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SPEAKER VERIFICATION USING THE DYNAMIC TIME
WARPING

Svetlana SEGARCEANU', Tiberius ZAHARIA?

Majoritatea schemelor comerciale de autentificare recente se bazeazd pe doi
factori, de pilda o parold si un cod de securitate, sau codul PIN §i informatii
personale. Aceasta cu scopul de a spori nivelul de securitate in comparatie cu cel
asigurat de sistemele cu o parold. Prezentam in continuare modul in care metoda
alinierii dinamice in timp poate fi adaptatd pentru a putea fi aplicatd corespunzator
la verificarea vorbitorului folosind doi factori. In etapa de extragere a trasdturilor
caracteristice am utilizat doud aborddri perceptuale: PLP versus analiza in scara
Mel, cu un al doilea scop, acela de a le evalua performantele. Participantii in
experiment au rostit anumite texte obligatorii si numele lor. Au fost testate mai
multe combinatii de vocabular

Most of the nowadays commercial authentication schemes are based on two
factors: for instance a password and a security ID, or the PIN code and personal
data. This is meant to improve the security in comparison with the systems based on
one only factor. We present a way to adapt the Dynamic Time Warping approach in
order to apply it suitably to a two factors scheme. For feature extraction in speaker
verification experiments we used two perceptual approaches: the PLP versus the
Mel-scale methodology, with a second purpose of assessing their performance. The
participants in the experiment uttered some compulsory sentences in Romanian or
their names. Several combinations of vocabulary were tested.

Keywords: speaker verification, dynamic time warping, threshold setting,
weighting, perceptual analysis of speech, biometric measures

1. Introduction

The speaker verification issue is to decide on the invoked identity of a
client. Two decisions are possible: client and impostor. As any pattern recognition
problem, it involves two aspects: training and testing (the verification itself). In
the training phase the user must pronounce a number of utterances in order to
create her or his model. In the verification process the user’s processed signal
output is compared to the model of the invoked speaker S. Furui ([1]) proposed
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that the utterance should also be compared to a model of the impostor, obtained
by training with several “impostor” users.

Most of the latest commercial security schemes use the authentication
based on two factors such as, for example, the password and the security ID, or
the PIN code and the security ID, or a password and personal information.
Although this would improve the security as compared to the security provided by
only one factor, it does not guarantee that the pretended identity is the true one, as
the PIN codes, personal data, the security ID, can all be obtained by the fake ([2]).
The biometric technologies, unlike all other authentication methods, should prove
that the users are what they pretend they are.

We used a variant of the Dynamic Time Warping approach, which,
besides evaluating the alignment between two time sequences, produces new
reference templates by applying a sort of averaging of the warped sequences. We
show how we established the specific individual thresholds used in the
verification phase. Finally we show how to improve the DTW performance by
applying a weighted variant. As the speech material was limited we used in the
training phase only utterances obtained in the first two recording sessions, and
tried to squeeze as much information as possible out of them. In our research we
show the advantage of a two factor scheme over a one factor scheme and try to
evaluate various alternatives to the perceptual analysis: different perceptual scales,
different rules. We used some highly corrupted records of 21 Romanian speakers.
The speech signal was sampled at 11.125 kHz, each sample represented on 8 bits.
The length of the speech frame was set to 22ms and the frame rate to half the
length of the frame. A Hamming window, and a pre-emphasis filter (u=0.95) were
applied. The speech database contains compulsory text, used in training and
verification phases. The users also uttered arbitrary text, but we did not use this
material in the verification trials. We evaluated the power of the perceptual
analysis by means of the within-class and between-class scatter matrices of the
perceptual features.

2. Speaker Verification

By speaker verification the pretended identity of a speaker is either
accepted or rejected. This involves comparing the set of extracted features at the
test trial, to the model of the assumed speaker. The score acquired at testing is
compared to a threshold, specific for each individual, and if it is under that
threshold the speaker is accepted. In classical approaches, the threshold is
established based on the inter/intra-speaker scores. For instance the score could be
established as the average score obtained at training.
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The evaluation of a speaker verification system assumes the assessment of
two aspects: the accuracy of the system and the required resources. The accuracy
is expressed with the help of the following indicators:

FAR (False Acceptation Rate) — the probability of the false acceptance:
number of false rejections

FAR = - (1)
number of impostors
FRR (False Rejection Rate) — the probability of the false rejection:
FRR = number of false rejections @)

number of speakers invoking their identity

These two indicators are used to set the thresholds. EER (Equal Error
Rate) is attained for a threshold value FAR and FRR are approximately equal.

3. The Method

The Dynamic Time Warping algorithm measures the similarity, or
distortion, between two sequences, which may vary in time. DTW is thus a
method that allows a computer to find an optimal match between two given time
sequences, applying certain restrictions, and furnishes a measure of their
similarity, and an optimal path. The minimum distortion is always based on the
previous step and should satisfy the following condition:

DTW(,j)= mkin(DTW(i -Lk)+d(k,)) 3)

where d is a metric defined on the space @, where the time sequences take values:
d:dxd—>R20 4)
The general form of this algorithm involves the construction of a

cumulated cost matrix dtw, representing the cost of the time warping of two time

sequences s and ¢, of lengths m respectively n, based on the local cost matrix([3]):
CeR™xR":c(i, j)= ||d(s,-, t j)|| )
Given two time sequences, s and ¢, with m =|s|, n=|t|, the algorithm

dtw(s,t,m,n) involves the next steps:
Initialization:
dw(0,0) = d(s[0],£[0])

fori=1tom  dw(i,0) = dtw(i —1,0) + c(i,0) end for
forj=1ton dw(0, j) =c(0, j) +dtw(i, j—1)  end for
The iterative process:
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fori=1tom
forj=1ton

dmw(i, j) = c(i, j) + min(dtw(i — 1, j),dtw(i, j — 1), dtw(i — 1, j — 1))
end for

end for

return dtw(m-1,n-1)

Fig. 1. The local cost matrix and the optimal path obtained from two sequences of PLP coefficients

Backtracking: Once generated the accumulated cost matrix, the optimal path warped by the DT
Fig. 1 presents the local cost matrix and the optimal paths obtained by applying
the DTW algorithm for two sequences of PLP coefficients. The algorithm meant
to generate the optimal path, optimalPath(s,t,m,n),is based on the accumulated
cost matrix dtw(i,j) of two time sequences, s and ¢, with m =|s|, n=[¢|:
path = new Vector()
i=m-1;j=n-1;
while (i >0) & (j> 0) do
if i== Othen j=j-1;
else if j== 0 then i=1-1
else if drw (i -1, j) == min (dow (i -1, j); dew (i, j-1); diw (i -1, j-1))
then i=1i-1;
else if dtw (i, j-1) == min (dtw (i -1, j); dtw (i, j-1); dtw (i -1, j-1))

then j=j-1;
else i =1i-1;j =j-1
end if
path.add(( i j))
end if

end while
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3.1 DTW in Speaker Recognition

Applying the DTW technique in speech recognition involves reporting the
test utterance to one or more reference templates, usually representing one or
more pronunciations of the invoked speaker’s model. The feature sequence
obtained from the test utterance is dynamically warped with the sequences of
parameters contained in the reference templates. If we use two reference
templates, the DTW algorithm generates two distortions drw/ and dtw2. These are
compared to a threshold established in the training stage. If in the training phase,
for a certain speaker, we use two templates, we may set one speaker’s threshold to
the value obtained from warping these two sequences, dtw = dtw(coeff;, coeff>),
where coeff], coeff> are the two reference feature sequences.

An alternative for the choice of the reference templates would be the
generation at training, of a reference sequence in which each sample would be the
average of the samples that are “aligned” by applying the DTW algorithm to two
feature sequences obtained from two training utterances. By this we are able to
use one reference model instead of two, thus sparing some memory resources.
Fig. 2 presents the sequence obtained by warping two first order PLP coefficients
sequences, the outer in red and green. The sequence generated by the algorithm is
the middle yellow one.

We present subsequently the formalized algorithm dtwa(coeff;,
coeff,,ny,nz), which uses as input parameters two dim-dimensional sequences,
coeff; and coeff>, withn; =| coeff| |, n, = coeff, |. In the first steps, the algorithm

performs the calculation of the DTW distortion and the optimal path of the two
sequences.

T

Fig. 2. The sequence obtained by the alignment of two sequences of PLP coefficients. Each sample
in the middle sequence is the average of matching samples warped by the DTW algorithm
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dtw(coeff , coeff,,n, ,n, );

optPath = optimalPat h(coeff,, coeff,, n, , n,);
coeffTemp =new double [max(nl, n2 )][dim];
for i=0 todim coeffTemp[0][i] = 0 end for
iteratii = 0; [ =0;
pathOpt = optPath(0); temp, = pathOpt[0]; temp, = pathOpt[1];
u=1;
while u < ‘optPath‘ & pathOpt[0] >= 0 & pathOpt[1] >=0do
while pathOpt[ 0] = temp, || pathOpt[1] = temp, do
if pathOpt[ 0] = temp, then
for i =0todim coeffTemp[l][i] += coeff,[pathOpt[ 1]][i] ; end for
iteratii ++ ;
end if
if pathOpt[1] = temp, then
for i=0to dim coeffTemp[l][i] + = coeff,[pathOpt[ 0]][i]; end for

iteratii ++ ;
end if
pathOpt = optPath(u); u++;
end while
for s =0 to nbDim coeffTemp[l][s] = coeffTemp [l][s] /iteratii ; end for
u-—-; I ++;

if pathOpt[ 0] >=0 & pathOpt[1] >= 0 then
for s =0 tonbDim coeffTemp[l][s] = 0; end for
temp, = pathOpt[ 0] ; temp, = pathOpt[1]; iteratii = 0;
end if
end while
n = 1; coeff, =new float{max(n,,n, )][dim];
for i=0 ton
for u=0todim coefffi][u] = coeffTemp [l-i-1][u] ; end for

end for
The procedure outputs, besides the newly sequence, a distortion measure

dtwa = (DTW(coeff|, coeff, n| , n )+ DTW(coeff>, coeff, ny, n))/2 (6)
In the above algorithm given a pair of aligned features in the optimal path
sequence, (coeffi(u) , coeff>(v)), the two sequences of feature vectors are averaged

as follows:
1..if coeffi(u) (respectively coeff>(v) ) occurs in more than one optimally

aligned pairs, all these pairs generate one point equal to the average of all the
components of these pairs, and coeff;(u) respectively coeff>(v () is counted once.
2. in particular, if coeff;(u) and coeff>(v) occur only once, this pair generates

one vector equal to their mean.
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3.2 Weighting the DTW Distortion

Formally speaking, the alignment path built by DTW is a sequence of
points, which must satisty the following constraints:

1. Boundary condition: the starting and ending points of the warping path
must be the first and the last points of the aligned sequences ( pathOpt[1] = (1; 1)
and pathOpt[Kj = (n;;n;), where K is the length of the warping path).

2. Monotonicity condition, which preserves the time ordering of points.

3. Step size condition: this criterion restricts the warping path from long
jumps (shifts in time) while aligning sequences. With the above notations

pathOpt [t+1] - pathOpt[t+1] € {(1; 1); (1; 0); (0; 1)}.

In [8] Sakoe and Chiba introduce one more constraint:

4. The slope constraint condition based on the fact that too steep or too
mild a gradient may reflect unrealistic correspondence between the aligned
sequences. For instance a short pattern A, warped with a relatively long pattern B
may generate a steep gradient. They account for the slope of the warping path
measured as the local ratio of the numbers of leaps in the two directions of each of
the warped sequences. They propose adding weights to each of the DTW
distances, to penalize or favor certain types of point-to point correspondence.
Thus the DTW distortion between two sequences turns into:

K
DTWy, (s1,52) = Y wyd(pathOpt(k)[0], pathOpt(k)[1]) (7)
k=1
where, if we denote s(k)/[i] = pathOpt(k)[i], i=1,2:
wy = (s(k)[0] = s(k — [0+ s(k)[1] - s(k = D[1])/(my +ny) (7a)

4. Perceptual Analysis

4.1 The Bark scale

The use of filter banks in speech processing for speech or speaker
recognition systems is meant to model the human auditory apparatus, which
behaves as if composed of a series of superposed filters. The pass band of each
filter is called the critical band. Two pure tones lay in the same critical band if
their frequencies are close enough to meet a certain degree of superposition of
their amplitude envelopes in the basilar membrane. The bark scale, so called by
the name of Heinrich Barkhausen, was among the first attempts to describe the
effects of the critical bands. The nonlinear spacing between the critical bands
matches a psycho acoustical scale proposed by Zwicker in 1961 ([4], [5], [6]):

Foark () =13 *arctan(0.00076 - 1) +3.5-arctan( £ /7500) (®)
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Fig. 3. Graphical representations of three expressions of the Bark scale of (8),(8a),(8b).

Alternative expressions for the bark scale are (see [5], [6]):

Frart () = 61n{f/600 +(r2/600% + 1)0'5} (82)

Foark (f) = 7ln{ £/650+ (fz /650% + 1)0'5} (8b)

In the above relations f expressed in Hz. Fig. 3 shows the three
representations where (8b) seems a good approximation of (8).

4.2 The Mel Scale

The Mel scale was proposed by Stevens et al. (1937) to model the
characteristics of the nonlinear perception of the pitch by human ear. The Mel
frequency as expressed as below (f'is measured in Hz):

Jmer (f) =1125In(1+ £/700) )

4.3 Perceptual Feature Extraction

4.3.1 Linear predictive perceptual analysis

The linear predictive perceptual analysis makes use of Durbin’s recursive
algorithm ([6], [7]), to calculate the prediction coefficients, based on the
autocorrelation coefficients. However, the autocorrelation coefficients are
calculated as the Inverse Fourier Transform of a perceptually motivated power
spectrum X(-). The algorithm involves the following steps ([4], [5]):

-Computation of the windowed power spectrum

-Critical band integration through a filter-bank, defined by:

k
— k
1 Ofbark Soar Joark< Jpark=0-5 10
k
Ge (ﬁ)ar/() =41 ﬁ)ark_ 0.5< fbark< fbkark'" 0.5 ( )
2.5 foari i) H05
10° Upari~Toart) fbark2 flfcark"' 0.5

where 3.+ is defined by either of (2), (3) or (4), and fbkark ~k.
-Equally loudness pre-emphasis:
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2 6 2
E(a)):\/ . (0 +lé44 *;0 ) _ (11)
(0 +1.6*10° )@~ +9.61 ¥10°)

where o=21f.
-Intensity to loudness compensation and re-sampling:

Q) =F3 (k) = ([ E(@)Cy (@) (@)dw)'? (12)
0

Fig. 4. Representation of the trapezoidal filters (10)

s |

Fig. 5. The PLP spectrum calculated using the relation (12), the bank of filters (10), and the bark
scale (8b)

-Inverse Fourier transform of the power spectrum

-Calculation of the perceptual prediction coefficients by the Levinson—
Durbin recursion ([7]) and, based on these, of cepstral coefficients. Fig. 5 presents
the PLP spectrogram with 20 bands, calculated using (12), the filter- bank (10),
and the Bark scale (8b).

4.3.2 The Mel- perceptual feature extraction

The Mel perceptual feature extraction is also accomplished with the help
of a filter bank, defined by M triangular filters, with the role of averaging the
spectral energy around each central frequency. A Mel filter is defined by ([6]):

0 k< flm-1]
k= fIm —1]
SIm =1]<k < f[m] (13)
12 ) (fIml= flm —1])
H o k] = flm+11-k

fIlml<k < flm+1]

(f[m +1]1-= f[m1])
0 k> flm+1]
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In the above equations, f/m] is calculated based on the lowest and highest
frequency values of the filter bank, the sampling frequency and the length of a
speech frame. These filters increase in spacing and decrease in height, although
certain implementations make use of equal height filters. The Mel cepstrum is
derived from the power spectrum calculated in the classical frequency range:

-1
= Zx 2N o<k <N (14)

-
H o i

Al bl

) Flg 6. Log energy in the Mel scale filtered through a bank of 36 filters

Log-energy as filtered by one filter is defined as:

N

S[m]= 1n|:2 (X[k])sz][k])}O <m<M (15)
k=1

Fig. 6 provides a spectrogram in the Mel scale, using 36 filters.

5. Experiments and Results

The goal of our research was to assess the performance of a speaker
verification system based on the DTW approach and a two-factor scheme. On the
other hand to investigate how speaker verification performance relies on the type
of features extracted.

In our experiments we used speech samples of 9 male and 12 female
speakers. Each speaker recorded between 4 and 11 sessions, uttering each time
some required and arbitrary text. The total number of recorded utterances by the
21 speakers was 2737, varying from 62 to 195 per speaker. The compulsary text
included six Romanian sentences: “Eu iau noua oud moi”, “Meniul moliei e lana”,
“Aureola e o lumina”, ”Lamiia ia anemia unui om”, “Ei au o inimad imuna”, “Eu
il iau o anemona”, pronounced once in each recording session. In the two-factor
approach framework, in the training and verification processes the speakers
uttered two sentences: one compulsory sentence, and a second one which was
either their names or a certain one, depending on the speaker and the sentence
used as the first password, of the following: “Eu iau noud oud moi”, “Meniul
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moliei e 1ana”, “Aurcola € o lumind”, ”Lamaia ia anemia unui om”, “Ei au o inima
imuna”. We tested the combinations using as first “password” “Eu iau noud oua
moi”, and “Meniul moliei ¢ lina”. Because the total number of utterances uttered
was quite large, in order to assess the False Acceptance Rate we tested a limited
number of combinations uttered by some “impostors”, containing the first
compulsory text and a number of sentences as the second “password”, among
which the above mentioned ones, depending on the reference speaker. At training
and at recognition we extracted 14 cepstral coefficients on each speech frame,
derived either from the PLP or from Mel-scale analysis. We used a spectrum —
based criterion to remove the non-voiced frames. The first two sessions were used
for training.

We assessed the averaged approach (DTWA) presented above, as
compared to the classical dynamic time warping (DTW). On the other hand we
show how the performance can be improved by weighting the DTW distortion, as
specified by (7). DTW,, denotes the weighted variant. The performance of the two
methods was based on the evaluation of certain scores. In the two-factor approach,
the score is derived from two different utterances of the first “password” and other
two of the second “password”. The utterances of the first “password” are warped
resulting a distortion measure DTW/coeff;, coeffis/, and similarly the utterances
of the second password produce a distortion measure DTW/coeff>;, coeffs;]. The
score is set to:

S = DTW (coeffi, coeffi2)+ DTW (coeffy|, coeffrs) (16)

For a certain client we used as reference templates the feature vectors
obtained from the four recordings of the two “passwords”, coeff;;, coeffis,
respectively coeff>;, coeff>;, uttered in the first two sessions. To compute the
impostor model associated with a speaker we used the first two recording sessions
and evaluated the scores obtained from reporting each impostor’s combination of
utterances of the two “passwords” (coeff;, coeff>) to the four reference templates
(coeff1,, coeffi,, respectively coeffs;, coeff>,), obtaining the scores:

S ; = DTW (coeffy j, coeffy) + DTW (coeff3 j, coeff) j=12 (17)

The total score obtained by the impostor utterance is set to S; + S,. We averaged
the scores of the impostors using the recurrent formula:
1 N+1
finag=—— > % =iy +
Mo Na e Y TN
where gz, is the estimate of the average of x;, xo,..., xn.
The threshold was set to a weighted sum of the impostors average score
and the speaker’s score S (16). (S, S, computed as in (17), concern impostor
utterance 7, NV is the number of impostor utterances):

(XN+1=HN) (18)
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N-1
l‘h?’l =W1S+W2 Z(Sli+S2i) (19)

i=0
Analogously, in the DTWA approach, the score is derived from two
different utterances of the first “password” and other two of the second one. There
is only one pair of “average” reference templates, (coeff;, coeff>), furnished by the
DTWA algorithm, for each “password”. The reference template is warped with
the two feature vectors for each of the “password”, extracted from the first two

sessions. According to (6) two scores are produced by the DTWA procedure:

Sj = (DTW(coeffy , coeff ; )+ DTW(coeff, ;, coeff ; ))/2  j=12 (20)
As above, we evaluated the scores obtained by reporting each set of two
impostor utterances of the “passwords” (coeff;s, coeff2p), to the reference
templates (coeff;, coeff):
S = DTW(coeffy, coeff], ny , n )+ DTW(coeffy, coeff,, njg, n) (21)
These impostor scores are averaged and the threshold is set to a weighted
sum of this average and the speaker’s score obtained as in (20):

N-1
l/’ll"z =W1(S1+S2)+W2 ZSI (22)
i=0
Tablel
Two Factor Verification Rates For The PLP and Mel Approaches
PLP MEL
FRR FRR FAR FAR
DTWA 26.72% 18.40% 30.18% 28.56%
DTW 24.75% 17.33% 30.77% 23.78.%

In the verification process, for the utterances of the two compulsory texts,
we evaluated the score (S; + S>) in the case of DTW approach, and S in the
DTWA approach and compared it to thr;, thr; respectively. We compared
different approaches to the perceptual analysis. The results obtained are presented
in Table I. We used the weight values w;=0.7625 and w, = 0.2375.

In our experiments we found useful to apply a weighted Euclidean metric:

dim
d(x,y) = Y wi(xi =)’ (23)
i=1
For instance, for the evaluation based on the Mel-scale analysis we used low
weights for the first cepstral coefficients, mainly for the first one (w; = 0.01052,
wy = 0.27027, w3 =~ 0.526316). We applied sub-unitary weights for the first three
PLP-coefficients as well (w; = 0.08333, w, = 0.27027, w3 = 0.666667). The
results obtained using the two methods are presented in Table II.



Speaker verification using the dynamic time warping 191

Table 11
Verification Rates for the PLP and Mel approaches using the weighted Euclidean distance
PLP MEL
FRR FRR FAR FAR
DTWA 22.21% 22.21% 17.49% 16.8%
DTW 20.8 20.8 15.51% 16.6%

To appraise the performance of the verification system based on one
factor, we performed similarly the threshold setting for each client, by computing
an average score for the impostors with regard to the respective client. We
investigated both the DTW and the DTWA algorithms. In the DTW approach we
set the score of the two utterances of the password to:

S = DTW (coeff|, coeff>) (24)

where coeff;, coeff>, are the feature vectors extracted from the two utterances of
the “password". The threshold was set to:
N-1
thry = wS +wy D (Sy; +S2;) (25)
i=0
The scores S;; = DTW(coef; coeff;), j=1,2 belong to the impostor i with respect to
the reference templates, coeff;, coeff>, and S, estimated by (24).
In the DTWA approach the threshold is set to:

N-1
thry =wiS +wy . S; (26)
i=0
where S is the client’s score:
S = (DTW(coeff, coeff) + DTW(coeff, coeff))/2 (27a)
and S; is the impostor i feature vector score reported to coeff.
S; = DTW (coeff;, coeff’) (27b)
The performance obtained using one factor is presented in table III.
Table 1T
One factor verification rates for PLP and Mel approaches using the weighted Euclidean
distance
PLP MEL
FRR FRR FAR FAR
DTWA 25.41% 23.03% 16.59% 24.94%
DTW 22.08% 19.45% 17.73% 18.59%

We examined the weighted approach in both DTW, and DTWA, for the
one-factor and the two factors schemes. The results are presented in tables IV and
V. They demonstrate a significant improvement of the performance for the sheer
DTW approach, from an EER about 16% to around 8.5%, using the Mel cepstral
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coefficients and from 18.7%
improvement is noteworthy for the DTWA method as well, as the results reveal.

Table IV

10.7%

for the PLP coefficients.

The same

Two Factors verification rates for PLP and Mel approaches using the weighted DTW
PLP MEL
FRR FRR FAR FAR
DTWAw 8.03% 15.66% 7.36% 11.70%
DTWw 12.04% 9.43% 10.70% 6.31%

Table V

One factor verification rates for PLP and Mel approaches using the weighteing approach

and the weighted Euclidean distance

PLP

MEL

FRR

FRR

FAR

FAR

DTWAw

16.06%

17.33%

11.04%

.13.55%

DTWw

18.07%

15.66%

15.72%

10.82%

To assess the class separability power of the feature sets we calculated the
within-class scatter and the between-class scatter matrices S, and S; ([5]):

A
S = 20} 2 mk = M) = 1) (282)
m=l| k=1
1 M
Sb =~ 2Kt = 1)t e (28b)
m=1

where K is the total number of features, K,, the number of features in class m, M
the number of classes, p,, p the feature mean in class m, and the overall feature
mean, respectively. Figs. 7, 8 present images of within-class and between-class
scatter matrices obtained with PLP and Mel cepstral coefficients us.

oo EHH
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Fig. 7. The within- class scatter-matrix of the Mel cepstral coefficients (at right) and PLP cepstral
coefficients (left) sets
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Fig. 8. The between- class scatter-matrix for the sets of Mel cepstral coefficients (at right) and PLP
cepstral coefficients (a left)

For a high class-separablity the within-class matrix should be relatively small
while the between-class matrix relatively high. A measure of class separability is:

d = trace(S™'S) (29)
If Sy is not singular, a good approximation of (29) is:
d =trace(Sp)/trace(S,,) (29a)

In (29) and (29a) trace is the sum of the diagonal elements of the matrix. We
evaluated relation (29a) on 19 classes speakers), and 27374 PLP-cepstral features
and (and on 21028 Mel-cepstral vectors. Table VI presents the class separability
estimated by (29a), for the Mel-cepstral, and PLP-cepstral coefficients. The
results suggest that, in terms of (31a), the PLP based approach has a good

separability power, better than the Mel- based approach.
Table IV

Coefficient d = trace(S},) / trace(S,,,) calculated for Several Perceptual Approaches.
PLP MFCC

d =trace(Sy)/ trace(S,,) 1443.4 | 966.15

6. Conclusions

In our research we tried to emphasize the value of the Dynamic Time
Warping approach in speaker verification. We devised a new method derived
from the DTW meant to spare memory resources without significantly affecting
the verification performance. We examined the behavior of the DTW and the
DTWA methods in the context of various characteristic feature sets. Overall, the
performance of the DTW method was superior to those obtained by applying
DTWA. The results improved when using weighted perceptual features sets in
both approaches. While applying the non-weighted approach the best results were
attained using PLP feature sets, the overall best results were obtained with the
weighted mel-cepstral features. Moreover the differences in the performance
between the DTW and the DTWA approaches are moderate with the mel-cepstral
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coefficients. We also applied the symmetric weighting of the DTW distortion
function as pointed out by Sakoe and S. Chiba in [8]. The performance increased
by about 8% in all the cases, the two-factors and one-factor schemes, sheer DTW,
and the DTWA method. Again the sheer DTW using Mel features achieved the
best scores, the Mel-DTWA approach coming next with an about 1% handicap.

Although the performance using the two-factor approach is better than
those obtained using one factor, the differences are not significant. We can
explain this by the fact that the second “password” was not always pronounced
properly: the speakers who used their names not always pronounced their first and
last names in the same order. The evaluation based on the scatter matrices of the
feature sets suggests better behavior for the PLP feature sets, however this
evaluation does not take into account the weighting factor that we applied later.
As one can see the large values of first Mel-cepstral coefficient “damages” the
aspect of both scatter-within and scatter-between matrices.

In conclusion the DTW approach proved to be a valuable technique to be
applied in speaker verification, which is essentially a speech dependant variant
speaker recognition. The DTWA derivation, although weakens the DTW results,
is still an alternative when the training material is much richer, for instance when
adaptive techniques are applied as the verification system is operated for a long
time interval. For the future we would like to try to improve the DTW
performance by using the dynamic features derived from the Mel and PLP sets
and also test the asymmetric an optimized weighting also proposed by H. Sakoe
and S. Chiba in [8].
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