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SOLUTION OF THE FUNCTIONAL EQUATION f ◦ f = g

FOR NON INJECTIVE g

Ion Chiţescu1, Traian Gı̂dea2

Se rezolvă ecuaţia funcţională f ◦ f = g ı̂n cazul când funcţa cunos-
cută g are două intervale de monotonie de sens opus. Remarcăm că ı̂n cazul
clasic funcţia cunoscută g este strict monotonă. Prima secţiune a articolu-
lui are un caracter preliminar. În a doua secţiune este formulată problema
care este, apoi, soluţionată ı̂ntr-o manieră constructivă.

We solve the functional equation f ◦f = g in case the given function
g has two intervals of opposite monotonicity. Notice that in the classical
framework the given function g is strictly monotone. The first section has a
preliminary character. In the second section the problem is formulated and
solved in a constructive manner.
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1. Preliminary part

Throughout the paper R will be the set of real numbers.
For ∅ ≠ A ⊂ X ⊂ R and f : X → R, we shall write f ↓ on A (respectively

f ↑ on A) to denote the fact that f is strictly decreasing (respectively strictly
increasing) on A.

For non empty sets X, Y and injective function f : X → Y , the genera-
lized inverse of f is the function f−1 : f(X) → X given via f−1(y) = x, where
x ∈ X is uniquely determined by the condition f(x) = y.

For non empty X, f : X → X and natural number n, we define the
function fn : X → X as follows. In case n = 0, f 0 = 1X , where 1X(x) = x,
for any x ∈ X. In case n > 0, fn = f ◦ f ◦ . . . ◦ f (n times). Assume,
supplementarily, that f is injective. For any natural n > 0, we define f−n = the
generalized inverse of fn. Hence f−n : Xn → X, where X0 = X, X1 = f(X),
X2 = f(X1) = f 2(X), . . . , Xn = f(Xn−1) = fn(X).

We shall use the following result: if ∅ ̸= A ⊂ R, f : A → R is monotone
and f(A) is an interval, then f is continuous.
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For ∅ ̸= A ⊂ R and f : A → A, we denote

Fix(f) = {x ∈ A | f(x) = x}.
The elements of Fix(f) are called fixed points of f . Notice that, in case

f is continuous, it follows that Fix(f) is closed in A.

2. Formulation and Solution of the Problem,
Fundamental Lemma.

We shall begin with the formulation of the Problem.

Formulation of the Problem

Assume g : R → R is a continuous function having the property that
there exists a real number x0 such that g ↓ on (−∞, x0] and g ↑ on [x0,∞).
We assume also that lim

x→∞
g(x) = lim

x→−∞
g(x) = ∞.

We want to find a continuous function f : R → R such that f (f(x)) =
g(x) for any x ∈ R. We shall call such a function (in case it exists) a solution
of the functional equation

f ◦ f = g. (2.1)

Fundamental Lemma. Assume x0 is a real number, b is such that
x0 < b ≤ ∞ and G : [x0, b) → [x0, b) is a continuous, strictly increasing
function having the property that lim

x→b
G(x) = b.

Then there exists a continuous, strictly increasing function h : [x0, b) →
→ [x0, b) such that h ◦ h = G.

Proof. 1. Case Fix(G) = ∅.
It follows that G(x) > x for any x ∈ [x0, b). Indeed, G(x0) ̸= x0 implies

G(x0) > x0 and the existence of x ∈ (x0, b) such that G(x) < x would imply
G(u) = u for some u ∈ (x0, x), impossible.

The construction of h which is sketched further is canonical (for the spe-
cial case when G is a homeomorphism, see [3], [5] and [4]). Write x2 = G(x0) >
x0. The first parameter of the construction is an (arbitrary) number x1 such
that x0 < x1 < x2. The second parameter of the construction is a strictly
increasing homeomorphism φ : [x0, x1] → [x1, x2].

Now we define the sequence (xn)n as follows: x2n = Gn (x0) and x2n+1 =
Gn (x1), for all natural n ≥ 0. Using x0 < x1 < x2, we prove via mathematical
induction that (xn)n is strictly increasing.

Of course lim
n

xn = L ≤ b. If L < b, we get x2n+2 = Gn+1 (x0) =

G (Gn (xo)) = G (x2n) −→
n

G(L) = L, false.

Consequently L = b and this implies
∞∪
n=0

[xn, xn+1] = [x0, b) ,
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which enables us to construct h : [x0, b) → [x0, b) via

h(x) =

{
Gn ◦ φ ◦G−n(x), if x ∈ [x2n, x2n+1]
Gn+1 ◦ φ−1 ◦G−n(x), if x ∈ (x2n+1, x2n+2] ,

for all natural n ≥ 0. The definition is correct, because [x2n, x2n+1] and
(x2n+1, x2n+2] are subsets of [x0, b)n (see the Preliminary Part).

One can check that the function h has the desired properties.

2. Case Fix(G) ̸= ∅.
The set Fix(G) is closed in [x0, b), hence [x0, b)\Fix(G) is open in [x0, b).
There are two possibilities: either x0 ∈ Fix(G) or x0 /∈ Fix(G).
We study first the situation when x0 ∈ Fix(G). The case Fix(G) = [x0, b)

(i.e. G(x) = x for all x ∈ [x0, b)) is trivial: we can take h(x) = x for all
x ∈ [x0, b). Assume that Fix(G) ̸= [x0, b). We have [x0, b) \ Fix(G) =
(x0, b) \ Fix(G) and the last set is open and non empty. One can write

(x0, b) \ Fix(G) =
∪
n∈I

(an, bn) ,

where I is at most countable and (an, bn) are mutually disjoint open non empty
intervals.

For any n ∈ I, one has G (an) = an, G (bn) = bn and Gn : (an, bn) →
(an, bn), Gn(x) = G(x), is a strictly increasing homeomorphism.

Using canonical procedures (see [3], [5] and [4]), one can find
Hn : (an, bn) → (an, bn) such that Hn ◦Hn = Gn and Hn is a strictly increasing
homeomorphism. We define, h : [x0, b) → [x0, b),

h(x) =

 x, if x ∈ [x0, b) \

(∪
n∈I

(an, bn)

)
= Fix(G)

Hn(x), if x ∈ (an, bn) .

Clearly, the function h is strictly increasing, continuous and h ◦ h = G.
It remains to study the situation x0 /∈ Fix(G). Notice first the existence

of x0 < x1 < b such that [x0, x1]∩Fix(G) = ∅. Indeed, if [x0, x]∩Fix(G) ̸= ∅, for
any x0 < x < b, we can find a strictly decreasing sequence (an)n, x0 < an < b,
such that G (an) = an for any n and an−→n x0. Passing to n-limit, we get

G (x0) = x0, contradiction.

Now [x0, b) \ Fix(G) = ((x0, b) \ Fix(G)) ∪ {x0} =

(∪
n∈I

(an, bn)

)
∪ {x0},

where I is at most countable and (an, bn) are mutually disjoint and non empty
open intervals. According to the previous remark, one of the intervals (an, bn)
has the form (x0, β), where x0 < β ≤ b. Hence we can write

[x0, b) \ Fix(G) = [x0, β) ∪

(∪
n∈I1

(an, bn)

)
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where I1 is at most countable and the intervals [x0, β), (an, bn) are mutually
disjoint.

One has β < b (in case β = b one has Fix(G) = ∅) and the set I1 can be
empty.

It is seen that G(x) > x on [x0, β). Using the case 1 we find a strictly
increasing and continuous H : [x0, β) → [x0, β) such that H ◦H = G1, where
G1 : [x0, β) → [x0, β) is given via G1(x) = G(x) (use the fact that G(β) = β).

In case I1 ̸= ∅, for any n ∈ I1 we find Hn such that Hn ◦ Hn = Gn

(see the situation x0 ∈ Fix(G)). Now, it is possible to define the desired
h : [x0, b) → [x0, b) given as follows (in case I1 = ∅, the second determination
of h disappears):

h(x) =

 H(x), if x ∈ [x0, β)
Hn(x), if x ∈ (an, bn) , n ∈ I1

x, if x ∈ Fix(G).

�
Once we haven established the previous result, we can pass to the solution

of the problem.

Solution of the Problem

A. Preliminary Remarks

1. If the function f is a solution, one must have f ↓ on (−∞, x0] and
f ↑ on [x0,∞).

a) Because of the strict monotonicity of g on (−∞, x0] and [x0,∞) the
restrictions f

∣∣
(−∞, x0] , f

∣∣
[x0, ∞) must be injective functions.

b) Because the function g is not strictly increasing one must have either
f ↓ on (−∞, x0] and f ↑ on [x0,∞) or f ↑ on (−∞, x0] and f ↓ on [x0,∞).
The second situation cannot occur, because its occurence would imply the fact
that the function f has a finite maximum, hence the function g would have a
finite maximum.

2. If the function f is a solution, we have the inclusions
f ((−∞, x0]) ⊂ [x0,∞) and f ([x0,∞)) ⊂ [x0,∞).

Indeed, assume first that f ((−∞, x0]) ̸⊂ [x0,∞). Hence f ((−∞, x0]) =
[f (x0) , b) ̸⊂ [x0,∞), where b = lim

x→−∞
f(x). We have b = ∞. Indeed, in case

b < ∞, it follows that lim
x→−∞

f (f(x)) = lim
x→−∞

g(x) = f(b), false. Consequently

f (x0) < x0 and we get the non degenerate interval [f (x0) , x0] ⊂ (−∞, x0] ∩
f ((−∞, x0]). Let a < b in (−∞, x0] such that f(a) > f(b) are in (−∞, x0] ∩
f ((−∞, x0]). It follows that f (f(a)) = g(a) < f (f(b)) = g(b) which is false,
because g ↓ on (−∞, x0).

Now, assume that f ([x0,∞)) ̸⊂ [x0,∞). Hence f ([x0,∞)) = [f (x0) , b) ̸⊂
[x0,∞), where b = lim

x→∞
f(x). We have b = ∞ as previously. It follows that

f (x0) < x0 and we get the nondegenerate interval [f (x0) , x0] ⊂ (−∞, x0) ∩
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f ([x0,∞)). Let a < b in [x0,∞) such that f(a) < f(b) are in (−∞, x0] ∩
f ([x0,∞)). We get f (f(a)) = g(a) > f (f(a)) = g(b), which is false, because
g ↑ on [x0,∞).

3. We have f ((−∞, x0]) = f ([x0,∞)) = [f (x0) ,∞) ⊂ [x0,∞).
Indeed, due to strict monotony we have f ((−∞, x0]) = [f (x0) , b), where

b = lim
x→−∞

f(x). We have seen that b = ∞. The same for lim
x→∞

f(x) = ∞ and

f ([x0,∞)) = [f (x0) ,∞)

4. Using remarks 2 and 3, we get for a solution f : f (x0) ≥ x0.
Hence

f (f (x0)) = g (x0) ≥ f (x0) ≥ x0.

Because g (x0) ≥ f (x0) ≥ x0, we have

g (x0) = x0 ⇔ f (x0) = x0.

Consequently
g (x0) > x0 ⇔ f (x0) > x0.

5. The preceding remark tells us that not all functions g as in the
formulation of the problem can furnish a solution f . Namely, such a (suitable)
function g must have the property g (x0) ≥ x0. i.e. g(R) ⊂ [x0,∞).

As a consequence, we obtain the following fact: for such a function g the
set Fix(g) ∩ (−∞, x0] has at most one point. Namely we have

Fix(g) ∩ (−∞, x0] ⊂ {x0}.
Indeed, let us assume there exists a fixed point a < x0 of the function g.

Then a = g(a) > g (x0). Hence g (x0) < a < x0 and this is impossible, because
g (x0) ≥ x0.

6. For any solution f one has Fix(f) = Fix(g).
Indeed, the inclusion Fix(f) ⊂ Fix(g) being trivial, let a ∈ Fix(g). From

the remark 5 we obtain a ≥ x0. Hence, using the remark 2, we have a and
f(a) in [x0,∞). Assume, by absurdum, f(a) > a (respectively f(a) < a).
Then f (f(a)) = g(a) = a > f(a) (respectively f (f(a)) = g(a) = a < f(a)),
contradiction.

B. Construction of the solution.

We start with the given function g as in part A and such that g (x0) ≥ x0

(as we have seen, this conditions is necessary for the existence of the solution;
actually, it is sufficient too). We can construct the strictly increasing and
continuous G : [x0,∞) → [x0,∞), G(x) = g(x). Using G and the Fundamental
Lemma, we can construct the function h : [x0,∞) → [x0,∞).

We have h (x0) ≥ x0, hence h (h (x0)) = G (x0) ≥ h (x0) and this implies
h ([x0,∞)) = [h (x0) ,∞) ⊃ [G (x0) ,∞) = G ([x0,∞)). Considering the gene-
ralized inverse h−1 : [h (x0) ,∞) → [x0,∞) one can define, for any x ∈ [x0,∞),
h−1 (G(x)).
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Theorem (Existence and Uniqueness of the Solution).
Let g be a function as in part A with g (x0) ≥ x0.
Existence. There exists a solution f of the equation (2.1). The form of

f is the following :
a) Construct G and h as previously.
b) Define f : R → R via

f(x) =

{
h(x), if x ∈ [x0,∞)

h−1 (g(x)), if x ∈ (−∞, x0) .

Uniqueness. All solutions are of the above form.

Proof. Existence. We have g ((−∞, x0]) = [g (x0) ,∞) = g ([x0,∞)) = G ([x0,∞))
and we have seen that one can write h−1(y) for any y ∈ G ([x0,∞)), hence one
can write h−1 (g(x)) for any x ∈ (−∞, x0].

Now we prove that the function f is a solution.
a) The function f thus constructed is continuous.
This assertion is clear on (x0,∞) (because h is continuous) and on

(−∞, x0) (because h−1 is continuous, being increasing and having an inter-
val as range). Clearly f is right continuous at x0. On the other hand, one has,
using the continuity of h−1 and g,

lim
x→x0
x<x0

f(x) = lim
x→x0
x<x0

h−1 (g(x)) = h−1 (g (x0)) .

One must have

h−1 (g (x0)) = h (x0) = lim
x→x0
x>x0

f(x) = f (x0)

and this is obvious.
Notice that we proved also the equality f (f (x0)) = g (x0).
b) It remains to prove that f (f(x)) = g(x) for any x ∈ R, x ̸= x0.
If x > x0, one has f(x) = h(x) and f (f(x)) = h (h(x)) = G(x) = g(x),

because h(x) ∈ [x0,∞).
If x < x0, one has f(x) = h−1 (g(x)) ∈ [x0,∞).
Consequently f (f(x)) = h (h−1 (g(x))) = g(x).
The proof of the existence part is finished.
Uniqueness. For a given g as previously, let f be a solution. Remarks

1, 2 and 3 show that f ↓ in (−∞, x0], f ↑ in [x0,∞) and
f ((−∞, x0]) = f ([x0,∞)) = [f (x0) ,∞) ⊂ [x0,∞).

We define h : [x0,∞) → [x0,∞), h(x) = f(x) and G : [x0,∞) → [x0,∞)
via G(x) = g(x). Then, because h (h(x)) = G(x) for any x ∈ [x0,∞) and h is
continuous and strictly increasing, it follows that h is generated by G like in
the Fundamental Lemma. It is seen that f(x) = h(x) for any x ∈ [x0,∞). All
it remains to be proved is that f(x) = h−1 (g(x)) for any x ∈ (−∞, x0].

Put y = f(x) ∈ [x0,∞). It follows that g(x) = f (f(x)) = f(y) = h(y) =
h (f(x)). Hence f(x) = h−1 (g(x)). �
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Example. Let a be a real number. We consider the function

F : R → R, F (x) = |x|+ a.

Then F ↓ on (−∞, 0] and F ↑ on [0,∞). One has F (0) = a. We
want to take F in the role of g, hence x0 will be equal to 0. The condition
F ([0,∞)) ⊂ [0,∞), i.e. [a,∞) ⊂ [0,∞) is equivalent to a ≥ 0 (this means
F (0) ≥ 0).

Consequently, we consider a number a ≥ 0 and the function g : R → R
given via

g(x) = |x|+ a.

We want to solve the equation (2.1). Notice that in case a < 0 the
problem has no solution.

The fixed points of g are given by the equation

|x|+ a = x. (2.2)

For x ≥ 0 equation (2.2) becomes a = 0 and for x < 0 equation (2.2)
becomes x = a

2
, impossible.

Consequently, in case a > 0 there are no fixed points and in case a = 0
all the points x ≥ 0 are fixed points.

Case a > 0. The function g generates the strictly increasing and conti-
nuous function G : [0,∞) → [0,∞) given via G(x) = |x|+ a = x+ a.

As we have seen, the solution depends upon and arbitrary strictly in-
creasing and continuous function h : [0,∞) → [0,∞) such that h ◦ h = G.
Such a function is e.g. given via h(x) = x+ a

2
.

In this case h−1 :
[
a
2
,∞
)
→ [0,∞), h−1(y) = y− a

2
. The general solution

of (2.1) is given via

f(x) =

{
h(x), if x ∈ [0,∞)

h−1(−x+ a), if x ∈ (−∞, 0).

In the particular case h(x) = x+ a
2
we have the solution

f(x) =

 x+
a

2
, if x ∈ [0,∞)

−x+
a

2
, if x ∈ (−∞, 0),

i.e. f(x) = |x|+ a
2
.

Case a = 0. The function g generates the strictly increasing and conti-
nuous function G : [0,∞) → [0,∞) , G(x) = x.

We look for strictly increasing and continuous functions h : [0,∞) →
[0,∞) such that h ◦ h = G, i.e. h (h(x)) = x for any x ∈ [0,∞). We shall see
that the unique possibility is h(x) = x for any x ∈ [0,∞), hence h : [0,∞) →
[0,∞) is a homeomorphism and h = h−1.

Indeed, if h(t) > t (respectively h(t) < t) we obtain h (h(t)) = t > h(t)
(respectively h (h(t)) = t < h(t)), contradiction.
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Consequently, the unique solution is f : R → R given via

f(x) =

{
x, if x ≥ 0
|x|, if x < 0.

Finally it is seen that the unique solution is f : R → R, f(x) = |x|.
Final Remark. Considering F : R → R, F (x) = |x| + a, for a < 0, we

take the function φ : R → R, φ(x) = |x| + a
2
. We can see that the function

φ does not satisfy the equation φ ◦ φ = F . Indeed, for x ∈
[
0,−a

2

)
, one has

φ(x) = x+ a
2
< 0 and φ (φ(x)) = −x− a

2
+ a

2
= −x ̸= |x|+ a.

Conclusion. We could solve in a constructive manner the equation
f ◦f = g in case the given function g is not injective. Up to now, the aforemen-
tioned equation was solved in case the given function g was strictly monotone
(see the classical monograph [5], the classical paper [4] and [3]).
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