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PARAMETRIC ESTIMATION OF CONDITIONAL COPULAS

Mariana CRAIU*

Modelarea dependentei intr-un numar mare de modele statistice s-a dezvoltat
in urma definirii de noi copule. O copula stableste modele de dependenta
bidimensionale intre variabile aleatoare ale caror repartitii sunt marginalele
bidimensionalei.Posibilitatea introducerii de covariate conduce la variatii ale
parametrului de dependenta cu valorile covariatelor.In articolul present studiem
estimatii ale parametrilor acestor copule conditionate de covariate,folosind modele
liniare.

Copulas have evolved into a popular tool for modeling dependence in a large
number of statistical models.Generally, a copula establishes a flexible bridge
between marginal distributions ,thus allowing various dependent models to be
created.Recently ,an extension of the classical copula construction allows us to
incorporate covariates in the model and allows the copula parameter to vary with
some of these covariates. In this paper | investigate inference using linear models
for conditional copula parameters.

Keywords: Copulas,Conditional Copulas,Clayton Copula,Frank Copula,Linear
Models.
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1. Introduction

A theorem due to Sklar (1959) shows that any n-dimensional joint
distribution function may be be decomposed into n marginal distributions ,and a
copula ,which completely describes the dependence between the n variables.The
copula is a more informative measure of dependence between two (or more)
variables than linear correlation ,as when the joint distribution of the variables of
interest in nonelliptical

The usual correlation coefficient is no longer sufficient to describe the
dependence structure.The crux of the method is the ability to flexibly
“couple”fixed marginal continuous distributions into multivariate distribution via
a copula function.
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More precisely,if X,Y are continuous random variables with distribution
functions (df) Fx and, respectively, Fy we specify the joint df using the copula
C:[0,1] x [0,1] ——> [0,1] such that

Fev (Fx (), 7 (V) = P(X < F"(u),Y < F 7 (v)) = C(u,v), 1)

Equation (1) illustrates the way in which the copula function “bridges” the
marginal and the joint df’s.In general,the copula family depends on a parameter
say 6 . As @ varies,various degrees and types of dependence are
represented by the copula C, .For instance consider the Clayton copula
(Clayton 1978)

C,uv)=@u?+v? - (2)

and Frank’s copula (Frank 1979)

C,u,) = —%In e e‘lg)(flw -1) @3)

Many other examples of copulas can be found in the comprehensive text
of Nelsen(2006). Recently, Patton (2006) has introduced an extension of the
classical copula construction in which one can incorporate the dependence
between & and a covariate Z using the concept of a conditional copula.

Definition 1.1 The conditional copula of (X,Y)|Z=z, where X|Z=z ~F,, ([2)
and Y|Z=z ~F | (.2), is the conditional joint distribution functionof U=F ,,
(X|lz) and V=F,, (Y|z) given Z=z.

The two variables U and V are known as the conditional probability integral
transforms of X and Y given Z.1t is simple to extend existing results to show that
a conditional copula has the properties of an unconditional copula,for each Z=z as
shown by Patton (2002).Patton (2006) proves the following general theorem.

Theorem 1.1 Let F,, (. |2) be the conditional distribution of X|Z=z, F ,, (||2) be
the conditional distribution of Y|Z=z, F,,,([z) be the joint conditional
distribution of (X,Y)|Z=z. Assume that F,, (xz) and F,, (y|z) are continuous in

x and y for all z.
Then there exists a unique conditional copula C(.|z) such that

I:xv|z (X, y | Z) = C(FX|Z (X | Z), Fy\z (y | Z) | Z) and each z.
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In the next section we consider a possible specification of the conditional copula
model. We also present parametric inference based on a linear model for the
conditional copula parameter.In section 3 we study the performance of the
proposed model using simulated data.

2. Specification and Parametric Inference for the Conditional Copula
Model.

To illustrate the concepts presented here we start with a simple example.lIt
is known that there is a dependence between blood pressure (BP) and body mass
index (BMI),as discussed in Strohl et al. (1994).However ,it is possible that the
dependence varies with various characteristics of the subjects under study,for
instance their age.In other words one can expects that as age increases the
dependence becomes stronger between the two continuous variables.Suppose we
would like to use a copula model to characterize this dependence between BMI
and BP.Evidently ,if we use a single copula parameter model then we would infer
an average dependence structure.A more sensible model would allow the copula
parameter itself to vary with the age of the subject.In this setting we essentially fit
a separate copula for each different age group.Using the concept of a conditional
copula one can do this automatically using a parametric linear regression model.

Define the two variables whose dependence we are interested in X,Y
and the covariate Z.Suppose we decide that the copula best summarizes the
dependence between X and Y is Clayton’s copula (2) but in which we allow the
linear dependence between Z and € as 6 = fZ .Besides the parameters of the

marginal models for X and Y one is interested also in estimating the parameter
£ inorder to better understand the dependence structure.

For the purpose of this paper ,we assume that the marginal distributions’
parameters are known.Without loss of generality we will assume that the
marginal distributions are Uniform (0,1).Therefore,the likelihood function of S

can be written using the copula density corresponding to (2) which is

_1+20

¢, (u,v) ~ (1+ H)ul"”luz’l"g(ul’& +u,’ —1) 0 (4)

If we assume that the observations are (X i ,Yi ,Zi ) ,,» then

LD =[] @ e =ty oy 1) } 5)
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Similarly ,the density of Frank’s copula is
&—H(UW) (1_ e—e)

V)= 6
C‘Q(u V) (e—e 4 e0uw) _ gt _e-a/)z (6)
Which in turn implies that the likelihood is
n ie’ﬁzi(Xieri)i 1_e*ﬁ7i
Lp =T —2 poe) @
1 (e_ﬁz| + e_ﬁzl(xl+yl) _e_ﬁzlxl _e /J‘Zy” )

The maximization of (5) and (7) is performed using standard optimization
methods like Newton —Raphson.In the next section we perform a simulation
study to asses the performance of the proposed approach.

3.Simulation Experiments

We performed a simulation study in which each marginal distribution is
Uniform (0,1),the covariate Z~ Gamma (2,1)and the linear dependence between
the copula
parameter and the covariate Z is @ = f Z. Evidently, any other linear model can

be used. We investigate the performance of the MLE in this case using
simulations with sample sizes n =20,50,100,200 and g = 0.5; 2 for models (5)
and (7).

.In Table 1 we report the results obtained after 200 replications.The numbers in
each cell represent the mean and, between brackets,the standard deviation of the
MLE for

We report the same findings for the Franf’s copula model in Table 2.
Table 1.
Simulation results in the case of Clayton’s copula .The numbers in each cell represent the

mean and,between brackets the standard deviation of the MLE for ,B

B\n 20 50 100 200
05 0,567 (0,265) 0.523(0.150) 0.503 (0.101) 0.508 (0.079)
2 2.132 (0.562) 1.995(0.328) 2.028(0.247) 2.015(0.166)
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Table 2.

Simulation results in the case of Frank’s copula. The numbers in each cell represent the
mean and,between brackets the standard deviation of the MLE for ﬂ

B \n 20 50 100 200
05 0.599(0.473) 0.526 (0.344) 0.487 (0.232) 0.501 (0.202)
2 2.068 (0.797) 2.116 (0.517) 2.041 (0.353) 2.015 (0.241)

One can see that the Clayton dependence is stronger for the same value of
£ . The precision in estimating /£ depends on the copula family used. In our

simulation the variance of the maximum likelihood estimator is larger under
Frank’s model.

4.Discussion

We illustrate one possible way to incorporate covariates with copula
models using the concept of a conditional copula.The model we choose to
illustrate the method is a linear one but other models are evidently possible.This
raises an important question for further research: how can we select the
appropriate link between the copula parameter and the covariates as well as how
can we select from a set of covariates the ones that indeed influence the copula
parameter.These issues will be addressed in a future communication.
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