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SPEAKER VERIFICATION USING THE DYNAMIC TIME 
WARPING 

Svetlana SEGĂRCEANU1, Tiberius ZAHARIA2 

Majoritatea schemelor comerciale de autentificare recente se bazează pe doi 
factori, de pildă o parolă şi un cod de securitate, sau codul PIN şi informaţii 
personale. Aceasta cu scopul de a spori nivelul de securitate în comparaţie cu cel 
asigurat de sistemele cu o parolă. Prezentăm în continuare modul în care metoda 
alinierii dinamice în timp poate fi adaptată pentru a putea fi aplicată corespunzător 
la verificarea vorbitorului folosind doi factori. În etapa de extragere a trăsăturilor 
caracteristice am utilizat două abordări perceptuale: PLP versus analiza în scara 
Mel, cu un al doilea scop, acela de a le evalua performanţele. Participanţii în 
experiment au rostit anumite texte obligatorii şi numele lor. Au fost testate mai 
multe combinaţii de vocabular 

Most of the nowadays commercial authentication schemes are based on two 
factors: for instance a password and a security ID, or the PIN code and personal 
data. This is meant to improve the security in comparison with the systems based on 
one only factor.  We present a way to adapt the Dynamic Time Warping approach in 
order to apply it suitably to a two factors scheme. For feature extraction in speaker 
verification experiments we used two perceptual approaches: the PLP versus the 
Mel-scale methodology, with a second purpose of assessing their performance. The 
participants in the experiment uttered some compulsory sentences in Romanian or 
their names. Several combinations of vocabulary were tested. 

Keywords: speaker verification, dynamic time warping, threshold setting, 
weighting, perceptual analysis of speech, biometric measures 

1. Introduction 

The speaker verification issue is to decide on the invoked identity of a 
client. Two decisions are possible: client and impostor. As any pattern recognition 
problem, it involves two aspects: training and testing (the verification itself). In 
the training phase the user must pronounce a number of utterances in order to 
create her or his model. In the verification process the user’s processed signal 
output is compared to the model of the invoked speaker S. Furui ([1]) proposed 
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that the utterance should also be compared to a model of the impostor, obtained 
by training with several “impostor” users. 

Most of the latest commercial security schemes use the authentication 
based on two factors such as, for example, the password and the security ID, or 
the PIN code and the security ID, or a password and personal information. 
Although this would improve the security as compared to the security provided by 
only one factor, it does not guarantee that the pretended identity is the true one, as 
the PIN codes, personal data, the security ID, can all be obtained by the fake ([2]). 
The biometric technologies, unlike all other authentication methods, should prove 
that the users are what they pretend they are.  

We used a variant of the Dynamic Time Warping approach, which, 
besides evaluating the alignment between two time sequences, produces new 
reference templates by applying a sort of averaging of the warped sequences. We 
show how we established the specific individual thresholds used in the 
verification phase. Finally we show how to improve the DTW performance by 
applying a weighted variant. As the speech material was limited we used in the 
training phase only utterances obtained in the first two recording sessions, and 
tried to squeeze as much information as possible out of them. In our research we 
show the advantage of a two factor scheme over a one factor scheme and try to 
evaluate various alternatives to the perceptual analysis: different perceptual scales, 
different rules. We used some highly corrupted records of 21 Romanian speakers. 
The speech signal was sampled at 11.125 kHz, each sample represented on 8 bits. 
The length of the speech frame was set to 22ms and the frame rate to half the 
length of the frame. A Hamming window, and a pre-emphasis filter (μ=0.95) were 
applied. The speech database contains compulsory text, used in training and 
verification phases. The users also uttered arbitrary text, but we did not use this 
material in the verification trials. We evaluated the power of the perceptual 
analysis by means of the within-class and between-class scatter matrices of the 
perceptual features. 

2. Speaker Verification 

By speaker verification the pretended identity of a speaker is either 
accepted or rejected. This involves comparing the set of extracted features at the 
test trial, to the model of the assumed speaker. The score acquired at testing is 
compared to a threshold, specific for each individual, and if it is under that 
threshold the speaker is accepted. In classical approaches, the threshold is 
established based on the inter/intra-speaker scores. For instance the score could be 
established as the average score obtained at training. 
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The evaluation of a speaker verification system assumes the assessment of 
two aspects: the accuracy of the system and the required resources. The accuracy 
is expressed with the help of the following indicators: 

FAR (False Acceptation Rate) – the probability of the false acceptance: 

impostors ofnumber 
rejections false ofnumber 

=FAR                                         (1) 

FRR (False Rejection Rate) – the probability of the false rejection: 

identity  their invoking speakers ofnumber 
rejections false ofnumber 

=FRR                        (2) 

These two indicators are used to set the thresholds. EER (Equal Error 
Rate) is attained for a threshold value FAR and FRR are approximately equal.  

3. The Method 

The Dynamic Time Warping algorithm measures the similarity, or 
distortion, between two sequences, which may vary in time. DTW is thus a 
method that allows a computer to find an optimal match between two given time 
sequences, applying certain restrictions, and furnishes a measure of their 
similarity, and an optimal path. The minimum distortion is always based on the 
previous step and should satisfy the following condition: 

),(),1((min),( jkdkiDTWjiDTW
k

+−=  (3) 

where d is a metric defined on the space Φ, where the time sequences take values: 
0: ≥→Φ×Φ Rd  (4) 

The general form of this algorithm involves the construction of a 
cumulated cost matrix dtw, representing the cost of the time warping of two time 
sequences s and t, of lengths m respectively n, based on the local cost matrix([3]):  

),(),(: ji
nm tsdjicRRC =×∈  (5) 

Given two time sequences, s and t, with ||   |,| tnsm == , the algorithm 
dtw(s,t,m,n) involves the next steps: 

Initialization: 
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Fig. 1. The local cost matrix and the optimal path obtained from two sequences of PLP coefficients 

Backtracking: Once generated the accumulated cost matrix, the optimal path warped by the DT
Fig. 1 presents the local cost matrix and the optimal paths obtained by applying 
the DTW algorithm for two sequences of PLP coefficients. The algorithm meant 
to generate the optimal path, optimalPath(s,t,m,n),is based on the accumulated 
cost matrix dtw(i,j) of two time sequences, s and t, with ||   |,| tnsm == : 
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3.1 DTW in Speaker Recognition 
Applying the DTW technique in speech recognition involves reporting the 

test utterance to one or more reference templates, usually representing one or 
more pronunciations of the invoked speaker’s model. The feature sequence 
obtained from the test utterance is dynamically warped with the sequences of 
parameters contained in the reference templates. If we use two reference 
templates, the DTW algorithm generates two distortions dtw1 and dtw2. These are 
compared to a threshold established in the training stage. If in the training phase, 
for a certain speaker, we use two templates, we may set one speaker’s threshold to 
the value obtained from warping these two sequences, dtw = dtw(coeff1, coeff2), 
where coeff1, coeff2 are the two reference feature sequences. 

An alternative for the choice of the reference templates would be the 
generation at training, of a reference sequence in which each sample would be the 
average of the samples that are “aligned” by applying the DTW algorithm to two 
feature sequences obtained from two training utterances. By this we are able to 
use one reference model instead of two, thus sparing some memory resources. 
Fig. 2 presents the sequence obtained by warping two first order PLP coefficients 
sequences, the outer in red and green. The sequence generated by the algorithm is 
the middle yellow one.  

We present subsequently the formalized algorithm dtwa(coeff1, 
coeff2,n1,n2), which uses as input parameters two dim-dimensional sequences, 
coeff1 and coeff2, with ||   |,| 2211 coeffncoeffn == . In the first steps, the algorithm 
performs the calculation of the DTW distortion and the optimal path of the two 
sequences.  

 

Fig. 2. The sequence obtained by the alignment of two sequences of PLP coefficients. Each sample 
in the middle sequence is the average of matching samples warped by the DTW algorithm 
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The procedure outputs, besides the newly sequence, a distortion measure 
2 2211 , n ))/, coeff, nDTW(coeff , n ), coeff, nf (DTW(coefdtwa +=  (6) 

In the above algorithm given a pair of aligned features in the optimal path 
sequence, (coeff1(u) , coeff2(v)), the two sequences of feature vectors are averaged 
as follows: 

1..if coeff1(u) (respectively coeff2(v) ) occurs in more than one optimally 
aligned pairs, all these pairs generate one point equal to the average of all the 
components of these pairs, and coeff1(u) respectively coeff2(v () is counted once. 

2. in particular, if coeff1(u) and coeff2(v) occur only once, this pair generates 
one vector equal to their mean. 
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3.2 Weighting the DTW Distortion 
Formally speaking, the alignment path built by DTW is a sequence of 

points, which must satisfy the following constraints: 
1. Boundary condition: the starting and ending points of the warping path 

must be the first and the last points of the aligned sequences ( pathOpt[1] = (1; 1) 
and pathOpt[K] = (n1;n2), where K is the length of the warping path). 

2. Monotonicity condition, which preserves the time ordering of points. 
3. Step size condition: this criterion restricts the warping path from long 

jumps (shifts in time) while aligning sequences. With the above notations  
pathOpt [t+1] - pathOpt[t+1] ∈ {(1; 1); (1; 0); (0; 1)}. 
In [8] Sakoe and Chiba introduce one more constraint: 
4. The slope constraint condition based on the fact that too steep or too 

mild a gradient may reflect unrealistic correspondence between the aligned 
sequences. For instance a short pattern A, warped with a relatively long pattern B 
may generate a steep gradient. They account for the slope of the warping path 
measured as the local ratio of the numbers of leaps in the two directions of each of 
the warped sequences. They propose adding weights to each of the DTW 
distances, to penalize or favor certain types of point-to point correspondence. 
Thus the DTW distortion between two sequences turns into: 

∑
=

=
K

k
k kpathOptkpathOptdw

1
21w ])1)[(],0)[(()s,(sDTW  (7) 

where, if we denote s(k)[i] = pathOpt(k)[i], i=1,2:  
)(])1)[1(]1)[(]0)[1(]0)[(( 21 nnkskskskswk +−−+−−=  (7a)  

4. Perceptual Analysis  

4.1 The Bark scale 
The use of filter banks in speech processing for speech or speaker 

recognition systems is meant to model the human auditory apparatus, which 
behaves as if composed of a series of superposed filters. The pass band of each 
filter is called the critical band. Two pure tones lay in the same critical band if 
their frequencies are close enough to meet a certain degree of superposition of 
their amplitude envelopes in the basilar membrane. The bark scale, so called by 
the name of Heinrich Barkhausen, was among the first attempts to describe the 
effects of the critical bands. The nonlinear spacing between the critical bands 
matches a psycho acoustical scale proposed by Zwicker in 1961 ([4], [5], [6]): 

( )7500arctan5.3)00076.0arctan(13)( ffffbark ⋅+⋅∗=  (8) 



186                                               Svetlana Segărceanu, Tiberius Zaharia 

 

 
Fig. 3. Graphical representations of three expressions of the Bark scale of (8),(8a),(8b). 

Alternative expressions for the bark scale are (see [5], [6]): 

( ) ⎥⎦
⎤

⎢⎣
⎡ ++=

5.022 1600600ln6)( ffffbark  (8a)  

( ) ⎥⎦
⎤

⎢⎣
⎡ ++=

5.022 1650650ln7)( ffffbark  (8b) 

In the above relations f expressed in Hz. Fig. 3 shows the three 
representations where (8b) seems a good approximation of (8).  

4.2 The Mel Scale  
The Mel scale was proposed by Stevens et al. (1937) to model the 

characteristics of the nonlinear perception of the pitch by human ear. The Mel 
frequency as expressed as below (f is measured in Hz): 

)7001ln(1125)( fffmel +=  (9) 
 
4.3 Perceptual Feature Extraction  

4.3.1 Linear predictive perceptual analysis 
The linear predictive perceptual analysis makes use of Durbin’s recursive 

algorithm ([6], [7]), to calculate the prediction coefficients, based on the 
autocorrelation coefficients. However, the autocorrelation coefficients are 
calculated as the Inverse Fourier Transform of a perceptually motivated power 
spectrum X(·). The algorithm involves the following steps ([4], [5]): 

-Computation of the windowed power spectrum  
-Critical band integration through a filter-bank, defined by: 
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where fbark is defined by either of (2),  (3) or (4), and kf k
bark ≈ .  

-Equally loudness pre-emphasis: 
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where ω=2πf. 
-Intensity to loudness compensation and re-sampling: 
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Fig. 4. Representation of the trapezoidal filters (10) 

 
Fig. 5. The PLP spectrum calculated using the relation (12), the bank of filters (10), and the bark 

scale (8b) 

-Inverse Fourier transform of the power spectrum  
-Calculation of the perceptual prediction coefficients by the Levinson–

Durbin recursion ([7]) and, based on these, of cepstral coefficients. Fig. 5 presents 
the PLP spectrogram with 20 bands, calculated using (12), the filter- bank (10), 
and the Bark scale (8b). 

4.3.2 The Mel- perceptual feature extraction  
The Mel perceptual feature extraction is also accomplished with the help 

of a filter bank, defined by M triangular filters, with the role of averaging the 
spectral energy around each central frequency. A Mel filter is defined by ([6]): 
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In the above equations, f[m] is calculated based on the lowest and highest 
frequency values of the filter bank, the sampling frequency and the length of a 
speech frame. These filters increase in spacing and decrease in height, although 
certain implementations make use of equal height filters. The Mel cepstrum is 
derived from the power spectrum calculated in the classical frequency range: 

NkenxkX Nkn
N

n
<≤⋅= −

−

=
∑ 0  ,][][ 2

1

0

π                          (14) 

 
Fig. 6. Log-energy in the Mel scale filtered through a bank of 36 filters 

Log-energy as filtered by one filter is defined as: 
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Fig. 6 provides a spectrogram in the Mel scale, using 36 filters. 

5. Experiments and Results 

The goal of our research was to assess the performance of a speaker 
verification system based on the DTW approach and a two-factor scheme. On the 
other hand to investigate how speaker verification performance relies on the type 
of features extracted. 

In our experiments we used speech samples of 9 male and 12 female 
speakers. Each speaker recorded between 4 and 11 sessions, uttering each time 
some required and arbitrary text. The total number of recorded utterances by the 
21 speakers was 2737, varying from 62 to 195 per speaker. The compulsary text 
included six Romanian sentences: “Eu iau nouă ouă moi”, “Meniul moliei e lâna”, 
“Aureola e o lumină”, ”Lamiia ia anemia unui om”,  “Ei au o inimă imună”, “Eu 
ii iau o anemonă”, pronounced once in each recording session. In the two-factor 
approach framework, in the training and verification processes the speakers 
uttered two sentences: one compulsory sentence, and a second one which was 
either their names or a certain one, depending on the speaker and the sentence 
used as the first password, of the following: “Eu iau nouă ouă moi”, “Meniul 
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moliei e lâna”, “Aureola e o lumină”, ”Lamâia ia anemia unui om”, “Ei au o inimă 
imuna”. We tested the combinations using as first “password” “Eu iau nouă ouă 
moi”, and “Meniul moliei e lina”. Because the total number of utterances uttered 
was quite large, in order to assess the False Acceptance Rate we tested a limited 
number of combinations uttered by some “impostors”, containing the first 
compulsory text and a number of sentences as the second “password”, among 
which the above mentioned ones, depending on the reference speaker. At training 
and at recognition we extracted 14 cepstral coefficients on each speech frame, 
derived either from the PLP or from Mel-scale analysis. We used a spectrum – 
based criterion to remove the non-voiced frames. The first two sessions were used 
for training. 

We assessed the averaged approach (DTWA) presented above, as 
compared to the classical dynamic time warping (DTW). On the other hand we 
show how the performance can be improved by weighting the DTW distortion, as 
specified by (7). DTWw denotes the weighted variant. The performance of the two 
methods was based on the evaluation of certain scores. In the two-factor approach, 
the score is derived from two different utterances of the first “password” and other 
two of the second “password”. The utterances of the first “password” are warped 
resulting a distortion measure DTW[coeff11, coeff12], and similarly the utterances 
of the second password produce a distortion measure DTW[coeff21, coeff22]. The 
score is set to: 

 , coeffcoeffDTW, coeffcoeffDTWS )()( 22211211 +=               (16) 
For a certain client we used as reference templates the feature vectors 

obtained from the four recordings of the two “passwords”, coeff11, coeff12, 
respectively coeff21, coeff22, uttered in the first two sessions. To compute the 
impostor model associated with a speaker we used the first two recording sessions 
and evaluated the scores obtained from reporting each impostor’s combination of 
utterances of the two “passwords” (coeff1, coeff2) to the four reference templates 
(coeff11, coeff12, respectively coeff21, coeff22), obtaining the scores: 

 j, coeffcoeffDTW, coeffcoeffDTWS jjj 2,1   )()( 2211 =+=       (17) 
The total score obtained by the impostor utterance is set to S1 + S2. We averaged 
the scores of the impostors using the recurrent formula: 
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where  Nμ  is the estimate of the average of x1, x2,…, xN.  
The threshold was set to a weighted sum of the impostors average score 

and the speaker’s score S (16). (S1i, S2i, computed as in (17), concern impostor 
utterance i, N is the number of impostor utterances):  



190                                               Svetlana Segărceanu, Tiberius Zaharia 

∑
−

=
++=

1

0
21211 )(

N

i
ii SSwSwthr                                     (19) 

Analogously, in the DTWA approach, the score is derived from two 
different utterances of the first “password” and other two of the second one. There 
is only one pair of “average” reference templates, (coeff1, coeff2), furnished by the 
DTWA algorithm, for each “password”. The reference template is warped with 
the two feature vectors for each of the “password”, extracted from the first two 
sessions. According to (6) two scores are produced by the DTWA procedure: 

2,1     221 =+= j ))/, coeffDTW(coeff ), coefff (DTW(coefSj jjjj     (20) 
As above, we evaluated the scores obtained by reporting each set of two 

impostor utterances of the “passwords” (coeff10, coeff20), to the reference 
templates (coeff1, coeff2): 

, n ), n, coeffDTW(coeff , n ), n, coeffDTW(coeffS 102201110 +=      (21) 
These impostor scores are averaged and the threshold is set to a weighted 

sum of this average and the speaker’s score obtained as in (20): 
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Table1 
Two Factor Verification Rates For The PLP and Mel Approaches 

 PLP MEL 
FRR FRR FAR FAR 

DTWA 26.72% 18.40% 30.18% 28.56% 
DTW 24.75% 17.33% 30.77% 23.78.% 

In the verification process, for the utterances of the two compulsory texts, 
we evaluated the score (S1 + S2) in the case of DTW approach, and S in the 
DTWA approach and compared it to thr1, thr2 respectively. We compared 
different approaches to the perceptual analysis. The results obtained are presented 
in Table I. We used the weight values w1=0.7625 and w2 = 0.2375. 

In our experiments we found useful to apply a weighted Euclidean metric: 

∑
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iii yxwyxd                                         (23)  

For instance, for the evaluation based on the Mel-scale analysis we used low 
weights for the first cepstral coefficients, mainly for the first one (w1 ≈ 0.01052, 
w2 ≈ 0.27027, w3 ≈ 0.526316). We applied sub-unitary weights for the first three 
PLP-coefficients as well (w1 ≈ 0.08333, w2 ≈ 0.27027, w3 ≈ 0.666667). The 
results obtained using the two methods are presented in Table II.  
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Table II 
Verification Rates for the PLP and Mel approaches using the weighted Euclidean distance 

 PLP MEL 
FRR FRR FAR FAR 

DTWA 22.21% 22.21% 17.49% 16.8% 
DTW 20.8 20.8 15.51% 16.6% 

To appraise the performance of the verification system based on one 
factor, we performed similarly the threshold setting for each client, by computing 
an average score for the impostors with regard to the respective client. We 
investigated both the DTW and the DTWA algorithms. In the DTW approach we 
set the score of the two utterances of the password to: 

 , coeffcoeffDTWS )( 21=  (24) 
where coeff1, coeff2, are the feature vectors extracted from the two utterances of 
the “password". The threshold was set to: 

∑
−

=
++=

1

0
21213 )(

N

i
ii SSwSwthr                                   (25) 

The scores Sji = DTW(coefj, coeffi), j=1,2 belong to the impostor i with respect to 
the reference templates, coeff1, coeff2, and S, estimated by (24). 

In the DTWA approach the threshold is set to: 
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where S is the client’s score: 
221 /, coeff ))DTW(coeff, coeff )f (DTW(coefS +=              (27a) 

and Si is the impostor i feature vector score reported to coeff. 
)( , coeffcoeffDTWS ii =                                      (27b) 

The performance obtained using one factor is presented in table III.  
Table III 

One factor verification rates for PLP and Mel approaches using the weighted Euclidean 
distance 

 PLP MEL 
FRR FRR FAR FAR 

DTWA 25.41% 23.03% 16.59% 24.94% 
DTW 22.08% 19.45% 17.73% 18.59% 

We examined the weighted approach in both DTW, and DTWA, for the 
one-factor and the two factors schemes. The results are presented in tables IV and 
V. They demonstrate a significant improvement of the performance for the sheer 
DTW approach, from an EER about 16% to around 8.5%, using the Mel cepstral 
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coefficients and from 18.7% 10.7% for the PLP coefficients. The same 
improvement is noteworthy for the DTWA method as well, as the results reveal. 

Table IV 
Two Factors verification rates for  PLP and Mel approaches using the weighted DTW 

 PLP MEL 
FRR FRR FAR FAR 

DTWAw 8.03% 15.66% 7.36% 11.70% 
DTWw 12.04% 9.43% 10.70% 6.31% 

Table V 
One factor verification rates for PLP and Mel approaches using the weighteing approach 

and the weighted Euclidean distance 

 PLP MEL 
FRR FRR FAR FAR

DTWAw 16.06% 17.33% 11.04% .13.55% 
DTWw 18.07% 15.66% 15.72% 10.82% 

 
To assess the class separability power of the feature sets we calculated the 

within-class scatter and the between-class scatter matrices Sw and Sb ([5]): 
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where K is the total number of features, Km the number of features in class m, M 
the number of classes, μμ, μ the feature mean in class m, and the overall feature 
mean, respectively. Figs. 7, 8 present images of within-class and between-class 
scatter matrices obtained with PLP and Mel cepstral coefficients us.  

 
Fig. 7. The within- class scatter-matrix of the Mel cepstral coefficients (at right) and PLP cepstral 

coefficients (left) sets 
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Fig. 8. The between- class scatter-matrix for the sets of Mel cepstral coefficients (at right) and PLP 
cepstral coefficients (a left) 

For a high class-separablity the within-class matrix should be relatively small 
while the between-class matrix relatively high. A measure of class separability is: 

)( 1SStraced −=                                                (29) 
If Sw is not singular, a good approximation of (29) is:  

)(/)( wb StraceStraced =                                      (29a) 
In (29) and (29a) trace is the sum of the diagonal elements of the matrix. We 
evaluated relation (29a) on 19 classes speakers), and 27374 PLP-cepstral features 
and (and on 21028 Mel-cepstral vectors. Table VI presents the class separability 
estimated by (29a), for the Mel-cepstral, and PLP-cepstral coefficients. The 
results suggest that, in terms of (31a), the PLP based approach has a good 
separability power, better than the Mel- based approach. 

Table IV 
Coefficient )(/)( wb StraceStraced = calculated for Several Perceptual Approaches. 

 PLP MFCC 
)(/)( wb StraceStraced =

 
1443.4 966.15 

6. Conclusions 

In our research we tried to emphasize the value of the Dynamic Time 
Warping approach in speaker verification. We devised a new method derived 
from the DTW meant to spare memory resources without significantly affecting 
the verification performance. We examined the behavior of the DTW and the 
DTWA methods in the context of various characteristic feature sets. Overall, the 
performance of the DTW method was superior to those obtained by applying 
DTWA. The results improved when using weighted perceptual features sets in 
both approaches. While applying the non-weighted approach the best results were 
attained using PLP feature sets, the overall best results were obtained with the 
weighted mel-cepstral features. Moreover the differences in the performance 
between the DTW and the DTWA approaches are moderate with the mel-cepstral 
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coefficients. We also applied the symmetric weighting of the DTW distortion 
function as pointed out by Sakoe and S. Chiba in [8]. The performance increased 
by about 8% in all the cases, the two-factors and one-factor schemes, sheer DTW, 
and the DTWA method. Again the sheer DTW using Mel features achieved the 
best scores, the Mel-DTWA approach coming next with an about 1% handicap.  

Although the performance using the two-factor approach is better than 
those obtained using one factor, the differences are not significant. We can 
explain this by the fact that the second “password” was not always pronounced 
properly: the speakers who used their names not always pronounced their first and 
last names in the same order. The evaluation based on the scatter matrices of the 
feature sets suggests better behavior for the PLP feature sets, however this 
evaluation does not take into account the weighting factor that we applied later. 
As one can see the large values of first Mel-cepstral coefficient “damages” the 
aspect of both scatter-within and scatter-between matrices.  

In conclusion the DTW approach proved to be a valuable technique to be 
applied in speaker verification, which is essentially a speech dependant variant 
speaker recognition. The DTWA derivation, although weakens the DTW results, 
is still an alternative when the training material is much richer, for instance when 
adaptive techniques are applied as the verification system is operated for a long 
time interval. For the future we would like to try to improve the DTW 
performance by using the dynamic features derived from the Mel and PLP sets 
and also test the asymmetric an optimized weighting also proposed by H. Sakoe 
and S. Chiba in [8]. 
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