
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 4, 2017 ISSN 2286-3540

DATA RESTORATION: A MANDATORY OPTION FOR

CRITICAL COMPUTATIONAL ENVIRONMENTS

CASE STUDY: ZIPRO VS. JAR COMPARISON

Vlad-Alexandru GROSU 1

So far, there are no software-archiving suites available to offer

options/services like data restoration or data recovery. This option becomes

critical in situations in which licenses are involved (like non-free computational

environments) as well as in computation environments where data loss is critical.

For such situations, any loss leads to large amount of money spent for recovery.

Moreover, there are situations for which this attempt is eventually impossible. This

paper intends to circumvent such situations by presenting a practical solution for

these kinds of problems. It also takes into consideration some vulnerabilities that

.jar format has, from data restoration perspective.

Keywords: data restoration, Zipro, Jar, computational environments

1. Introduction

This paper addresses itself mainly to open-source environments where data

manipulation and processing are intensive, namely embedded systems. It is

especially intended for the development systems that resemble the smartphones

(e.g. Beagleboard, Pandaboard or even Raspberry PI). Of course, this attempt can

be generalized for the smartphones themselves.

1.1. A new data file type

A new compression/decompression tool was developed - called zipro -

having in mind some special computational environments: the embedded systems.

The file's extension that zipro deals with is .zha [1]. This is a completely new

data file type in the IT field.

1.2. Contributions

As a novelty in the IT field, the new developed tool does offer true

restoration capabilities. Its capabilities are based on the following pieces of

information:

- the original .zha archive (about to be restored),

- the meta-data, that gets generated starting from the input file,

1 Lecturer, Dep. of Electronic Technology and Reliability, University POLITEHNICA of

Bucharest, Romania, e-mail: crisvlad74@yahoo.com

4 Vlad-Alexandru Grosu

- the concept of symmetrical copy (backup copy).

This way it offers security proofs, useful against data corruption or data

interception that could happen in various types of attacks [2], mainly related to the

embedded systems. For instance, within the Android smartphone universe, if

several copies of the same file appear within an .apk [3], then an attacker can

turn this computational context into a dangerous one. See the design details in

section 3.

My approach here is aware of such situations, and in fact doesn't allow

several copies of the same information to appear within a .zha file. For such

computational conditions, dedicated software tools were developed, so that they

better address the specific requirements of the embedded systems. The trend is for

such media to be classified as real-time systems. Some authors [4] say they

behave like real-time systems and therefore belong to this class. While some other

authors do not accept this classification entirely, unless some changes are made

[5].

Whatever the approach, there are well-defined restrictions that must apply

for such systems:

1. Fast Task Context Switches,

2. Efficient Native Message Queues,

3. Minimal Operating System Overhead.

And these are not far from what a RTOS should do. Some short but

necessary details are presented in the following sections. These justify the

philosophy behind the Zipro (.zha) archive format, in comparison with the Java

Archive.

2. Background

2.1. Smartphones architecture - very short approach

In order to compare the existing facilities in Java Archive, it was necessary

to review - in short - the inner software components that qualified themselves as

the fundamental pieces in a SoC-like hardware and software environment: the

smartphone. A closer look to such systems reveals that they rely on a predefined

stack of layers, starting with the lowest level (the kernel level) and ending with

the highest one (the OS's main framework that finally supports the entire user

interface).

In such environments, all the hardware manufacturers chose to conform to

Google's open environment, based on multi-layered architecture. Later on, this

architecture became Android.

Data restoration: a mandatory option for critical computational environments; case study (…) 5

Fig.1. The main actors on the mobile phone market (up to 2016, according to [6])

Finally, it materialized itself into a mature operating system that currently

covers around 80% of the smartphones' market [6] in 2015 but its growth is not

cooling off in 2016, still growing within a margin of 4-5% (see figure 1).

This OS proved to be well suited for the mobile phones in the smartphone

class, but this was not the situation at the very beginning. It passed through major

software redesign phases until it reached the actual shape. The actors chosen to

play the major roles in such a system are [7] (see figure 2):

- C language, because of the Linux kernel and various libraries required by

the system. The C standard library was rewritten as Bionic C [8]. This was

done mainly for three reasons:

• License: get rid of BSD's GNU Public License (GPL) and move to

Lesser GPL (LGPL),

• Size (memory footprint): the rewritten version is smaller and it needed

to be like this,

• Speed: Bionic is designed for CPUs at relatively low clock

frequencies.

- Java Virtual Machine (the older Dalvik virtual machine, completely

replaced by ART layer which was introduced as a runtime environment

starting with Android 5.0-Lollipop) and Core Java libraries - optimized for

low processing power and low memory environments,

6 Vlad-Alexandru Grosu

- The application framework - collection of managers that finally offers the

basic functions of each phone. This include: window manager, activity

manager, package manager, content provider,

- Finally, the applications - which are developed using Java language and

finally become android packages known as .apk. This way they are

ready for installation onto the mobile terminal (phone).

Maybe one of the most important components that sustain the second and

the third elements in the classification above is the Java archive (.jar). It is

mostly present in the environment's framework layer.

3. Application design

3.1. Data restoration: possible drawbacks of Java archive

3.1.1 The JAR meta-information

In many cases, JAR files are not just simple collections of java classes

files and/or resources. They are used as building blocks for applications and

extensions. Looking at it from the restoration perspective, in the following I can

identify three possible drawbacks of a Java archive.

The META-INF directory, if it exists, is used to store package and extension

configuration data, including security, versioning, extension and services. [9]

Given the data restoration perspective in this article, the main problem

here (the first identified flaw) is that the meta-information is found within the

archive. Once the .jar file gets corrupted the virtual information that such META-

INF directory would have brought is useless. In the approach presented here (I am

referring to the proposed Zipro's .zha archive format), in order to maintain a

proper self-recognition operation, the meta-information was brought outside of the

archive file.

3.1.2 The JAR index

Since its 1.3 version, JarIndex is introduced to optimize the class

searching process of class loaders for network applications, especially applets.

Originally, an applet class loader uses a simple linear search algorithm to search

each element on its internal search path, which is constructed from the "ARCHIVE"

tag or the "Class-Path" main attribute. The class loader downloads and opens each

element in its search path, until the class or resource is found. If the class loader

tries to find a nonexistent resource, then all the jar files within the application or

applet will have to be downloaded. For large network applications and applets this

could result in slow startup, sluggish response and wasted network bandwidth.

The JarIndex mechanism collects the contents of all the jar files defined in an

applet and stores the information in an index file in the first .jar file on the applet's

class path. After the first jar file is downloaded, the applet class loader will use the

collected content information for efficient downloading of .jar files.

Data restoration: a mandatory option for critical computational environments; case study (…) 7

The existing JAR tool is enhanced to be able to examine a list of .jar files

and generate directory information as to which classes and resources reside in

which jar file. This directory information is stored in a simple text file named

INDEX.LIST in the META-INF directory within the root of the Jar file. When the

class loader loads the root jar file, it reads the INDEX.LIST file and uses it to

construct a hash table of mappings from file and package names to lists of jar file

names.

In order to find a class or a resource, the class loader queries the hash-table

to find the proper jar file and then downloads it if necessary. Once the class loader

finds an INDEX.LIST file in a particular .jar file, it always trusts the information

listed in it. In my opinion, given the data restoration's point of view, here is

another flaw (the second one identified within this article). This is particularly

dangerous since an attacker may feed in an archive with junk information, or even

worse, with information put there on purpose.

One such attack took place by the end of 2012 [10]. In fact, many types of

attacks took place over time. Some of them were immediately addressed by

Google, while some others were not. A list can be found at [11].

Fig.2. Typical Android architecture: multi-layered approach ([7])

3.1.3 Java archive based on multiple files

Zipro doesn't allow a file to appear multiple times in a given archive. This

is checked in the moment of the archive construction. The compression process

stops if such a case is encountered.

8 Vlad-Alexandru Grosu

In case of a .jar file, if a mapping is found for a particular java class, but

the class loader fails to find it by following the link, an

InvalidJarIndexException is thrown. When this occurs, the application

developer should rerun the JAR tool on the extension to get the right information

into the index file. To prevent adding too much space overhead to the application

and to speed up the construction of the in-memory hash table, the INDEX.LIST file

is kept as small as possible. From data restoration point of view this is yet

another limitation (the third one), since this index list is kept within the very

archive file. In zipro's approach, there are magic numbers (used as signatures)

spread along the archive file. This classifies zipro as a hybrid compression

technique. I call it hybrid since these pieces of information are stored in the

archive as they are (in un-compressed format) along with the most compressed

part of the archive itself. These particular ASCII combinations help the

decompression tool by speeding it up. Given this aspect, this kind of archive

cannot necessarily be compared to some other usual (classical) compression

techniques, from either the speed or necessary storage space point of view. In the

meta-information file (which stays outside of the archive itself) there is already a

map of the input archive file. If this is a multiple-file based archive then the

offsets of the compressed files inside the archive are generated and kept within the

meta-information file. As such, any decompression attempt will jump directly to

the desired offset within the archive.

3.2. Data restoration technique: Zipro (.zha) approach

After identifying the possible issues of a .jar file type in the previous

sections, I will show how those drawbacks can be circumvented in Zipro's .zha

file type, from data restoration perspective. The developed tool herein can

identify an input archive as being the right one, based on the meta-information

file. As previously stated, the .zha archive itself contains some signature (specific

succession of chars), stored in un-compressed format. Such signature appears at

proper places in the file, in order to help both the file identification step as well as

the file extraction process. Consequently, the signature appears at the very

beginning of .zha archive - for identification purpose - as well as at some

positions within the archive, if a multi-archive file is generated - in order to

delimit the compressed information of each file. It is this raw information

(signature) that gives Zipro's .zha its hybrid nature, very useful in the approach

proposed in here.

Of course, one can say that if the meta-information gets corrupted then

nothing can be done here as well. This is true, and therefore I've thought about a

three-step restoration model, consisting of:

- the symmetrical copy, which is basically an encrypted backup copy of the

input (unaltered) archive file,

Data restoration: a mandatory option for critical computational environments; case study (…) 9

- the meta-data information, stored in a file, that collects specific

information out of the input file,

- the actual archive file, meaning the original file, that eventually needs to

be restored. It also serves the previous two parts of information.

The restoration process assumes that, at any moment in time, at most two

of the previous three parts of information are valid. If and only if all these three

pieces of information get corrupt (e.g. due to some on-purpose attack) then the

restoration cannot take place any longer.

The 'symmetrical copy' is build as follows, in this order:

1. Start scanning the input data (input .zha file), one byte at a time.

2. Pass it through a symmetrical encryption algorithm (processing

phase).

3. Construct the symmetrical copy (the backup file). The locution

'symmetrical copy' is strongly related to the type of encryption

algorithm that I have used here. It can be replaced by other such

algorithms, if necessary.

If the symmetrical copy gets corrupted then, based on the input archive

and the meta-data, it can be generated once again. Conversely, if the input archive

gets altered in any way, such as a read cannot be performed then, based on the

symmetrical copy and meta-data it can be restored (perform the decryption step

upon the symmetrical copy). Eventually, if the meta-data gets corrupted then,

based upon the input archive it can be restored as well. As one can see, this three-

step restoration process can stand against various data corruption that could

happen.

The software solution and specific implementation decisions do not

represent the subject of this article.

4. Mathematical fundamentals of the encryption tool

4.1 The symmetrical copy: the necessity of a correct data restoration

4.1.1 Hill's cipher: mathematical aspects

The encryption algorithm used here is a personal implementation of the

Hill's Cipher. This belongs to the class of ciphers based on the transposition of

symbols. As already stated, the encryption step is useful in the symmetrical copy

generation (see section 1.2).This way the symmetrical copy gains in robustness.

From the conceptual point of view, also given the scale of some actual project

using the tool presented here, I consider that more powerful encryption techniques

can be used, if necessary. The target here consists in domestic applications of

personal use and not governmental or even higher nature (like military or so).

Nevertheless, one has to have in mind that the encryption technique can change if

the practical context requires it. The code behind this tool was written with

modularity in mind.

10 Vlad-Alexandru Grosu

Hill's cipher uses two keys [5]:

- the encryption key,

- the decryption key.

Mathematically speaking, both keys are in fact squared matrices. Among

them, only the decryption key requires matrix calculations. Being an integer based

application - the codes of the characters in use belong to - all the computations

here are based on modulo M arithmetic. The value of M is chosen so that it is

synchronized with the required input alphabet. [5]

The input consists in the actual file to be restored. Usually, this file is the

corrupted archive. An input file can be presented either as a:

- text-based file,

- binary file.

Fortunately, in both situations the available symbols (the set of useful

characters) belong to the extended ASCII table. Usually, most of the symbols are

alphanumerical. Since extended ASCII table offers 256 useful combinations, my

choice for M is 256. At most we can choose for this value a prime number as well,

for instance M=257. This choice further improves security, in the eventuality of

cryptographic attacks.

The data encryption approach here doesn't require supplementary

processing time (generally speaking, supplementary resources). Given that M=256,

the keys are hard-coded in the source code: both the forward and the backward

matrix. Therefore, un-necessary inverse matrix computation was avoided. This

has a benefic effect given the processing limitation of any system on chip (SoC).

The only operations needed for generation of the encryption keys are the

fundamental ones: addition, subtraction, multiplication and division (the last one

rarely used).

Furthermore, from the encryption's safety and power points of view, they

both rely upon the advantage of hiding the encryption and the decryption keys -

by hard-coding them. This way no one knows either the dimension of the

encryption key or the size of the input alphabet (M).

In order to decrypt the symmetrical copy, the key requires modulo M

calculation of the inverse of the input matrix's determinant. This operation is

known as 'modular multiplicative inverse' [4]:

(modM)
det(A)

1
 (1)

where:

A - the encryption key (input matrix);

det(A) - the determinant of A.

Data restoration: a mandatory option for critical computational environments; case study (…) 11

It is important to note that, given a modulo M class, not each natural

number has an inverse, called symmetrical - that belongs to the same very class

(mod M), as one can see in the following section.

4.2. Hill's cipher and modulo M arithmetic

In the following, the mathematical background required by the Hill's

cipher will be defined. A main conclusion rises here: M must be a prime number

in order to simplify the calculations.

Definition 1:

The set:
Zm = {0, 1,..., m−1} (2)

along with the addition and multiplication operations is called numeration system

of the integers modulo m.

Proposition 1:

Let m be an integer number, having the property m>1.

Then, in the integer numeration system Zm the following properties hold:

1 For: a, b, c ∈ Zm, (a + b) + c = a + (b + c)

2 For: a, b ∈ Zm, a + b = b + a

3 For each a ∈ Zm, a + 0 = a = 0 + a

4 For each a ∈ Zm, there is a unique x ∈ Zm, called the opposite of

a, so that: a+x = 0 = x+a

5 For: a, b, c ∈ Zm, (a•b)•c = a•(b•c)

6 For: a, b ∈ Zm, ab = ba.

7 For each a ∈ Zm, 1•a = a = a•1.

8 For each a ∈ Zm, with a=0, there is a unique y ∈ Zm, called the

symmetrical of a, so that: a•y = 1 = y•a

9 For: a, b, c ∈ Zm, a•(b + c) = a•b + a•c

10. In Zm we have: 1 = 0.

Generally speaking, the 8th property above is not always true. For instance,

for Z4 numeration system we have the following multiplication table (see Table

1). Note that value 2 doesn't have a symmetrical mod 4, since there is no value in

Z4 multiplied by 2 that gives a remainder of 1 (mod 4). Conversely, the value 3 is

invertible and its symmetrical is 3 (itself).
Table 1.

Multiplication within mod 4 numeration system, Z4.
. 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

12 Vlad-Alexandru Grosu

The general theorem that justifies the statement I've made earlier follows:

An element in Zm has a symmetrical (or multiplicative inverse) modulo m if and

only if a is relatively prime with m, that means 1 is the common divisor of both a

and m (given the division common sense).

As a consequence of this theorem, the Proposition 2 below follows.

Proposition 2:

Unlike Z4, each element in Z5 has a symmetrical, as table 2 shows.
Table 2.

Multiplication within mod 5 numeration system, Z5.
. 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

The distinction between Z4 and Z5 is that 5 is prime number whereas 4 is

not.

Definition 2:

A closed numeration system with respect to addition and multiplication is

called field when all the properties above hold (see Proposition 1).

Based on the distinction between Z4 and Z5 and starting from the previous

theorem the next proposition follows:

Proposition 3:

Let m be an integer, with m>1. Then Zm is field if and only if m is a prime

number. Looking at the previous examples related to Z4 and Z5, we have that Z5 is

field while Z4 is not.

For each prime number m, the field Zm is also finite. From the

implementation point of view, these results suggest how to choose m, so that to

simplify the calculations: it should be a prime number.

Nevertheless, if the values of the encryption key (input squared matrix) are

properly chosen, then an inverse computation is also possible for sets Zm for

which m is not prime number. This means that the determinant of the matrix has

an inverse belonging to the modulo m remainders class.

5. Results and discussions

5.1 Appropriate choices for the presented case study

In this case study, the data compression works within extended ASCII

table (each character requires 1 byte for encoding). This means a set of 256

possible input combinations. Consequently, the length of the working space can

be chosen as: m=256, meaning that the Z256 set have to be used. The number of

column of the input matrix is 4. This choice is based upon the magic number,

Data restoration: a mandatory option for critical computational environments; case study (…) 13

which relates to the 'self recognition' operation. Here, this magic number consists

in a combination of 4 characters. It is used as a delimiter of the information in the

output file resulting after the compression step.

Based on this technique, each file can be easily identified as a native .zha

file. This is done by:

- checking if the file's signature is valid (this information stays within the

input file);

- checking the digital footprint based on MD5 number [11] (this information

stays outside the .zha file presented as input).

This delimiter qualifies the resulting .zha file as a hybrid format. The

term hybrid here means that the output compressed file (the output archive file)

contains both binary information (as a result of the compression step) as well as

clear, unaltered ASCII information, identifiable throughout these magic numbers.

This is the original approach proposed in my PhD thesis. Going back to Hill's

algorithm, if someone wants to use other cryptographic techniques, then these

techniques can be embedded into the software project proposed here thanks to the

modularity approach. Any change should be based on LGPL license this project is

based upon.

6. Conclusions

First of all, it is clear that .jar format hasn't been designed with data

restoration in mind. Otherwise, most likely all the above identified flaws wouldn't

have been there any longer. Secondly, the restoration operation helps a lot when

data corruption appears: it saves both time and money. This option should be

taken into consideration when dealing with sensible environments like mobile

terminals or critical computational situations (e.g. research and development,

scientific laboratories, military applications etc.). The proposed solution takes into

considerations such aspects. It lets the final user to eventually change the

encryption technique, making it more reliable if required.

The extra storage space needed by the 'symmetrical copy' of the proposed

solution tends not to be an issue. Lately, one can choose among a plethora of

storage options. Another reason is that the storage space is not expensive

anymore. Much storage room is now available in less physical space. Besides,

such situations can be foreseen and therefore a proper setup should be taken into

consideration in the first place. I can state that the final user (the customer) must

be an educated user, being aware about the choices he/she is about to make.

Backup facilities must be in place where supplementary copies must be

synchronized with the main data processing steps. This expresses as another form

of the redundancy, which is helpful in so many situations. Of course, this backup

copy is the result of a process that should take place at certain moments in time,

usually subsequent to the major processing steps in a given environment. I

14 Vlad-Alexandru Grosu

consider that it could be performed using specific time slots, properly chosen so

that will not interfere with the main activities of a given computation system.

However, this step can be performed periodically, e.g. while in

maintenance/backup activities or even during overnight activities, all of them not

affecting the main process. Consequently, the solution proposed here is suitable

for periodic tasks, programmed using a time based process (like the cron tool for

*nix systems). However, if no new changes appeared in the necessary input files

(after a check over the input fed data - e.g. based on md5sum binary tool) then the

backup is skipped, no further processing time being required.

Given the reasons identified and presented in this article, I consider that

nowadays the data restoration option must always be a valid and valuable choice,

or even mandatory where possible.

R E F E R E N C E S

[1] C. Maia, L. Nogueira, L. M. Pinho,“Evaluating Android OS for Embedded Real-Time

Systems”, in Proceedings of the 6th International Workshop on Operating Systems

Platforms for Embedded Real-Time Applications, Brussels, Belgium, July 2010, pp. 63-

70

[2] W. Mauerer, G. Hillier, J. Sawallisch, S. Honick, S. Oberthur, “Real-Time Android:

Deterministic Ease of Use”, Siemens AG, Siemens Corporate Research and

Technologies, published on http://www.embedded.com/ on Feb. 2014

[3] D. Gentry, “The Six Million Dollar LibC”, Nov. 2008

[4] Murray Eisenberg, Hill Ciphers and Modular Linear Algebra, Nov. 3, 1999

[5] Vlad-Alexandru Grosu, Hill’s Cipher: Analysis of the Cryptographic Computational

Times in the Eventuality of a Brute-Force Attack, posted in IJISC - Volume 2, Issue 2,

published December 2013 (see: http://www.ijisc.com/articles/hills-cipher-analysis-of-the-

cryptographic-computational-times-in-the-eventuality-of-a-brute-force-attack/

[6] ***https://www.statista.com/chart/4112/smartphone-platform-market-share/ (last

accessed 30.06.2017)

[7] ***http://opensourceforgeeks.blogspot.ro/2015/02/difference-between-dalvik-and-

art.html (last accessed 05.07.2017)

[8] ***http://www.h-online.com/open/news/item/Second-Android-signature-attack-

disclosed-1918061.html (accessed on 05.06.2014)

[9] ***http://www.saurik.com/id/17 (accessed on 05.06.2014)

[10] ****http://seclists.org/fulldisclosure/2013/Mar/140 (accessed 05.06.2014)

[11] *** MD5 description (RFC 1521), www.ietf.org/rfc/rfc1521.txt (accessed 05.06.2014)

http://www.embedded.com/
http://www.ijisc.com/articles/hills-cipher-analysis-of-the-cryptographic-computational-times-in-the-eventuality-of-a-brute-force-attack/
http://www.ijisc.com/articles/hills-cipher-analysis-of-the-cryptographic-computational-times-in-the-eventuality-of-a-brute-force-attack/
https://www.statista.com/chart/4112/smartphone-platform-market-share/
http://opensourceforgeeks.blogspot.ro/2015/02/difference-between-dalvik-and-art.html
http://opensourceforgeeks.blogspot.ro/2015/02/difference-between-dalvik-and-art.html
http://www.h-online.com/open/news/item/Second-Android-signature-attack-disclosed-1918061.html
http://www.h-online.com/open/news/item/Second-Android-signature-attack-disclosed-1918061.html
http://www.saurik.com/id/17
http://seclists.org/fulldisclosure/2013/Mar/140
http://www.ietf.org/rfc/rfc1521.txt

