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ADJOINT VARIABLES SOLVING                                                   
TRAIN CONTROL PROBLEM 

Gabriel POPA1, Constantin UDRIŞTE2, Ionel ŢEVY3 

This article deals with optimizing the energy consumption of vehicles traction 
guided by rail such as: electric trains (including subway electric units), railcars, 
locomotives, and trams. The proposed optimization strategy considers the 
compliance time drive and aims at improving the transport system for given 
operation conditions. Our aim has four targets: (1) improving the optimal control 
techniques; (2) establish a strategy for the operating conditions of the vehicle; (3) 
formulate and solve additional problems of optimal movement; (4) improving 
automatic systems for vehicle traction to optimize energy consumption. 

Keywords: optimal control involving ODEs, train optimal control, adjoint 
variables, speed profile. 

1. Main requirements for safe railways system 

For the rail transport (here we refer to all transport systems guided by rail) 
to be a viable alternative for travellers, it must meet certain conditions such as: 
low transport time, low cost, comfort, safety, accessibility, fast links etc. 
Perception of transport quality depends on several factors that contribute to an 
efficient transport both for freight transport and passenger transport. The 
technology enables the realization of high-performance rail vehicles. The 
difference between transport operators will be determined by reducing operating 
costs and maintenance costs. An important part of these costs are the costs for 
energy consumption of the vehicles. Reducing these costs is a priority target for 
all railway companies. It is known that between energy consumption, traffic speed 
and drive time there is a relationship of interdependence. It remains an open 
competition to optimize energy consumption in relation to the required time drive. 
The energy supplied to the vehicle traction as electric power or mechanical power 
(supplied by diesel engine) is used to drive the train. Energy balance shows that 
part of energy is consumed by resistances to advance (determined by the 
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circulation on the railways profile) and the brake system. Remaining energy is 
found in the kinetic and potential energy. It is known that the energy consumption 
depends on drive regimes selected and of their sequence. It is confirmed that the 
optimal driving strategy for a train takes the form of a power-speed hold-coast-
brake strategy unless the track contains steep grades. 

The data used in the study of train control: T is the time allowed for the 
journey, x is the distance between two stations, u(t) is the accelerations applied to 
the train, v(t) is the speed of the train, and − r(v(t)) is the resistive acceleration due 
to the friction. The movement of the train is governed by the Newton law  

 
𝑥̈𝑥(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) − 𝑟𝑟(𝑣𝑣(𝑡𝑡)),                                                                                 (1) 
 

where r(v), v ∈ [0,∞) is strictly increasing and convex function and the 
acceleration u(t) (control variable) is limited by the relation |u(t)| ≤  1. The theory 
of energy consumption involves also the positive part of u(t), defined by 

 
𝑢𝑢+(𝑡𝑡) = 1

2
(𝑢𝑢(𝑡𝑡) + |𝑢𝑢(𝑡𝑡)|).                                                                            (2) 

 
The increasing and convex function r(v) is exemplified by the trinomial 
 
𝑟𝑟(𝑣𝑣) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑣𝑣2,  v ∈ [0, ∞),                                                                 (3) 
 

where the coefficients a > 0, b > 0, c > 0 are known numbers  usually given by rolling 
stock manufacturers. 
 
2. Train control problem 
 

The problem of finding the best way to drive to the next destination can be 
formulated as an optimal control problem (local energy minimization principle). 
That is, our aim is to find the sequence of control settings that will get the train to 
the next destination on time, and with minimal energy consumption.  

Newton's law determines the movement equation of the train. In the 
following problem, x and v are state variables and u is the control variable. 

 
Mathematical assumptions (i) U = L∞([0,T]) is the set of measurable and 

bounded functions on the interval [0,T], endowed with the norm 
 
‖𝑢𝑢‖∞ = 𝑠𝑠𝑠𝑠𝑠𝑠|𝑢𝑢(𝑡𝑡)| ,  𝑡𝑡 ∈ [0,𝑇𝑇].                                                                      (4) 
 

The normed space U is called the space of controls; 
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(ii) V = C0,1([0,T])  is the set of piecewise C1 functions on the interval [0, 
T], endowed with the norm 

 
‖𝑣𝑣‖ = ‖𝑣𝑣‖∞ + ‖𝑣̇𝑣‖∞.                                                                                    (5) 
 
The set F = U x V  is called the feasible set. A feasible pair (u,v)  ϵ  F = U 

x V must satisfies ||u||∞  ≤  1 and  v(0) = v(T) = 0. 
 
Isoperimetric Train Problem Minimize the mechanical energy 

consumption 
 
𝐽𝐽(𝑢𝑢(⋅)) = ∫ 𝑢𝑢+(𝑡𝑡)𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇

0                                                                                
(6) 

 
subject to 

(i) the ODE constraints 
 
𝑥̇𝑥(𝑡𝑡) = 𝑣𝑣(𝑡𝑡), 𝑣̇𝑣(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) − 𝑟𝑟(𝑣𝑣(𝑡𝑡)), 𝑣𝑣(0) = 𝑣𝑣(𝑇𝑇) = 0,                       (7) 
 
(ii) the isoperimetric constraint 
 
∫ 𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇
0 = 𝑥𝑥(𝑇𝑇) =  𝑋𝑋,                                                                            (8) 

 
(iii) the control inequality constraint 
 
|𝑢𝑢(𝑡𝑡)|  ≤  1.                                                                                                  (9) 
 
We shall look to apply the Pontryagin maximum principle. For that we use 

a new objective functional 
 

𝐼𝐼(𝑢𝑢(⋅)) = ∫ (−𝑢𝑢+(𝑡𝑡)𝑣𝑣(𝑡𝑡) + 𝑝𝑝1𝑣𝑣(𝑡𝑡))𝑑𝑑𝑑𝑑𝑇𝑇
0                                                           

(10) 
 
and the Hamiltonian 

 
𝐻𝐻(𝑢𝑢, 𝑣𝑣) = −𝑢𝑢+𝑣𝑣 + 𝑝𝑝1𝑣𝑣 + 𝑝𝑝2�𝑢𝑢 − 𝑟𝑟(𝑣𝑣)�,                                               (11) 

 
where 𝑝𝑝1= ct. and 𝑝𝑝2 = 𝑝𝑝2 (t) are the Lagrange multipliers.  

The Hamiltonian can be rewritten as a piecewise function of degree at 
most one with respect to u, namely 
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𝐻𝐻(𝑣𝑣,𝑢𝑢) = �
𝑝𝑝2𝑢𝑢 + 𝑝𝑝1𝑣𝑣 − 𝑝𝑝2𝑟𝑟(𝑣𝑣),  for  − 1 ≤ 𝑢𝑢 < 0
𝑢𝑢(𝑝𝑝2 − 𝑣𝑣) + 𝑝𝑝1𝑣𝑣 − 𝑝𝑝2𝑟𝑟(𝑣𝑣),  for  0 ≤ 𝑢𝑢 ≤ 1                    (12) 

   
Control. If the Hamiltonian is linear in the control variables and the 

control variables have simple bounds, then the optimal control is a combination of 
bang- bang control and singular arcs. 

The Hamiltonian is piecewise linear (function of degree at most one) in the 
control u, the control variable have simple bounds, and the switching functions are 
𝑝𝑝2(𝑡𝑡) and 𝑝𝑝2(𝑡𝑡) − v(t),  respectively. Therefore the optimal control is a 
combination of bang-bang control and singular arcs. The optimal control u*(t) is 
discontinuous: it jumps from a minimum to a maximum and viceversa in response 
to each change in the sign of switching function. 

 
(i) The optimal control as determined by the switching function 𝑝𝑝2(𝑡𝑡) is 
 

𝑢𝑢∗(𝑡𝑡) = �
 0,  for 𝑝𝑝2(𝑡𝑡) > 0,  bang-bang control
−1,  for 𝑝𝑝2(𝑡𝑡) < 0,  bang-bang control
undetermined,  for 𝑝𝑝2(𝑡𝑡) = 0.

                (13) 

 
A switching time is a solution of the equation 𝑝𝑝2(𝑡𝑡) = 0. The most 

interesting case is those of finite number of switching times.  
 
(ii) The optimal control as determined by the switching function 𝑝𝑝2(𝑡𝑡)− 

v(t) is 
 

𝑢𝑢∗(𝑡𝑡) = �
1,  for 𝑝𝑝2(𝑡𝑡) > 𝑣𝑣(𝑡𝑡),  bang-bang control
0,  for 𝑝𝑝2(𝑡𝑡) < 𝑣𝑣(𝑡𝑡),  bang-bang control
undetermined,  for 𝑝𝑝2(𝑡𝑡) = 𝑣𝑣(𝑡𝑡).

              (14) 

 
A switching time is a solution of the equation 𝑝𝑝2(𝑡𝑡) = v(t). The most 

interesting case is those of finite number of switching times. 
 
State variables. The state ODE is 
 
𝑣̇𝑣(𝑡𝑡) = −(𝑐𝑐𝑣𝑣2(𝑡𝑡) + 𝑏𝑏𝑏𝑏(𝑡𝑡) + 𝑎𝑎 − 𝑢𝑢∗), 𝑣𝑣(𝑡𝑡) ≥ 0, 𝑣𝑣(0) = 𝑣𝑣(𝑇𝑇) = 0.     (15) 
 
If 𝑎𝑎 − 𝑢𝑢∗ ≥ 0 and 𝛥𝛥 = 𝑏𝑏2 − 4𝑐𝑐(𝑎𝑎 − 𝑢𝑢∗) ≤ 0, then 𝑣̇𝑣 ≤ 0  and 𝜈𝜈 is a decreasing 

function of t. 
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If 𝑎𝑎 − 𝑢𝑢∗ < 0, and 𝛥𝛥 = 𝑏𝑏2 − 4𝑐𝑐(𝑎𝑎 − 𝑢𝑢∗) > 0, i.e., in our conditions u* = 1 and 0 
< a < 1, the algebraic equation 𝑣̇𝑣 = 0 has two real roots α < 0 < β. Then 𝜈𝜈 is an 
increasing function of t while 𝜈𝜈 ∈ [0,𝛽𝛽) and 𝜈𝜈 is a decreasing function of t for v > 
β.  

For u* = 1 we have 
 

𝑑𝑑𝑑𝑑
𝑐𝑐𝑣𝑣2+𝑏𝑏𝑏𝑏+𝑎𝑎−1

= −𝑑𝑑𝑑𝑑                                                                              (16) 
 
and one obtains 

 
𝑡𝑡 = 1

�𝛥𝛥1
 𝑙𝑙𝑙𝑙 𝐶𝐶1 �𝛽𝛽(𝑣𝑣−𝛼𝛼)

𝛼𝛼(𝑣𝑣−𝛽𝛽)
� , 𝐶𝐶1 > 0,                                                        (17) 

 
where 𝛥𝛥1 = 𝑏𝑏2 − 4𝑐𝑐(𝑎𝑎 − 1). The condition 𝑣𝑣(0) = 0 gives us 

 
𝑡𝑡 = 1

�𝛥𝛥1
 𝑙𝑙𝑙𝑙  �𝛽𝛽(𝑣𝑣−𝛼𝛼)

𝛼𝛼(𝑣𝑣−𝛽𝛽)
�                                                                      (18) 

 
Remark In this case v = β is a limit speed, and   𝜈𝜈 ↗ 𝛽𝛽 implies 𝑡𝑡 → ∞. 
Analogously, we obtain t = t(v) in the cases u* = 0 and u* = - 1, without 

restriction on v ≥ 0. 
Finally, 
 
𝑥𝑥(𝑡𝑡) = ∫ 𝑣𝑣(𝜏𝜏)𝑑𝑑𝑑𝑑𝑡𝑡

0 .                                                                                  (19) 
 

Adjoint variable. The adjoint ODE 
 
𝑝̇𝑝2(𝑡𝑡) = −𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿
                                                                                       (20) 

 
 

becomes  𝑝̇𝑝2(𝑡𝑡) = 𝑢𝑢+∗ (𝑡𝑡) − 𝑝𝑝1 + 𝑝𝑝2
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿

(𝑡𝑡).                                                     (21) 
 

Because 
 
𝑑𝑑𝑝𝑝2
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑝𝑝2
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑑𝑑𝑝𝑝2
𝑑𝑑𝑑𝑑

(𝑐𝑐𝑣𝑣2 + 𝑏𝑏𝑏𝑏 + 𝑎𝑎 − 𝑢𝑢∗),                                        (22) 
 
it follows the linear ODE 

𝑑𝑑𝑝𝑝2
𝑑𝑑𝑑𝑑

= − 2𝑐𝑐𝑐𝑐+𝑏𝑏
𝑐𝑐𝑣𝑣2+𝑏𝑏𝑏𝑏+𝑎𝑎−𝑢𝑢∗

𝑝𝑝2 −
𝑢𝑢+∗ −𝑝𝑝1

𝑐𝑐𝑣𝑣2+𝑏𝑏𝑏𝑏+𝑎𝑎−𝑢𝑢∗
 ,                                               (23) 
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with general solution 
 

𝑝𝑝2(𝑣𝑣) = (𝑝𝑝1−𝑢𝑢+∗ )𝑣𝑣+𝐶𝐶2
𝑐𝑐𝑣𝑣2+𝑏𝑏𝑏𝑏+𝑎𝑎−𝑢𝑢∗

.                                                                           (24) 

3. Speed profile solving energy - efficient train movement 

The book [9] suggested that an energy-efficient speed profile should 
contain at least three or four phases coupled by continuity: (i) maximum 
acceleration, coast, and maximum brake; (ii) maximum acceleration, hold speed, 
coast and maximum brake. All the experiments confirmed that these strategies are 
indeed efficient. 

Accelerate-brake strategy. The feasible set F is non-empty. Indeed, the 
initial condition problem 

 
𝑣̇𝑣(𝑡𝑡) = 1 − 𝑟𝑟(𝑣𝑣(𝑡𝑡)),  𝑣𝑣(0) = 0                                                                   (25) 

 
has a unique solution 𝑣𝑣1(𝑡𝑡), 𝑡𝑡 ≥ 0, and the final condition problem 
 

𝑣̇𝑣(𝑡𝑡) = −1 − 𝑟𝑟(𝑣𝑣(𝑡𝑡)), 𝑣𝑣(𝑇𝑇) = 0                                                             (26) 
 

has a unique solution 𝑣𝑣2(𝑡𝑡), 𝑡𝑡 ≤ 𝑇𝑇. Further there exists a unique point 𝑡𝑡 = 𝑇𝑇1,  
where 𝑣𝑣1(𝑇𝑇1) = 𝑣𝑣2(𝑇𝑇1) (the two phases are joined by continuity). 

 
 Theorem 1. The pair of functions (u(t),v(t)), where 
 

𝑢𝑢(𝑡𝑡) = �
   1,  for 𝑡𝑡 ∈ (0,𝑇𝑇1)
−1,  for 𝑡𝑡 ∈ (𝑇𝑇1,𝑇𝑇)                                                                   (27) 

 
and, continuous one,  
 

𝑣𝑣(𝑡𝑡) = �
𝑣𝑣1(𝑡𝑡),  for 𝑡𝑡 ∈ (0,𝑇𝑇1)
𝑣𝑣2(𝑡𝑡),  for 𝑡𝑡 ∈ (𝑇𝑇1,𝑇𝑇)                                                            (28) 

 
satisfies the foregoing conditions and represents an accelerate – brake strategy. 

Proof. Phase 1: maximum acceleration. The initial condition 𝜈𝜈(0) = 0 
implies increasing speed. This is possible for 𝑎𝑎 ∈ (0,1) only. We must take 𝑢𝑢∗ =
1 and 𝑝𝑝2(0) > 0. Noting 𝑎𝑎 − 1 = −𝑚𝑚2, we find 0 > 𝐶𝐶2 = −𝑘𝑘12. So, we have 

 
𝑡𝑡 = 1

�𝛥𝛥1
 𝑙𝑙𝑙𝑙 𝛽𝛽(𝑣𝑣−𝛼𝛼)

𝛼𝛼(𝑣𝑣−𝛽𝛽)
,                                                                              (29) 
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and     𝑝𝑝2(𝑣𝑣) = (𝑝𝑝1−1)𝑣𝑣−𝑘𝑘12

𝑐𝑐𝑣𝑣2+𝑏𝑏𝑏𝑏−𝑚𝑚2.                                                                             (30) 
 

Phase 2: maximum brake. The final condition v(T) = 0 implies 
decreasing speed. We must take u* = -1 and  𝑝𝑝2 (T) < 0. So, supposing 

 
𝛥𝛥−1 = 𝑏𝑏2 − 4𝑐𝑐(𝑎𝑎 + 1) < 0,                                                               (31) 

 

we have 𝑇𝑇 − 𝑡𝑡 = 2
�−𝛥𝛥−1

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣�−𝛥𝛥−1
𝑏𝑏𝑏𝑏+2𝑎𝑎

,                                                          (32) 

 
and        𝑝𝑝2(𝑣𝑣) = 𝑝𝑝1𝑣𝑣−𝑘𝑘22

𝑐𝑐𝑣𝑣2+𝑏𝑏𝑏𝑏+𝑎𝑎+1
.                                                                          (33) 

 
Switch time. The equation 
 
1

�𝛥𝛥1
 𝑙𝑙𝑙𝑙 𝛽𝛽(𝑣𝑣−𝛼𝛼)

𝛼𝛼(𝑣𝑣−𝛽𝛽)
+ 2

�−𝛥𝛥−1
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣�−𝛥𝛥−1

𝑏𝑏𝑏𝑏+2𝑎𝑎
= 𝑇𝑇                                         (34) 

 
has a unique solution 𝑣𝑣1 ∈ (0,𝛽𝛽). This 𝜈𝜈1 is the speed at which the swich breaks in 
and there results the corresponding time 𝑇𝑇1 ∈ (0,𝑇𝑇), necessarily.  

The constants p1, 𝑘𝑘12, 𝑘𝑘22 will be determinate by the conditions 
 
𝑝𝑝1 ≥ 1,   (𝑝𝑝1−1)𝑣𝑣1−𝑘𝑘12

𝑐𝑐𝑣𝑣12+𝑏𝑏𝑣𝑣1−𝑚𝑚2 = 𝑣𝑣1,   𝑝𝑝1𝑣𝑣1 − 𝑘𝑘22 = 0.                                                (35) 
 
Unfortunately, this strategy does not fulfil the isoperimetric condition 

since the speed 𝜈𝜈 does not depend on 𝑝𝑝1 and 𝑘𝑘1. Taking into account the above 
equation, the values v1, T and X are connected also by the relation (supplementary 
condition): 

 
𝑏𝑏𝑏𝑏 + 2𝑐𝑐𝑐𝑐 = 𝑙𝑙𝑙𝑙 (𝑎𝑎−1)(𝑐𝑐𝑣𝑣12+𝑏𝑏𝑣𝑣1+𝑎𝑎+1)

(𝑎𝑎+1)(𝑐𝑐𝑣𝑣12+𝑏𝑏𝑣𝑣1+𝑎𝑎−1)
.                                                     (36) 

 
We have the next alternative. Either we give the space X and calculate the 

time T, in which the space is covered, or vice-versa. 
 
Accelerate-coast-brake strategy. Let us look for more feasible pairs. 

With the results in the above case, for a certain 𝑇𝑇2 ∈ [0,𝑇𝑇1],  find the unique solution 
𝑣𝑣3(𝑡𝑡), 𝑡𝑡 ≥ 𝑇𝑇2   of the problem 

 
𝑣̇𝑣(𝑡𝑡) = −𝑟𝑟(𝑣𝑣(𝑡𝑡)),  𝑣𝑣(𝑇𝑇2) = 𝑣𝑣1(𝑇𝑇2)                                                          (37) 
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In the condition 𝑣𝑣3(𝑡𝑡) ≥ 0, there exists a unique point 𝑇𝑇3 ∈ [𝑇𝑇1,𝑇𝑇] with  
𝑣𝑣3(𝑇𝑇3) = 𝑣𝑣2(𝑇𝑇3). 

 
Theorem 2. The pair of functions (u(t),v(t)), where 
 

𝑢𝑢(𝑡𝑡) = �
1,  for 𝑡𝑡 ∈ (0,𝑇𝑇2)
0, for 𝑡𝑡 ∈ [𝑇𝑇2,𝑇𝑇3]
−1,  for 𝑡𝑡 ∈ (𝑇𝑇3,𝑇𝑇) 

                                                                 (38) 

 
and, continuous one,  
 

𝑣𝑣(𝑡𝑡) = �
𝑣𝑣1(𝑡𝑡),  for 𝑡𝑡 ∈ (0,𝑇𝑇2)
𝑣𝑣3(𝑡𝑡),  for 𝑡𝑡 ∈ (𝑇𝑇2,𝑇𝑇3)
𝑣𝑣2(𝑡𝑡),  for 𝑡𝑡 ∈ (𝑇𝑇3,𝑇𝑇) 

                                                              (39) 

 
represents an accelerate – coast - brake strategy. 

 
Proof. The optimal control u* = 1 runs while 𝑝𝑝2(𝑣𝑣) > 𝑣𝑣. Let us fix, in the 

previous considerations, 𝑘𝑘12 such that 𝑝𝑝2(𝑣𝑣2) > 𝑣𝑣2. This is the first positive solution 
of the equation 

 
𝑣𝑣(𝑐𝑐𝑣𝑣2 + 𝑏𝑏𝑏𝑏 − 𝑚𝑚2) = (𝑝𝑝1 − 1)𝑣𝑣 − 𝑘𝑘12.                                                 (40) 
 
Then  𝑇𝑇2 = 1

�𝛥𝛥1
 𝑙𝑙𝑙𝑙 𝛽𝛽(𝑣𝑣2−𝛼𝛼)

𝛼𝛼(𝑣𝑣2−𝛽𝛽)
.                                                                   (41) 

 
This is the first switch time. 
 
Phase 1: maximum acceleration runs as in the previous case until t = T2. 

Note that both v2 and T2 depend upon 𝑝𝑝1 and 𝑘𝑘12. 
 
Phase 2: coast. We take 
 
𝑢𝑢∗ = 0,  𝑣̇𝑣 = −(𝑐𝑐𝑣𝑣2 + 𝑏𝑏𝑏𝑏 + 𝑎𝑎),  𝑣𝑣(𝑇𝑇2) = 𝑣𝑣2,  𝑝𝑝2(𝑣𝑣) = 𝑝𝑝1𝑣𝑣+𝐶𝐶2

𝑐𝑐𝑣𝑣2+𝑏𝑏𝑏𝑏+𝑎𝑎
.                (42) 

 
In this situation the condition 𝑝𝑝2(𝑣𝑣2) = 𝑣𝑣2 , i.e., 
 
𝑝𝑝1𝑣𝑣2+𝐶𝐶2

𝑐𝑐𝑣𝑣22+𝑏𝑏𝑣𝑣2+𝑎𝑎
= 𝑣𝑣2.                                                                                   (43) 
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From the relation (33) we find 𝐶𝐶2 = −𝑘𝑘12 and the inequality 𝑝𝑝2(𝑣𝑣) < 𝑣𝑣 holds 
on the interval  (𝑘𝑘12/𝑝𝑝1, 𝑣𝑣2) at least. Then T3 corresponding to 𝑣𝑣3 = 𝑘𝑘12/𝑝𝑝1 will be the 
second switch time.  

 
 Phase 3: maximum brake. For 𝑡𝑡 ≥ 𝑇𝑇3, we take u* = -1 and 𝑝𝑝2(𝑡𝑡) < 0. The 

evolution ODE is  
 
𝑣̇𝑣 = −(𝑐𝑐𝑣𝑣22 + 𝑏𝑏𝑣𝑣2 + 𝑎𝑎 + 1),  𝑣𝑣(𝑇𝑇3) = 𝑣𝑣3                                           (44) 
 

and      𝑝𝑝2(𝑣𝑣) = 𝑝𝑝1(𝑣𝑣)−𝑘𝑘22

𝑐𝑐𝑣𝑣22+𝑏𝑏𝑣𝑣2+𝑎𝑎+1
,   where 𝑘𝑘22 ≥ 𝑘𝑘12. 

 
Finally, the constants 𝑝𝑝1, 𝑘𝑘12, 𝑘𝑘22 will be determined by the conditions 
 

𝑝𝑝1 ≥ 1,  𝑣𝑣(𝑇𝑇) = 0,  ∫ 𝑣𝑣(𝑡𝑡)𝑇𝑇
0 𝑑𝑑𝑑𝑑 = 𝑥𝑥(𝑇𝑇) =  𝑋𝑋.                                                    (45) 

4. Conclusions 

Circumstances which make train control a pressing problem at the present 
time are very well known. However, automatic control cannot be done without 
knowledge of the mathematical theory of optimal control. That is why, in our 
paper we clarify the idea of cost functional, ODE constraints, isoperimetric 
constraint, and Pontryagin maximum principle for a train control problem in terms 
of adjoint variables (see, [1 - 2], [6 - 17]). 

This paper is addressed to mathematicians wanting to know more about 
mathematical issues associated with concrete applications. The topics include 
modern approaches of geometric control and other mathematical notions that have 
gave significant enhancements in classical train problems. The experts of 
nonlinear control learn about applications of this discipline to nontrivial examples 
in transport problems. 

Our aim is to review and detail the optimal control theory of train 
movement compared with the presentations in the papers [1, 2], [6 - 17], 
continuing the paper [12]. The papers [3 – 5] and [14] can be used to study 
stochastic perturbation of previous problem. 
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