinated biphenyls and PCB contaminated plants", Procter & Redfern Limited for the Environment Canada, Report EPS 2/HA/1, 1991.
18. **Guide book on question and answers related to PCB, Environment Canada, 1986.
19. US Pat. 4, 124, 834 / 1978 – Inductive electric instruments.
20. US Pat. 4, 377, 471 / 1983 – Method to remove PCB from the transformer oil.
21. US Pat. 4, 425, 949 / 1984 – Procedure to remove undesirable substances from electrical devices.
22. US Pat. 4, 483, 717 / 1984 – Method to remove adsorbing contaminants from electrical devices.
23. US Pat. 4, 685, 972 / 1987 – Procedure to remove PCB from electrical devices.
24. US Pat. 4, 699, 677 / 1987 – Residual PCB removal from electrical transformers.
25. US Pat. 4, 790, 337 / 1988 – Instruments for removing the PCB from electrical devices.
26. US Pat. 4, 950, 837 / 1990 – Method to re-classify the PCB transformers.
27. US Pat. 4, 983, 222 / 1991 – Decontamination by volatile solvents of PCB transformers components.
27. US Pat. 5, 728, 660 / 1998 – Extraction of fluids for removing the contaminants on surface.
28. US Pat. 6, 401, 731 / 2002 – Method to decontaminate the PCB transformers.
29. Romanian Governmental Decision no. 173/13 March 2000, to regulate a special regime on the management and control of polychlorinated biphenyls and other similar compounds.
30. Directive 1999/31/EEC, 26 April 1999 – waste storage/ keeping.
31. Directive 1994/67/EEC, 16 December 1994 – dangerous waste incineration.
32. Commission Decision 97/283/EEC, 21 April 1997 – method for determining the mass concentration for dioxins and furans existing in atmospherically emissions, according to Art 7 (2) of the Directive 67/94/EEC.
33. Directive 91/689/EEC, 12 December 1991 – dangerous waste.
34. Commission Decision 94/904/EEC, 22 December 1994 – list of dangerous waste according to Art 1 (4) of the Directive 689/91/EEC.
35. Directive 75/442/EEC –Waste management; Council Directive 75/442/EEC of 15 July 1975, OJ 1975 L 194, p 39.
36. Directive 91/156/EEC, 18 March 1991, as the Amendment of Directive 442/75/EEC.
37. Commission Decision 2001/68/EEC, 16 January 2001, setting up two reference methods for PCB determination according to Art. 10 (a) of Directive 59/96/EEC related to PCB spreading.
38. Commission Decision 532/2001/EEC, 16 January 2001, as Amendment of Decision 2000/532/EEC concerning the waste list.

39. Directive 467/85/EEC, 1st October 1985, as Amendment of Directive 769/76/EEC for the approximation of laws, regulation and administrative measures of the Member States referring to the limitation of marketing, using and producing dangerous waste.
40. Directive 96/59/EEC, 16 September 1996 – PCB and PCT.
41. Directive 76/2000/EEC, 4 December 2000 – waste incineration.
42. Council Decision on 14 October 1988 on the use limitation of chlorofluorocarbons and halides.
43. Standard CEI 61619/ 04.1997 – Insulating liquids contaminated by PCB. The determination method uses capillary column gas-chromatography.