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A GENERALIZATION OF A CLASSICAL MONTE CARLO 
ALGORITHM TO ESTIMATE  π 

S.C. ŞTEFĂNESCU∗ 

Algoritmul Monte Carlo clasic A1 estimeazează valoarea numărului π  
bazându-se pe faptul ca raportul dintre aria unui cerc oarecare C şi aria pătratului 
D  circumscris cercului este egal cu  π / 4 . 

Prezentul articol extinde procedura de simulare stocastica A1 introducând 
parametrii suplimentari  λ , a , b. Noul algoritm propus  A2(λ,a,b)  ne conduce la 
varianta clasică pentru  λ = 0   sau  a.b = 0 .  

Variabila aleatoare Wλ,a,b  ce caracterizează valorile  w  generate de 
algoritmul  A2(λ,a,b)  constituie un estimator nedeplasat al numărului  π .  

În lucrare sunt determinate şi valorile optime  λ* , a* , b*  astfel încât variabila 
aleatoare  Wλ∗,a∗,b∗  sa aibă cea mai mică dispersie.  

Comparat cu A1 , precizia estimaţiilor furnizate de algoritmul  A2(λ* ,a* ,b*)  
creşte de aproximativ  γ* = 1.38  ori.       

Rezultatele teoretice obţinute au fost confirmate practic prin simulare 
stocastică pe calculator. 
 

It is very known that the ratio between the area of any circle C  and the 
corresponding area of the circumscribed square domain D  of C   is equal to  π /4. 
The classical algorithm A1 to estimate the number π  is based on this remark. 

In the present paper the standard procedure A1 is extended by considering the 
additional parameters  λ , a , b . Our suggested  A2(λ,a,b)  procedure implies the 
standard variant A1 when  λ = 0   or   a.b = 0 .   

The random variable Wλ,a,b  which characterize the outputs  w  of  A2(λ,a,b)  
algorithm is an unbiased estimator for  π .  

More, we determined the optimum values  λ* , a* , b*  such that the variance of 
the random variable  Wλ∗,a∗,b∗   to attain its minimum value.  

The proposed  A2(λ* ,a* ,b*)  algorithm is approximately  γ* = 1.38  times more 
accurate than the classical A1 Monte Carlo procedure. 

The theoretical results were confirmed experimentally by stochastic 
simulations on the computer.    
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Introduction 

In the literature there are presented many deterministic and also Monte 
Carlo algorithms for estimating the unknown value of π ( Devroye [2], Dodge [3], 
Sacuiu, Zorilescu [7] ). The classical probabilistic procedures which estimate the 
number π is based on a rejection type method ( Bradley, Fox, Schrage [1], 
Devroye [2], Gentle [4], Kleijnen [6] ).  

More precisely, we generate a string of n independent random points 
Pi(x,y) having an uniform distribution in the square domain  D = { (x,y)  |  0 ≤ x , 
y ≤ 1 }. Finally we reject all those points Pi which did not fall inside the circular 

domain C,   C = { (x,y)  |  x ≥ 0 ,  y ≥ 0 ,  x
2
 + y

2
 ≤ 1 }. Obviously  C ⊂ D .  

In this manner are retained only m independent random points Pi , with  m 
≤ n . All these selected points belong to the domain  C  and are also uniformly 
distributed on  C .    

For this reason the number m n/  could be considered a good 
approximation of the ratio  Area(C)/Area(D) , that is an appropriate estimation for 
the unknown quantity π /4 .    

So, the value of  π  should be estimated by the quantity  w m n= 4 / .  

The classical algorithm A1 determines an estimation  w  for the number  π. 
 
Algorithm  A1. ( The standard rejection procedure for  π  estimation )  

Step 0. Input : the number  n  of simulation steps.   
            m = 0    ;          j = 0       {  j = the current simulation step  } 
Step 1.  j = j + 1 
            Generate two independent random variates  x , y  having a uniform    
            U([ 0 , 1 ])  distribution            

Step 2.  ( the rejection procedure ).  If  x y2 2 1+ ≤   then   m m= + 1   
Step 3.  If   j n<   then  Goto Step 1 
Step 4.  w m n= 4 /     ;          Print   w    ;          STOP .  
 
 In the subsequent we'll generalize the standard algorithm A1 using 

additional parameters.  
 

 



A generalization of a classical Monte Carlo algorithm to estimate π 5

Main results 

1. A more general algorithm. 

Let  λ , a , b  be fixed real numbers with  a > 0  and  b > 0 . 
We'll define an extension A2 of A1 algorithm by considering the real 

numbers  λ , a , b  as additional parameters for A2.  

Algorithm  A2(λ , a , b). ( Extension of A1 procedure ) 
Step 0. Inputs : n  ( n = the number of simulation steps ) 
                        λ , a , b ( λ ∈ R ,  a > 0 ,  b > 0 , a b2 2 1+ ≤  )   
                        m = 0  ( n = the number of the points Pi which fall in the  
                                           domain C ) 
                         k = 0  ( n = the number of the points Pi belonging to   
                                          [0 , a] x [0 , b]  domain ) 
             j = 0       {  j = the current simulation step  } 
Step 1.  j = j + 1 
            Generate two independent random variates  x , y  having a  U([ 0 , 1 ])    
             uniform distribution            

Step 2.  ( the rejection procedure ).  If  x y2 2 1+ >   then   Goto Step 4    
             m m= + 1   
             If   ( ) &( )x a y b≤ ≤   then   k = k + 1  
Step 4.  If   j n<   then  Goto Step 1 
Step 5.  w m n k n ab= + −4 / /λ λ     ;          Print   w    ;          STOP . 

Particular cases :  
- Considering  λ = 0  in A2 algorithm we just obtain the classical A1 

procedure , A2(0,a,b) ≡ A1. 
- At the same conclusion we arrive if we take  ab = 0   for any  λ ∈ R  ( 

A2(λ,a,0) ≡ A2(λ,0,b) ≡ A1 ). 
In the following we'll try to prove that for any  λ ∈ R  and  a > 0 ,  b > 0  

with a b2 2 1+ ≤  the  w  value produced by A2(λ,a,b) algorithm is an unbiased 
estimation of  π .  

More, taking into consideration different variants of A2(λ,a,b) procedure 
which depend on the parameters λ , a , b we can choose the appropriate values  λ*, 
a* , b*  of these parameters such that the estimations  w  of  π  to attain a minimum 
dispersion.  
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2. Theoretical results. 

We define the functions  
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if x y x y
otherwise1

2 24 0 0 1
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⎪
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In the following we'll impose some restrictions for the unknown values of 
the parameters  a , b . So, we'll consider  

Hypothesis H1.  0 ≤ a , b ≤ 1 .  
Hypothesis H2.  a ≥ 0 ,  b ≥ 0  and  a b2 2 1+ ≤  .   
Definition 1. For any independent random variables ( r.v.-s ) X ,Y which 

have an uniform distribution on the interval  [0 , 1] , X~ U([0 , 1]), Y~ U([0 , 1]) , 
we define the r.v.  Wλ,a,b  given by the expression   

       ( )W h X Y h X Y aba bλ λ, , ( , ) ( , )= + −1 2                                            (3) 

Remark 1. Analyzing the algorithm A2(λ,a,b) we deduce that its output  
w  can be regarded as an observation from the r.v. Wλ,a,b . 

In the subsequent we intend to use the r.v.  Wλ,a,b  to study the statistical 
qualities of the estimations  w . More precisely  

Proposition 1. For any  λ ∈ R  and  a , b  respecting the restriction H1 , 
the r.v.  Wλ,a,b  is an unbiased estimation of  π , that is  

       Mean W a b( ), ,λ π=                                                                          (4) 
Proof.  The probability density function (p.d.f.)  f1(x,y)  of the random 

vector  (X,Y)  has the form 
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So, we get  
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Proposition 2. If the hypothesis H2 is satisfied then the variance 
Var W a b( ), ,λ  of the r.v.  Wλ,a,b  has the expression  

      Var W g a b ab ab aba b( ) ( , , ) ( ) ( ) ( ), ,λ λ λ π λ π π= = − + − + −1
21 2 4 4             (5) 

Proof.  Indeed, for any a ≥ 0,  b ≥ 0  with  a
2
 + b

2
 ≤ 1  we deduce 

successively  
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 Remark 2.  The function g a b1( , , )λ  defined by the formula (5) is 
symmetrical one in the arguments  a  and  b , that is g a b g b a1 1( , , ) ( , , )λ λ=  for 
any real values  a , b  which satisfy the restriction H2.    
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Remark 3.  The accuracy of A1 outputs is given by the variance of the r.v. 
W a b0, ,  that is  Var W a b( ) ( ) ., ,0 4 2 6968= − ≈π π  for any real numbers a, b  
respecting H2 hypothesis.  

Proposition 3. For given real numbers  a , b  which verify the restriction 
H2 , the minimum value of the variance Var W a b( ), ,λ  , regarded as a function of  
λ , is attained for  λ = λ1  where 

      λ
π

1
4

1
=

−
− ab

                                                                                     (6)   

and in addition 

    Var W g a b
ab

aba b( ) ( , ) ( ) ( ), ,λ π π π
1 2

2
1

4 4= = −
−

− + −                 (7) 

Proof.  We'll treat individually the situations a b. = 0  , respectively 
a b. ≠ 0 . 

Case 1. If  a b. = 0  then for any  λ ∈ R  we have  
    Var W g a b ab ab aba b( ) ( , , ) ( ) ( ) ( ) ( ), ,λ λ λ π λ π π π π= = − + − + − = −1

21 2 4 4 4  
and hence for  λ λ= 1   we conclude  

    Var W
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Case 2. Indeed, since a b. ≠ 0  we deduce that the polynomial function  
g a b1( , , )λ  has the degree two in the variable  λ  and more it takes its minimum 
when  

         λ λ
π π
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So, the minimum g2(a,b) of the function g1(λ,a,b) has the following 
expression 

      g a b g a b ab ab ab2 1 1 1
2

11 2 4 4( , ) ( , , ) ( ) ( ) ( )= = − + − + − =λ λ π λ π π   

                    = − −
−

−π π π( ) ( )4
1
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which finish the proposition proof. 
Proposition 4. Respecting the hypothesis H2, the minimum variance of 

the random variables Wλ,a,b is attained when the parameters  a , b , λ  take the 
values 

      a b* * /= = 1 2                  λ π* = −2 8                                            (8) 
and more  

       Var W a b( ) ( )( ) .
* * *, ,λ π π= − − ≈4 2 4 19599                                                   (9) 
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Proof.  Taking into consideration the results of Proposition 3 it remains to 
find those values  a* , b*  which minimize the function  g a b2 ( , )  given by (7).  

At the end we'll consider  λ π* * *( ) / ( )= − −4 1 a b .   
Case 1. When a b. = 0  then the constant function  g a b2 4( , ) ( )= −π π   

has obviously its minimum value equal to  π π( )4 − . 
Case 2. Now we'll find the minimum value of the function  g a b2 ( , )   for 

any  a > 0 ,  b > 0  which respect the inequality  a b2 2 1+ ≤  . 
First, we remark that the function  g t t t3 1( ) / ( )= −  ,  0 < t < 1 , is an 

increasing one. So, the minimum value for the expression g a b2 ( , )  given by (7) , 

      g a b
ab

ab
t

t2
2 24

1
4 4

1
4( , ) ( ) ( ) ( ) ( )= − −

−
− = − −

−
−π π π π π π  

is obtained when the variable  t ab=   takes its maximum value, respecting also 

the restrictions :  a b a b> > + ≤0 0 12 2, , .     

But the maximum value of  t a b2 2 2=  with a b2 2 1+ ≤  is attained for 

a b2 2 1 2= = /  , that is  a b* * /= = 1 2 . 
Having  a b* * /= = 1 2   we deduce  λ π π* * *( ) / ( )= − − = −4 1 2 8a b  .  
More    

Var W g a b a b
a ba b( ) ( , ) ( ) ( ) ( )( ) .

* * *, , * *
* *

* *
λ π π π π π= = − −

−
− = − − =2

24
1

4 4 2 4 19599        

 Analyzing both previous alternatives, since  ( )( ) ( )4 2 4 4− − < −π π π π   
we deduce the results mentioned by Proposition 4. 

3. A Monte Carlo study. 

 Figure 1 presents the graphic of the function g a a Var W a a2 1
( , ) ( ), ,= λ   

which has the form (7). We mention here that g a a2 ( , )  is a decreasing 
application. 
 Comparing with A1, the algorithm A2(λ1,a,b) is γ ( , )a b  times more 
accurate to estimate π. The coefficient γ ( , )a b  is just the ratio  

      γ
π π π

π πλ
( , )

( )
( )

( )
( , ) ( ) / ( )

, ,

, ,
a b

Var W
Var W g a b ab ab

a b

a b
= =

−
=

− − −
0

21

4
4 1

                  (10)  

 Obviously  γ γ( , ) ( , )a b b a= . 
 Table 1 lists the values of γ ( , )a a  when  0 1 2≤ ≤a / . 
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Figure 1. The graphic of the function  g2(a,a) .
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 Table 1 

The values of the coefficient  γ ( , )a a . 

a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
γ(a,a) 1.000 1.003 1.012 1.028 1.055 1.100 1.182 1.356 

 
 The maximum value γ* of the indicator γ ( , )a b  is attained for  a* /= 1 2  
and  b* /= 1 2  , that is  

      γ
π π

π π
π

πλ
*

, ,

, ,

( )

( )
( )

( )( )
.* *

* * *

= =
−

− −
=

−
=

Var W

Var W
a a

a a

0 4
2 4 4 2 4

1376                          (11) 

  Table 2 gives the optimum values λ1 computed with formula (6) for the 
parameter λ of  A2(λ,a,a)  algorithm ( the case a b=  ). 

Table 2 

The optimum value  λ1 ( formula (6), the case  a = b ). 

a = b 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
λ1 0.0000 -0.8687 -0.8958 -0.9450 -1.0238 -1.1467 -1.3438 -1.6863 



A generalization of a classical Monte Carlo algorithm to estimate π 11

 Running the algorithm  A2(λ1,a,a)  for  n=1000  we obtained the 
estimations  w  of  π , quantities which are listed in Table 3. This process was 
repeated  s = 20  times, the variable  s  counting the current simulated step.    
 

 Table 3 

The outputs  w  of  A2(λ1,a,a)  algorithm ( n=1000 ,  s=20  simulations ). 

s a = 0.0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5 a = 0.6 a = 0.7 
1 3.156 3.153 3.153 3.163 3.149 3.138 3.136 3.124 
2 3.052 3.054 3.052 3.053 3.054 3.051 3.076 3.064 
3 3.056 3.058 3.055 3.062 3.058 3.062 3.075 3.044 
4 3.148 3.150 3.147 3.151 3.138 3.155 3.169 3.188 
5 3.084 3.081 3.075 3.075 3.083 3.095 3.095 3.108 
6 3.144 3.143 3.139 3.133 3.141 3.151 3.140 3.142 
7 3.196 3.198 3.203 3.202 3.188 3.190 3.183 3.179 
8 3.200 3.196 3.199 3.191 3.195 3.193 3.208 3.192 
9 3.160 3.161 3.158 3.156 3.153 3.151 3.148 3.120 

10 3.184 3.187 3.180 3.178 3.179 3.163 3.164 3.165 
11 3.128 3.126 3.125 3.126 3.126 3.121 3.143 3.130 
12 3.184 3.186 3.184 3.177 3.166 3.167 3.149 3.122 
13 3.232 3.228 3.220 3.223 3.223 3.216 3.225 3.188 
14 3.104 3.102 3.098 3.099 3.098 3.095 3.088 3.082 
15 3.136 3.139 3.138 3.139 3.146 3.155 3.145 3.129 
16 3.072 3.069 3.079 3.082 3.070 3.058 3.077 3.084 
17 3.232 3.227 3.237 3.232 3.227 3.234 3.210 3.215 
18 3.204 3.203 3.198 3.197 3.192 3.176 3.162 3.155 
19 3.008 3.009 3.012 3.012 3.023 3.034 3.050 3.050 
20 3.088 3.089 3.088 3.087 3.099 3.106 3.107 3.122 

 
 Taking into consideration the outputs  wk ,  1 ≤ k ≤ s , produced after  s  
independent runs of  A2(λ1,a,a)  procedure we are also computed the mean μ and 
the dispersion σ2 of these experimental results, where   

         μ =
+ + + +w w w w

s
s1 2 3 ...

  

      σ
μ μ μ μ2 1

2
2

2
3

2 2
=

− + − + − + + −( ) ( ) ( ) ... ( )w w w w
s

s                        (12) 

 The values of μ and σ
2 indicators obtained for different values for the 

input parameter a of  A2(λ1,a,a)  estimation procedure are presented in Table 4.  
 The experimental data confirm the theoretical results. More precisely, the 
dispersion  σ2 decreases when the values of the parameter  a  increase ( compare 
Figure 1 with Table 4 ).  

 Table 4 
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The mean  μ  and the variance  σ2  for the outputs  w  of  A2(λ1,a,a) 
algorithm considering  s=20  simulation runs ( n=1000 ). 

 a = 0.0 a = 0.1 a = 0.2 a = 0.3 a = 0.4 a = 0.5 a = 0.6 a = 0.7 
μ 3.138 3.138 3.137 3.137 3.135 3.136 3.138 3.130 

σ
2
 0.00382 0.00374 0.00373 0.00355 0.00321 0.00302 0.00234 0.00228 

Concluding remarks 

Imagining new parameters to the classical A1 estimation algorithm we 
obtained the extended procedure A2(λ,a,b). The procedure A1 is deduced from 
A2(λ,a,b) as a particular case, that is by considering λ = 0  or ab = 0  ( A2(0,a,b) 
≡  ≡ A2(λ,a,0) ≡ A2(λ,0,b) ≡ A1 ). 

A theoretical proof ( Proposition 1 ) confirms the good properties of  w  
outputs produced by  A2(λ,a,b) procedure to evaluate the unknown value of  π ( 
the random variable W a bλ , ,  is an unbiased estimator for π ). The dispersion of the 
estimator W a bλ , ,  is also computed ( see Proposition 2 ). 

More, we determined the optimum values  λ* , a* , b*  for the parameters 
of  A2(λ,a,b) generalized algorithm such that the outputs  w  to have a minimum 
dispersion ( Proposition 4 ). 

A Monte Carlo computer simulation confirmed the theoretical results ( see 
Table 4 ).  

In conclusion, the suggested  A2(λ*,a*,b*)  algorithm is approximately  γ* 
= 1.376  times more accurate than the standard A1 Monte Carlo procedure. 
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