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ADJOINT VARIABLES SOLVING
TRAIN CONTROL PROBLEM

Gabriel POPA!, Constantin UDRISTE?, Ionel TEVY?

This article deals with optimizing the energy consumption of vehicles traction
guided by rail such as: electric trains (including subway electric units), railcars,
locomotives, and trams. The proposed optimization strategy considers the
compliance time drive and aims at improving the transport system for given
operation conditions. Our aim has four targets: (1) improving the optimal control
techniques, (2) establish a strategy for the operating conditions of the vehicle; (3)
formulate and solve additional problems of optimal movement; (4) improving
automatic systems for vehicle traction to optimize energy consumption.

Keywords: optimal control involving ODEs, train optimal control, adjoint
variables, speed profile.

1. Main requirements for safe railways system

For the rail transport (here we refer to all transport systems guided by rail)
to be a viable alternative for travellers, it must meet certain conditions such as:
low transport time, low cost, comfort, safety, accessibility, fast links etc.
Perception of transport quality depends on several factors that contribute to an
efficient transport both for freight transport and passenger transport. The
technology enables the realization of high-performance rail vehicles. The
difference between transport operators will be determined by reducing operating
costs and maintenance costs. An important part of these costs are the costs for
energy consumption of the vehicles. Reducing these costs is a priority target for
all railway companies. It is known that between energy consumption, traffic speed
and drive time there is a relationship of interdependence. It remains an open
competition to optimize energy consumption in relation to the required time drive.
The energy supplied to the vehicle traction as electric power or mechanical power
(supplied by diesel engine) is used to drive the train. Energy balance shows that
part of energy is consumed by resistances to advance (determined by the

! Prof., Department of Railway Vehicles, University POLITEHNICA of Bucharest,
Romania, e-mail: gabi21popa@yahoo.com

2 Prof., Department of Mathematics and Informatics, University POLITEHNICA of
Bucharest, Romania, e-mail: constantin.udriste@upb.ro

3 Prof., Department of Mathematics and Informatics, University POLITEHNICA of
Bucharest, Romania, e-mail: vascatevy@yahoo.fr



154 Gabriel Popa, Constantin Udriste, Tonel Tevy

circulation on the railways profile) and the brake system. Remaining energy is
found in the kinetic and potential energy. It is known that the energy consumption
depends on drive regimes selected and of their sequence. It is confirmed that the
optimal driving strategy for a train takes the form of a power-speed hold-coast-
brake strategy unless the track contains steep grades.

The data used in the study of train control: 7 is the time allowed for the
journey, x is the distance between two stations, u(¢) is the accelerations applied to
the train, v(¢) is the speed of the train, and — r(1(¢)) is the resistive acceleration due
to the friction. The movement of the train is governed by the Newton law

X)) =u®) —r@®), (D

where 7(v), v € [0,00) is strictly increasing and convex function and the
acceleration u(#) (control variable) is limited by the relation |u(f)| < 1. The theory
of energy consumption involves also the positive part of u(¢), defined by

e (1) =5 (u(®) + lu(®)). )
The increasing and convex function r(v) is exemplified by the trinomial
r(v) = a+ bv + cv?, v € [0,x), 3)

where the coefficients a > 0, b > 0, ¢ > 0 are known numbers usually given by rolling
stock manufacturers.

2. Train control problem

The problem of finding the best way to drive to the next destination can be
formulated as an optimal control problem (local energy minimization principle).
That is, our aim is to find the sequence of control settings that will get the train to
the next destination on time, and with minimal energy consumption.

Newton's law determines the movement equation of the train. In the
following problem, x and v are state variables and u is the control variable.

Mathematical assumptions (1) U = L*([0,7]) is the set of measurable and
bounded functions on the interval [0,7], endowed with the norm

lullo = suplu(®)l, t € [0,T]. (4)

The normed space U is called the space of controls;
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(i) ¥V = C*'([0,7]) is the set of piecewise C! functions on the interval [0,
T, endowed with the norm

vl = lvlle + 191l )

The set /= Ux V is called the feasible set. A feasible pair (v,v) € F=U
x V must satisfies |jul]|» < 1 and v(0) = w(T) = 0.

Isoperimetric Train Problem Minimize the mechanical energy
consumption

J) = [} uy(Ov(t)dt

(6)
subject to
(1) the ODE constraints
x(t) = v(®), v(t) = u(t) —r@w(®)), v(0) = v(T) =0, (7

(i1) the isoperimetric constraint

[J v(t)dt = x(T) = X, (8)
(ii1) the control inequality constraint

lu@®)l < 1. 9)

We shall look to apply the Pontryagin maximum principle. For that we use
a new objective functional

1)) = [, (~us (O(L) + pyv())de
(10)

and the Hamiltonian
H(u,v) = —u,v+pv+p, (u - r(v)), (11)
where p; = ct. and p, = p, (¢) are the Lagrange multipliers.

The Hamiltonian can be rewritten as a piecewise function of degree at
most one with respect to u, namely
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pou+pv—pr(v), for —1<u<0

HOW =1 0, = 1) + pov — ppr(v), for 0 <u <1

(12)

Control. If the Hamiltonian is linear in the control variables and the
control variables have simple bounds, then the optimal control is a combination of
bang- bang control and singular arcs.

The Hamiltonian is piecewise linear (function of degree at most one) in the
control u, the control variable have simple bounds, and the switching functions are
p2(t) and p,(t) — (), respectively. Therefore the optimal control is a
combination of bang-bang control and singular arcs. The optimal control u"(¢) is
discontinuous: it jumps from a minimum to a maximum and viceversa in response
to each change in the sign of switching function.

(1) The optimal control as determined by the switching function p,(t) is
0, for p,(t) > 0, bang-bang control

u*(t) = [—1, for p,(t) < 0, bang-bang control (13)
undetermined, for p,(t) = 0.

A switching time is a solution of the equation p,(t) = 0. The most
interesting case is those of finite number of switching times.

(ii) The optimal control as determined by the switching function p,(t)—
v(?) is

1, for p,(t) > v(t), bang-bang control
u*(t) = |0, for p,(t) < v(t), bang-bang control (14)
undetermined, for p,(t) = v(t).

A switching time is a solution of the equation p,(t) = v(f). The most
interesting case is those of finite number of switching times.

State variables. The state ODE is
v(t) = —(cv?(t) + bv(t) + a—u*), v(t) = 0,v(0) =v(T) =0. (15)

Ifa—u*>0and 4 =b?—4c(a—u*) <0, then ? <0 and v is a decreasing
function of 7.
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Ifa—u <0,and 4 = b% — 4c(a —u*) > 0, i.e., in our conditions " = 1 and 0
<a <1, the algebraic equation v = 0 has two real roots o <0 <. Then v 1is an
increasing function of # while v € [0, 8) and v is a decreasing function of ¢ for v >
B.

%
For u =1 we have

dv
cv2+bv+a—1 —dt (16)
and one obtains
_ 1 Bwv-a)
=1 InC |a(v_m , >0, (17)

where 4, = b? — 4c(a — 1). The condition v(0) = 0 gives us

- L -0
t=—=in 203 (18)
Remark In this case v = 3 is a limit speed, and v 7 f implies t — oo.
Analogously, we obtain ¢ = #(v) in the cases ¥ = 0 and u* = - 1, without
restriction on v > 0.
Finally,
x(t) = fot v(t)dr. (19)
Adjoint variable. The adjoint ODE
. SH
po(t) = -0 (20)
) . 8
becomes pz(t) = wi(t) = p1 + p2 5, (6). 1)
Because
dpz_dpzdv__% 2 g
?_Eﬁ_ dv (C’U +bv+a u), (22)
it follows the linear ODE
dp2 _ 2cv+b _ uy-pq
dv | cvlt+bvia—ut P2 (23)

cv2+bv+a-u*’
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with general solution

(p1—uf|-)”+cz (24)

cv2+bv+a—-u*’

p.(v) =
3. Speed profile solving energy - efficient train movement

The book [9] suggested that an energy-efficient speed profile should
contain at least three or four phases coupled by continuity: (i) maximum
acceleration, coast, and maximum brake; (ii) maximum acceleration, hold speed,
coast and maximum brake. All the experiments confirmed that these strategies are
indeed efficient.

Accelerate-brake strategy. The feasible set F is non-empty. Indeed, the
initial condition problem

v(t) =1 — 1), v(0) =0 (25)
has a unique solution v, (¢t), t > 0, and the final condition problem
v(t) = —1 - r@(®), v(T) = 0 (26)

has a unique solution v,(t), t <T. Further there exists a unique point t = Ty,
where v, (T;) = v,(T,) (the two phases are joined by continuity).

Theorem 1. The pair of functions (u(t),v(t)), where

[ 1, fort € (0,Ty)
u(® = [—1, fort € (Ty,T) (27)
and, continuous one,
_ [va(2), fort € (0,T;)
v(®) = [vz (t), fort € (T, T) (28)

satisfies the foregoing conditions and represents an accelerate — brake strategy.

Proof. Phase 1: maximum acceleration. The initial condition v(0) = 0
implies increasing speed. This is possible for a € (0,1) only. We must take u* =
1 and p,(0) > 0. Noting a — 1 = —m?, we find 0 > C, = —kZ. So, we have

_ 1 -
£ == in 220 (29)
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(p1—Dv-kF (30)

cv2+bv—m?2’

and p,(v) =

Phase 2: maximum brake. The final condition w(7) = 0 implies
decreasing speed. We must take u* = -1 and p, (7) < 0. So, supposing

A_; =b%?—4c(a+1) <0, (31)

wehave T —t = arctan 22t (32)
—-A_q bv+2a
_ P1”—k%

and [ (U) T cv2+bvta+l’ (33)

Switch time. The equation

1 B(v—a) 2 vy —A_1 _

T In o + 7 arctan—bv+2a =T (34)

has a unique solution v, € (0, ). This v; is the speed at which the swich breaks in
and there results the corresponding time T; € (0, T), necessarily.
The constants p1, k%, k7 will be determinate by the conditions

(p1-1V)v,—k?
evitbo,ome = V1 Piv1— ki = 0. 35)

p1 =1

Unfortunately, this strategy does not fulfil the isoperimetric condition
since the speed v does not depend on p; and k,. Taking into account the above
equation, the values vi, T'and X are connected also by the relation (supplementary
condition):

(a—1)(cv2+bv,+a+1)

bT +2cX =In (a+1)(cv2+bvi+a-1)

(36)

We have the next alternative. Either we give the space X and calculate the
time 7, in which the space is covered, or vice-versa.

Accelerate-coast-brake strategy. Let us look for more feasible pairs.

With the results in the above case, for a certain T, € [0,T,], find the unique solution
v3(t),t = T, of the problem

v(t) = —r(w(t)), v(Tz) = v1(T7) (37)
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In the condition v;(t) =0, there exists a unique point T; € [T;,T] with
v3(T3) = v,(T5).

Theorem 2. The pair of functions (u(t),v(t)), where

1, fort € (0,T,)
u(t) =10, fort € [T,, T3] (38)
—1, fort € (T3, T)

and, continuous one,

v;1(t), fort € (0,T,)
v(t) = |v3(t), fort € (T3, T3) (39)
v,(t), fort € (T5,T)

represents an accelerate — coast - brake strategy.
Proof. The optimal control " = 1 runs while p,(v) > v. Let us fix, in the

previous considerations, k# such that p,(v,) > v,. This is the first positive solution
of the equation

v(cv? + bv —m?) = (p, — Vv — k2. (40)
_ 1 Bwy—a)
Then T, = N In v (41)

This is the first switch time.

Phase 1: maximum acceleration runs as in the previous case until ¢ = 7>.
Note that both v, and 7> depend upon p, and k?.

Phase 2: coast. We take

W =0, v=—(cv?+bv +a), v(Ty) = vy, pp(v) =252 (42)

cv2+bv+a

In this situation the condition p,(v,) = v, , 1.e.,

e (43)

> =
cvy+bvy+a
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From the relation (33) we find ¢, = —k# and the inequality p,(v) < v holds
on the interval (k?/p,,v,) at least. Then 73 corresponding to v, = k#/p, will be the
second switch time.

Phase 3: maximum brake. For ¢ > T;, we take u” = -1 and p,(¢t) < 0. The
evolution ODE is

v=—(cvi +bv,+a+1), v(T;) = v, (44)
W)—k3
and  p,(v) = CU;:UT‘L, where k3 > k.

Finally, the constants p;, k?, k7 will be determined by the conditions
pr 21, v(T) =0, [ v(t)dt = x(T) = X. (45)

4. Conclusions

Circumstances which make train control a pressing problem at the present
time are very well known. However, automatic control cannot be done without
knowledge of the mathematical theory of optimal control. That is why, in our
paper we clarify the idea of cost functional, ODE constraints, isoperimetric
constraint, and Pontryagin maximum principle for a train control problem in terms
of adjoint variables (see, [1 - 2], [6 - 17]).

This paper is addressed to mathematicians wanting to know more about
mathematical issues associated with concrete applications. The topics include
modern approaches of geometric control and other mathematical notions that have
gave significant enhancements in classical train problems. The experts of
nonlinear control learn about applications of this discipline to nontrivial examples
in transport problems.

Our aim is to review and detail the optimal control theory of train
movement compared with the presentations in the papers [1, 2], [6 - 17],
continuing the paper [12]. The papers [3 — 5] and [14] can be used to study
stochastic perturbation of previous problem.
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