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PARAMETRIC ESTIMATION OF CONDITIONAL COPULAS 

Mariana CRAIU1 

Modelarea dependentei într-un numar mare de modele statistice s-a dezvoltat 
în urma definirii de noi copule. O copula stableste modele de dependenta 
bidimensionale intre variabile aleatoare ale caror repartitii sunt marginalele 
bidimensionalei.Posibilitatea introducerii de covariate conduce la  variatii ale 
parametrului de dependenta cu  valorile covariatelor.In articolul present studiem 
estimatii ale parametrilor acestor copule conditionate de covariate,folosind modele 
liniare. 

Copulas have evolved into a popular tool for modeling dependence in a large 
number of statistical models.Generally, a copula establishes a flexible bridge 
between marginal  distributions ,thus allowing various dependent models to be 
created.Recently ,an extension of the classical copula construction allows us to 
incorporate covariates in the model and allows the copula parameter to vary with 
some of these covariates. In this paper I investigate inference using linear models 
for conditional copula parameters. 

Keywords: Copulas,Conditional Copulas,Clayton Copula,Frank Copula,Linear  
                     Models. 
 
Mathematics Subject Classification 2000:62H12,62E20 

1. Introduction 

A theorem due to Sklar (1959) shows that any n-dimensional joint  
distribution function may be be decomposed into n marginal distributions ,and a 
copula ,which completely describes the dependence between the n variables.The 
copula is a more informative measure of dependence between two (or more) 
variables than linear correlation ,as when the joint distribution of  the  variables of 
interest in nonelliptical  

The usual correlation coefficient is no longer sufficient to describe the 
dependence structure.The crux of the method is the ability to flexibly 
“couple”fixed marginal continuous distributions into multivariate distribution via 
a copula function. 
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More precisely,if X,Y are continuous random variables with distribution 
functions (df) FX   and, respectively, FY  we specify the joint df using the copula   
C:[0,1] ×   [0,1]  ⎯→⎯    [0,1]  such that  

),())(),(())(),(( 1111 vuCvFYuFXPvFuFF YXYXXY =≤≤= −−−− ,            (1) 
Equation (1) illustrates the way in which the copula function “bridges” the 

marginal and the joint df’s.In general,the copula family depends on a parameter 
,say   θ   .  As          θ  varies,various degrees and types of dependence are 
represented by the copula C θ       .For instance consider the Clayton copula 
(Clayton 1978) 
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and  Frank’s copula (Frank  1979) 
 

                ( )( )
⎥
⎦

⎤
⎢
⎣

⎡
−

−−
+−= −

−−

1
111ln1),( θ

θθ

θ θ e
eevuC

vu

            (3) 

Many other examples of copulas can be found in the comprehensive text 
of Nelsen(2006). Recently, Patton (2006) has introduced an extension of the 
classical copula construction in which one can incorporate the dependence  
between  θ   and a covariate Z  using the concept of a conditional copula. 
 
Definition 1.1 The conditional copula  of (X,Y)|Z=z, where  X|Z=z ~F ZX |  (.|z) 
and  Y|Z=z ~ F ZY | (.|z), is the conditional  joint distribution function of U = F ZX |  
(X|z) and  V= F ZY | (Y|z) given Z=z. 
The  two variables U and V are known as the conditional probability integral 
transforms of X and Y given Z.It is simple to extend existing results to show that 
a conditional copula has the properties of an unconditional copula,for each Z=z as 
shown by  Patton (2002).Patton  (2006) proves the following general theorem. 
 
Theorem 1.1 Let F ZX | (. |z) be the conditional distribution of X|Z=z, F ZY | (.|z) be 
the conditional distribution of Y|Z=z, F ZXY | (.|z) be the joint conditional 
distribution of  (X,Y)|Z=z. Assume that  F ZX | (x|z) and F ZY | (y|z) are continuous in 
x and y for all z. 
Then there exists a unique conditional copula C(.|z) such that  
 

)|)|(),|(()|,( ||| zzyFzxFCzyxF ZYZXZXY =      and each z. 
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In the next section we consider a possible specification of the conditional copula 
model. We also present parametric inference based on a linear model for the 
conditional copula parameter.In section 3 we study the performance of the 
proposed model using simulated data. 
 
 

2. Specification and Parametric Inference for the Conditional Copula  
Model. 

To illustrate the concepts presented here we start  with a simple example.It 
is known that there is a dependence between blood pressure (BP) and body mass 
index (BMI),as discussed in Strohl et al. (1994).However ,it is possible that the 
dependence varies with various characteristics of the subjects under study,for 
instance their age.In other words one can expects that as age increases the 
dependence becomes stronger between the two continuous variables.Suppose we 
would like to use a copula model to characterize this dependence between BMI 
and BP.Evidently ,if we use a single copula parameter model then we would infer 
an average dependence structure.A more sensible model would allow the copula 
parameter itself to vary with the age of the subject.In this setting we essentially fit 
a separate copula for each different age group.Using the concept of a conditional 
copula  one can do this automatically using a parametric linear regression model. 

     Define the two variables whose dependence we are interested in X,Y 
and the covariate Z.Suppose we decide that the copula best summarizes the 
dependence between X and Y is Clayton’s copula (2) but in which we allow the 
linear dependence between Z and  θ   as Zβθ =  .Besides the parameters of the 
marginal models for X and  Y one is interested also in estimating the parameter  
β    in order to better understand  the dependence structure. 

    For the purpose of this paper ,we assume that the marginal distributions’ 
parameters are  known.Without loss of generality we will assume that the 
marginal distributions are Uniform (0,1).Therefore,the likelihood function of  β    
can be written  using the copula density corresponding to (2) which is 
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If we  assume that the observations are (x i ,yi ,zi ) ni≤≤1 ,  then 
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Similarly ,the density of Frank’s copula is 
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Which in turn implies that the likelihood is 
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The maximization of (5) and (7) is performed using standard optimization 

methods like  Newton –Raphson.In the next section we perform a simulation 
study to asses the performance of the proposed approach. 

3.Simulation Experiments 

We performed a simulation study in which each marginal distribution is 
Uniform (0,1),the covariate Z~ Gamma (2,1)and the linear dependence between 
the copula  
parameter and the covariate Z is βθ = Z.  Evidently, any other linear model can 
be used. We investigate the performance of the MLE in this case using 
simulations with sample sizes n =20,50,100,200 and  β   = 0.5; 2 for models (5) 
and (7). 
.In Table 1   we report the results obtained after 200 replications.The numbers in 
each cell represent the mean and, between brackets,the standard deviation of the 
MLE for     
We report  the same findings for the  Franf’s copula model in Table 2. 

Table 1. 
Simulation results in the case of Clayton’s copula .The numbers in each cell represent the 

mean and,between brackets the standard deviation of the MLE for β     . 
          β  \ n 20 50 100 200 

0,5 0,567 (0,265) 0.523(0.150) 0.503 (0.101) 0.508 (0.079) 
2 2.132 (0.562) 1.995(0.328) 2.028(0.247) 2.015(0.166) 
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Table 2.  
 

Simulation  results in the case of Frank’s copula.The numbers in each cell represent the 
mean and,between brackets the standard deviation of the MLE for β     . 

         β   \ n    20     50      100    200 

   0.5 0.599(0.473) 0.526  (0.344) 0.487 (0.232) 0.501 (0.202) 
     2 2.068 (0.797) 2.116 (0.517) 2.041 (0.353)  2.015 (0.241) 
 
 

One can see that the Clayton dependence is stronger for the same value of  
β   . The precision in estimating   β   depends on the copula family used. In our 
simulation the variance of the maximum likelihood estimator is larger under 
Frank’s model. 

4.Discussion 

We illustrate one possible way to incorporate covariates with copula 
models using the concept of a conditional copula.The model we choose to 
illustrate the method is a linear one but other models are evidently possible.This 
raises an important question for further research: how can we select the 
appropriate link between the copula parameter and the covariates as well as how 
can we select from a set of covariates  the ones that indeed influence the copula 
parameter.These issues will be addressed in a future communication. 
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