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NUMERICAL STUDIES ON TWO-DIMENSIONAL
SCHRÖDINGER EQUATION BY CHEBYSHEV SPECTRAL

COLLOCATION METHOD

Rashid Abdur1, Ahmad Izani Bin Md. Ismail2

A Chebyshev spectral collocation method for computing highly accurate
numerical solutions of the two-dimensional Schrödinger equation is proposed. In
this method, the equation is first discretized with respect to the spatial variables,
transforming the original problem into a set of ordinary differential equations, and
then the resulting system of ordinary differential equations are integrated in time
by the classical fourth order Runge–Kutta method. Spatial discretization is done
by using the Chebyshev spectral collocation method. The comparison between the
numerical solution and the exact solution for the test cases shows the good accuracy
of the present method.
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1. Introduction

Consider the two-dimensional Schrödinger equation

i
∂ψ

∂t
(x, y, t) =

∂2ψ

∂x2
(x, y, t) +

∂2ψ

∂y2
(x, y, t) + w(x, y)ψ(x, y, t), (1)

(x, y) ∈ Ω ⊂ R2, t ∈ [0, T ],

with initial condition

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω, (2)

and the boundary conditions

ψ(x, a, t) = ψ1(x, t), ψ(x, b, t) = ψ2(x, t), t ≥ 0, (3)
ψ(a, y, t) = ψ3(y, t), ψ(b, y, t) = ψ4(y, t), t ≥ 0, (4)

where Ω = [a, b] × [a, b], w(x, y) is an arbitrary potential function and i =
√−1.

This Schrödinger equation is of fundamental importance in quantum dynamical
calculations [1],[3] and has received a great deal attention recently because of its
usefulness and applicable by as a model that describe several important physical
and chemical phenomena. According to Dehghan and Shokri [12] the Schrödinger
equation appears in electromagnetic wave propagation [5] , in underwater acoustics
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[6] or also in optic [8] and design of certain optoelectronic devices [10] as it models
an electromagnetic wave equation in a two-dimensional weakly guiding structure.

This equation is of interest from the numerical point of view, because in gen-
eral, analytical solutions are not available. Dehghan and Shokri developed a numer-
ical scheme for (1) using collocation and radial basis functions [12]. A compact finite
difference method was used for solving (1) by Akbar and Dehghan [14] and mesh
less local boundary integral equation method was developed in [15]. Finite difference
schemes based on the second order discretization of spatial derivatives and first or
second order discretization of time derivatives have been investigated in [16], [17].

The numerical solution of the problems in ordinary differential equations is
a topic of research that has provided a challenge of lasting interest in numerical
analysis and resulted in a large number of methods, see e.g. [2], [4], [7]. The purpose
of this paper is to propose a method for solving the two-dimensional Schrödinger
equation based on the Chebyshev spectral collocation method. This choice has
an excellent reputation amongst numerical analysis practitioners is due to its high
accuracy and relatively low computational cost [9], [11], [13]. For this reason, the
numerical solutions of (1)-(4) by using a spectral collocation method should be highly
accurate as well. The paper is organized as follows: In Section 2 we propose the
Chebyshev spectral collocation method. The solution of the Schrödinger equation is
described in Section 3. Numerical results that illustrate the efficiency of the proposed
method are reported in Section 4. Section 5 contains concluding remarks.

2. Chebyshev Spectral Collocation Method

The Chebyshev spectral collocation method can be describe in the follow-
ing way. An approximation uN (x) to u(x) and vN (x) to v(x) are presented for some
collocation point xi. After setting uN (x) and vN (x) in the differential equation, we
have to use derivative(s) of these functions at the Chebyshev collocation points. The
Chebyshev spectral collocation method would involve the use of Chebyshev differen-
tiation matrices to compute derivatives at the collocation points. To obtain optimal
accuracy this matrix must be computed carefully. For details see [13], [18].

2.1. Chebyshev Polynomials

The Chebyshev polynomial of the first kind TN (x) is polynomial of degree
N defined for the interval [−1, 1] by

TN (x) = cos(ncos−1x), n = 0, 1, 2, ..., N.

The trigonometric relation cos(n+1)θ+cos(n−1)θ = 2cosθcosnθ gives the recurrence
relation

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0, n ≥ 1,

with T0(x) = 1 and T1(x) = x. The recurrence relation on the derivatives

T ′n+1(x)
n + 1

− T ′n−1(x)
n− 1

= 2Tn(x), n > 1.
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Let u(x) be functions on [−1, 1]. We interpolate u(x) by the polynomial uN (x) of
degree at most N of the form

uN (x) =
N∑

j=0

hj(x)u(xj), (5)

with uN (xj) = u(xj), and hj(x) is a polynomial of degree N defined by

hj(x) =
(−1)j+1(1− x2)T ′N (x)

cjN2(x− xj)
, j = 0, 1, 2, ...N, (6)

where xj = cos(jπ/N) are Chebyshev-Gauss-Labatto (C-G-L) points and c0 = cN =
2 and cj = 1, hj(xk) = δjk, j, k = 0, 1, 2, ..., N (see [19]).

2.2. One-dimensional differentiation formulation

Consider one dimensional domain: a ≤ x ≤ b. The said domain is dis-
cretized using the C-G-L points defined as

xi =
b− a

2
cos

(
iπ

N

)
+

b + a

2
, i = 0, 1, ..., N,

The values of derivatives of
dkuN

dxk
and

dkvN

dxk
, with k = 1, 2, . . . , p at the C-G-L

points can be computed by [19]

d̂uN

dx
= D(1)ûN = DûN ,

d̂vN

dx
= D(1)v̂N = Dv̂N , (7)

d̂2uN

dx2
= D(2)ûN = D2ûN ,

d̂2vN

dx2
= D(2)v̂N = D2v̂N , (8)

................................................................................

d̂puN

dxp
= D(p)ûN = DpûN ,

d̂pvN

dxp
= D(p)v̂N = Dpv̂N , (9)

where ·̂ labels vector, e.g., ûN = (uN (x0), uN (x1), ..., uN (xN ))T ,
v̂N = (vN (x0), vN (x1), ..., vN (xN ))T and D(.) are the differentiation matrices. The
first order Chebyshev differentiation matrix D(1) = D = dkj is given by [19]:

dkj =





ck
cj

(−1)j+k

xk−xj
, j 6= k, j, k = 1, ..., N − 1,

−xk

2(1−x2
k)

, k = 1, ..., N − 1,
2N2+1

6 , k = j = 0,
−2N2+1

6 , k = j = N ,

where ck =
{

2, k = 0, N ,
1, otherwise.

(10)
In order to minimize the round off errors for the calculation of first derivatives,

the correction technique of Bayliss et al. [20] can be used to compute the diagonal
entries Dii by

Dii = −
N∑

j=0
j 6=i

Dij . (11)
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The use of (11) can lead to a significantly improved accuracy in the computation of
second or higher derivatives for a wide range of functions.

To calculate the second order differentiation matrix D2, we first calculate a
provisional differentiation matrix D̃2 as the square product of the matrix D defined
in (10) and (11) and then repeat the application of the correction technique of Bayliss
et al. [20].

2.3. Two-dimensional differentiation formulation

Consider two-dimensional domain, a ≤ x, y ≤ b. Let Nx and Ny be
nonnegative integers. The C-G-L points in the x- and y-directions are defined as
follows

xi =
b− a

2
cos

(
iπ

Nx

)
+

b + a

2
, i = 0, 1, ..., Nx,

yj =
b− a

2
cos

(
jπ

Ny

)
+

b + a

2
, j = 0, 1, ..., Ny.

The Chebyshev differentiation over 2D grids can be found using the tensor product
theory [13]. The derivatives with respect to x at the grid points can be computed
by

∂̂uN

∂x
= (D(1)

x ⊗ I)ûN ,
∂̂2uN

∂x2
= (D(2)

x ⊗ I)ûN , (12)

∂̂vN

∂x
= (D(1)

x ⊗ I)v̂N ,
∂̂2vN

∂x2
= (D(2)

x ⊗ I)v̂N , (13)

where D
(.)
x are the differentiation matrices of dimension (Nx +1)×(Ny +1) obtained

from one dimensional case, I is the identity matrix of dimension (Nx− 1)× (Ny− 1)
and ⊗ denotes the kronecker tensor product. By applying the boundary conditions
of horizontal lines, equations (12)-(13) can be written as

∂̂uN

∂x
= (D̃(1)

x )ûN + k̂(1x)
uN

,
∂̂2uN

∂x2
= (D̃(2)

x )ûN + k̂(2x)
uN

, (14)

∂̂vN

∂x
= (D̃(1)

x )v̂N + k̂(1x)
vN

,
∂̂2vN

∂x2
= (D̃(2)

x )v̂N + k̂(2x)
vN

, (15)

where D̃(.) are known matrices and k̂
(x)
uN , k̂

(x)
vN are known vectors. For the homogenous

boundary conditions (14)-(15) can be reduced to

∂̂uN

∂x
= (D̃(1)

x )ûN ,
∂̂2uN

∂x2
= (D̃(2)

x )ûN , (16)

∂̂vN

∂x
= (D̃(1)

x )v̂N ,
∂̂2vN

∂x2
= (D̃(2)

x )v̂N . (17)
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Similarly in vertical block, the values of relevant derivatives with respect to y at the
grid points can be computed as

∂̂uN

∂y
= (D̃(1)

y )ûN + k̂(1y)
uN

,
∂̂2uN

∂y2
= (D̃(2)

y )ûN + k̂(2y)
uN

, (18)

∂̂vN

∂y
= (D̃(1)

y )v̂N + k̂(1y)
vN

,
∂̂2vN

∂y2
= (D̃(2)

y )v̂N + k̂(2y)
vN

, (19)

where k̂
(y)
uN , and k̂

(y)
vN are the boundary conditions along vertical lines.

3. Solution of the two-dimensional Schrödinger equation

In this section, we now apply the Chebyshev spectral collocation method
to the two-dimensional Schrödinger equation (1)-(4). Let

ψ(x, y, t) = uN (x, y, t) + ivN (x, y, t),

The system of equations (1)-(2) converts to the following system of partial differential
equations

∂uN

∂t
(x, y, t) +

∂2vN

∂x2
(x, y, t) +

∂2vN

∂y2
(x, y, t) + w(x, y)vN (x, y, t) = 0, (20)

∂vN

∂t
(x, y, t)− ∂2uN

∂x2
(x, y, t)− ∂2uN

∂y2
(x, y, t) + w(x, y)uN (x, y, t) = 0, (21)

with the following initial conditions

uN (x, y, 0) = Re(ψ(x, y, 0)), vN (x, y, 0) = Im(ψ(x, y, 0)), (22)

and the following boundary conditions

uN (x, a, t) = Re(ψ1(x, t)), uN (x, b, t) = Re(ψ2(x, t)), (23)

vN (x, a, t) = Im(ψ1(x, t)), vN (x, b, t) = Im(ψ2(x, t)), (24)

uN (a, y, t) = Re(ψ3(y, t)), uN (b, y, t) = Re(ψ4(y, t)), (25)

vN (a, y, t) = Im(ψ3(y, t)), vN (b, y, t) = Im(ψ4(y, t)), (26)

where Re and Im denotes the real part and imaginary part respectively. The ap-
proximate solution is found in the polynomial uN (x, y, t) and vN (x, y, t) of degree
at at most Nx and Ny in the x- and y-directions respectively. We Substitute (14)-
(15) and (18)-(19) into (20)-(21) and take into account the boundary conditions
(23)-(26). The resulting equations are collected at the (Nx − 3)× (Ny − 3) interior
points (xi, yj), i = 2, 3, . . . Nx − 2, j = 2, 3, . . . Ny − 2. Along the two horizontal
lines there are four boundary points for the variables v, and along the two vertical
lines four boundary conditions are imposed for the variable u. This leads to a set of
(Nx + 1)× (Ny + 1) equations in (Nx + 1)× (Ny + 1) unknowns.

du

dt
(xi, yj , t) + (D̃(2)

x )v̂N + (D̃(2)
y )v̂N + w(xi, yj)v(xi, yj , t)

+k̂(2x)
va

+ k̂(2x)
vb

+ k̂(2y)
va

+ k̂(2y)
vb

= 0,

i = 0, . . . , Nx, j = 0, . . . , Ny,

(27)
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dv

dt
(xi, yj , t)− (D̃(2)

x )ûN − (D̃(2)
y )ûN + w(xi, yj)vN (xi, yj , t)

−k̂(2x)
ua

− k̂(2x)
ub

− k̂(2y)
ua

− k̂(2y)
ub

= 0,

i = 0, . . . , Nx, j = 0, . . . , Ny.

(28)

with the following initial conditions

uN (xi, yj , 0) = Re(ψ(xi, yj , 0)), vN (xi, yj , 0) = Im(ψ(xi, yj , 0)), (29)
i = 0, . . . , Nx, j = 0, . . . , Ny.

Equations (27)-(28) form a system of ordinary differential equations (ODE) in time
with initial conditions (29). Therefore to advance the solution in time, we use an
ODE solver such as the classical Runge-Kutta method of order four for two variables.

4. Numerical Results

In this section, we present some numerical results of our scheme (27)-(28)
for the the two-dimensional Schrödinger equation. All computations were carried out
in Matlab 6.5 on a personal computer. For describing the error, we define maximum
error for u as follows:

‖E(u)‖∞ = max
0≤i,j≤N

|u(xi, yjt)− uN (xi, yj , t)|,

where uN (xi, yj , t) is the solution of numerical scheme (27)-(28), whereas u(xi, yj , t)
is the real part of exact solution of (1)–(4). Similarly we can define the maximum
error for the variable v.

Problem (a): To examine the performance of the Chebyshev spectral colloca-
tion method for solving a two-dimensional Schrödinger equation, we set the region
0 ≤ x, y ≤ 1 with potential function

w(x, y) = 3− 2tanh2(x)− 2tanh2(y). (30)

The exact solution of the equation is given in [14]:

ψ(x, y, t) =
iexp(it)

cosh(x)cosh(y)
, (31)

The initial conditions can be found from the exact solution as

ψ(x, y, 0) =
i

cosh(x)cosh(y)
, (32)

and the boundary conditions are

ψ(x, 0, t) =
iexp(it)
cosh(x)

, ψ(x, 1, t) =
iexp(it)

cosh(x)cosh(1)
, (33)

ψ(0, y, t) =
iexp(it)
cosh(y)

, ψ(1, y, t) =
iexp(it)

cosh(1)cosh(y)
. (34)

Table 1 presents the maximum absolute error for the real part u and imaginary
part v of the equation (1) of the present method at various time levels t. The
time levels were chosen to compare the results of our Chebyshev spectral collocation
method with those reported in Dehghan and Shokri [12] using multi-quadratic radial
basis functions. We set the parameters Nx = 16, Ny = 16, and 4t = 0.001. We
conclude that the present method provides better results than the results obtained
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from Dehghan and Shokri [12]. Hence our method is efficient and reliable. Numerical
solutions of the real part and imaginary part at time level t = 1 are displayed in
Figure 1.

Table 1: Maximum error for real part and imaginary part in Problem (a)

Present Method Dehghan [12]

Time Real part Imaginary part Real part Imaginary part

0.1 3.5518×10−6 3.0085×10−6 2.4407×10−5 2.9974×10−5

0.3 3.0577×10−6 3.4972×10−6 2.9466×10−5 2.3861×10−5

0.5 3.8579×10−6 4.5155×10−6 2.7468×10−5 3.4044×10−5

0.7 3.6506×10−6 2.9705×10−6 2.5495×10−5 1.8694×10−5

1.0 3.0555×10−6 3.5333×10−6 2.9444×10−5 2.4222×10−5
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Figure 1. The graph of real and imaginary part of numerical and
exact solutions at t = 1

Problem (b): We consider the equation (1)–(4) with the region 0 ≤ x, y ≤ 1
and potential function

w(x, y) = 1− 2
x2
− 2

y2
, (35)

with the initial conditions
ψ(x, y, 0) = x2y2, (36)

and the boundary conditions are

ψ(x, 0, t) = 0, ψ(x, 1, t) = x2exp(it), (37)
ψ(0, y, t) = 0, ψ(1, y, t) = y2exp(it). (38)

The exact solution of the equation is given in [16]:

ψ(x, y, t) = x2y2exp(it). (39)

In Table 2, we present a comparison of the numerical solutions of this problem
using Chebyshev spectral collocation method (present method) and those obtained
by collocation and multi-quadratic radial basis functions method taken from De-
hghan and Shokri [12]. In Table 2, we list maximum error for various values of
t, and set Nx = 16, Ny = 16, 4t = 0.001. As can be seen from Table 2, the
present method is considerably more accurate than the Dehghan and Shokri [12].
The graphs of the real part and imaginary part of the numerical and exact solutions
at time t = 1 are given in Figure 2.
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Table 2: Maximum error for real part and imaginary part in Problem (b)

Present Method Dehghan [12]

Time Real part Imaginary part Real part Imaginary part

0.1 5.1521×10−5 4.6833×10−5 4.0410×10−4 3.5722×10−4

0.3 6.2302×10−5 4.1610×10−5 5.1291×10−4 8.0509×10−4

0.5 5.7407×10−5 4.0631×10−5 4.6396×10−4 3.9520×10−4

0.7 4.9000×10−5 5.2757×10−5 3.8999×10−4 4.1646×10−4

1.0 4.8310×10−5 5.2378×10−5 3.7209×10−4 4.1267×10−4
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Figure 2. The graph of real and imaginary part of numerical and
exact solutions at t = 1

Problem (c): We consider the equation (1)–(4) with the region −2.5 ≤ x, y ≤
2.5 and potential function

w(x, y) = 0, (40)
with the initial conditions

ψ(x, y, 0) = e−(x2+y2)−ik0x, (41)

and the boundary conditions are

ψ(x, 0, t) =
i

i− 4t
e−i(x2+ik0x+ik2

0t)/(i−4t), ψ(x, 1, t) =
i

i− 4t
e−i(x2+1+ik0x+ik2

0t)/(i−4t),

ψ(0, y, t) =
i

i− 4t
e−i(y2+ik2

0t)/(i−4t), ψ(1, y, t) =
i

i− 4t
e−i(1+y2+ik0+ik2

0t)/(i−4t).

The exact solution of the equation is given in [12]:

ψ(x, y, t) =
i

i− 4t
e−i(x2+y2+ik0x+ik2

0t)/(i−4t). (42)

In this problem, numerical results are obtained using Nx = 32, Ny = 32, 4t =
0.001. Table 3 presents the numerical and exact solutions of some selected points of
t and Table 3 reports the maximum absolute error for the real and imaginary parts
of the solution. As can be seen from the table, the numerical results are in good
agreement with the exact solution. According to the results presented in Table 3, we
can say the present method provides better results than the results obtained from
Dehghan and Shokri [12] using multi-quadratic radial basis functions. In Figure 3
we can see that the contour graph of the numerical solution is moving along the
negative y direction with the progress of time.
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Table 3: Maximum error for real part and imaginary part in Problem (c)

Present Method Dehghan [12]

Time Real part Imaginary part Real part Imaginary part

0.10 1.6924×10−4 2.4816×10−4 9.5813×10−5 1.3705×10−4

0.25 4.1169×10−4 3.8990×10−4 3.0058×10−3 2.7889×10−3

0.50 4.7014×10−4 4.7181×10−4 3.6903×10−3 3.6072×10−3

0.75 5.8125×10−4 5.4532×10−4 3.6905×10−3 4.3421×10−3
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Numerical solution at t=0.50

−2.5 −1 0 1 2.5
−2.5

−1

0

1

2.5

x

y

Numerical solution at t=0.75
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−1

0

1

2.5

Figure 3. The graph of the modulus of the numerical solution at
t = 0.1, 0.25, 0.5, 0.75

5. Conclusion

A numerical method based on Chebyshev spectral collocation is pro-
posed for solving the two-dimensional Schrödinger equation. To check the numerical
method, it is applied to solve different test problems from [12] with known exact
solutions. The numerical solutions agree well with the exact ones. The numerical
results confirm the validity of the numerical method and suggest that it is an inter-
esting, viable and reasonable alternative to existing numerical methods for solving
the two-dimensional Schrödinger equation problems under consideration.
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