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ON THE NUMBER OF ORBITS ARISING FROM THE ACTION OF
PSL(2,Z) ON IMAGINARY QUADRATIC NUMBER FIELDS

Abdulaziz Deajim!, Muhammad Aslam?

For square-free positive integers n, we study the action of the modular group
/ 2
PSL(2,Z) on the subsets {H% € Q(v—n)|a, “F c € Z} of the imaginary qua-

c

dratic number fields Q(v/—n). In particular, we compute the number of orbits of this

action and show, for n > 3, that it is equal to
nglJ

D A +n) - 2d<;i (i +n)],
i=1

2

d(n) + §

where d(k) is the number of positive divisors of k, and d<;(k) is the number of positive
divisors of k which do not exceed i. We also provide a C++ code to calculate these
numbers for square-free integers n with 1 < n < 100.
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1. Introduction

Throughout this paper, we denote by G the modular group PSL(2,Z), whose elements
are all the Mébius transformations z — (az + b)/(cz + d), a,b,e,d € Z, ad —bc = 1. Tt

2 = y3 = 1), where x and y are,

is known that G has the finite presentation (z,y : z
respectively, the transformations z — —1/z and z — (2 — 1)/z (see [3] for a proof that
uses coset diagrams). The modular group belongs to a more general family of groups called
Hecke groups. The Hecke group H,, 3 < n € N, is the group generated by the two M&bius
transformations z — —1/z and z — z + \,,, where \,, = 2cos(w/n). It can be shown that
G = Hs. Actions of the modular group, and Hecke groups in general, on many discrete and
non-discrete structures play significant roles in different branches of mathematics (see [4]).

Among the important discrete structures upon which the modular group acts are
quadratic number fields. Let Q(y/n) be a real quadratic number field, where n is a square-

free positive integer. Q. Mushtaq (in [7]) studied the action of G on the following subset of

Q(v/n):

o= { om0 S ez},

Subsequent works by several authors considered properties emerging from this action (see
for instance [5], [6], and [8]).
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We shift the emphasis in this work towards studying the action of the modular group
on imaginary quadratic number fields. Throughout this paper, n denotes a square-free
positive integer. It is not hard to see that there is a natural action of G on Q(v/—n)
(inherited from the action of G on C by Mobius transformations). Consider the following
subset of the imaginary quadratic number field Q(v/—n):

Q*(vV—n) :{We@(\/in)a,baz):n,cez}.

It can be checked that Q*(y/—n) is the collection of the complex roots of all quadratic
polynomials of the form cx? — 2ax + b of the fixed discriminant —4n, with a,b,c¢ € Z and
0 < a® < be. The aim of this paper is to study the action of G on Q*(y/—n) and, in
particular, count the number of orbits in Q*(y/—n) emerging from this action and present
an interesting congruence property of this number (Theorem 2.1).

In studying the action of similar groups on imaginary quadratic number fields, the
following should be recorded. M. Ashiq and Q. Mushtaq (in [1]) studied the action of the
subgroup (u,v : u® = v3 = 1) of G on Q*(v/—n) (here u = y and v = wyx), where they
computed the number of orbits in the subset Q*(y/—n) under this action. A. Razaq (in [9])
studied the action of the group (z,y : 22 = y% = 1) on Q(v/—n), where he computed the

. . a —n a2 n
number of orbits in the subset { W € Q(v=n) | a, 52 c € Z }

2. The action of G on Q*(/—n)

For @ = 9v=n —" € Q*(v/—n), we use the notation a, := a, by := b = “2+"7 and

C
Co = C.

Proposition 2.1. Q*(y/—n) is a G-set.

Proof. As G acts on Q(v/—n), it remains only to show that Q*(y/—n) is
invariant under this action. Let o = @ € Q*(v/—n). To show that g(a) € Q*(v/—n)
for every g € G, it suffices to show that z(a),y(a) € Q*(v/—n) since {z,y} is a complete
set of generators of G. We see, first, that

-1 —c —c(a—\/—in)_—a—k\/q.

x(a)_?_a—&-\/—in: a’?+n B b
Now, ay(a) = —a € Z, Cya) = b € Z, and by(o) = % = “2% = c € Z, we get that

z(a) € Q*(v/—n). Similarly, we see that

y(a):lfézler(a):%.

As Oy(a) = —0Q+ beZ, Cy(a) = b€ Z, and

a2 +n _ b 2 2
by() = y(@) _ (zatb) T oatbt & +”:—2a+b+cez,
Cy(a) b b
we get that y(a) € Q*(v/—n) as well. O

Remark 2.1. For some use in the sequel, the following table summarizes the action of each
g € {z,y,%?} on an arbitrary element o = “*t¥=" “—" € Q*(v/—n). The first two lines of the
table were verified in the above proof, while the third line can be checked in a similar manner.
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g(a) | ag(a) by(a) 1))
z(a) | —a c b

yla) |b—a —2a+b+c b
y3(a) |c—a c —2a+b+e

Table 1: Signatures of z(a),y(a), and y?(«)
We recall and introduce here some needed terminology.

Definition 2.1. (see [2])

1. An element o € Q*(y/—n) is said to be totally positive (resp. totally negative) if agco > 0
(resp. aqCq < 0).

2. The ordered triple (aq, by, o) is called the signature of a € Q*(v/—n).

3. Define the map |.|| : Q*(v/—n) — NU{0} by |la| = |as|. We call ||| the norm of a (not
to be confused with the classical notion of norm).

Definition 2.2. For a € Q*(v/—n), we call the set {a,y(a),y?*(a)} the
a-cycle and denote it by @. We say that @ is a totally positive cycle if o, y(a), and y?(«) are
all totally positive. We denote by T+ (—n) the set of all totally positive cycles in Q*(y/—n).

Remark 2.2.

1. For @ € Q*(v/=n), bc = a® + n is always positive. So, b and ¢ always have the
same sign. So, an equivalent useful definition to Definition 2.1 (part 1) can go like this:
a € Q*(v/—n) is said to be totally positive if either aq, by, o > 0 OF Gy, by, o < 0; and «
is said to be totally negative if either (a, < 0 and by, cq > 0) or (aq > 0 and by, co < 0).
Note that any a € Q*(y/—n) is either totally positive, totally negative, or has norm zero.
2. In Definition 2.2, note that a = y/(g) = m, so we can equally call & the y(«)-cycle or
the y?(a)-cycle.

Example 2.1. For n =5, a = Hzﬁ € Q*(v/—5) is totally positive. From Table 1, we
have y(a) = HT‘/E and y%(a) = H'T‘/j It is clear that y(a) and y?(a) are both totally
positive as well. So, & € TT(-5).

For oo € Q*(v/—n), denote the orbit {8 € Q*(v/—n) | 8 =g(®), g € G} by a®. De-
note the set of orbits in Q*(y/—n) under the action of G by O%(Q*(v/=n)); so O%(Q*(v/=n)) :
= {a%| a € Q*(y/=n)}. We adopt the standard notation d(n) for the number of positive
divisors of n. For two positive integers k& < m, denote by d<y(m) the number of pos-
itive divisors of m which are less than or equal to k. For instance, d<4(10) = 2 and
d<10(10) = d(10) = 4.

We state our main result, which gives a formula for the number of orbits |0%(Q*(v/—n))|
and an interesting congruence property of such a number.

Theorem 2.1. Let n be a square-free positive integer. Then the number of orbits in
Q*(v/—n) under the action of G is
2 yifn=1,2
09(Q*(V—n))| = 4 vifn=3
d(n) + 2 SOLDR2I G2 4 n) — 2d< (12 + n)] , otherwise.

Moreover, |0%(Q*(v/—n))| = 0 (mod 4) for n > 3.
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3. Lemmas and Proof of Theorem 2.1
3.1. Lemmas

In preparation for the proof of Theorem 2.1, we consider crucial lemmas, some of
which are interesting in their own right.

The following lemma shows that the sign of the denominators of elements in any given
orbit is the same.

Lemma 3.1. For a € Q*(y/—n), sign(cs) = sign(c,) for any B € a©.

Proof. 1t is sufficient to show that c,(,) and ¢y () have the same sign as c¢,. By Remark 2.2,
bo and c, have the same sign. Since c;(q) = Cy(a) = ba (Table 1), Cx(a) and Cy(o) have the
same sign as cq. O

The effect of the action of  on elements of Q*(1/—n) and their norms is given below.

Lemma 3.2. Let a € Q*(v/—n). Then,
1. « is totally negative if and only if x(«) is totally positive.
2. ||laf| = |lz(«)||. Further, a has norm zero if and only if x(a) has norm zero.

Proof.

1. This follows from the fact that boca > 0, ay(a) = —@a, and ¢ (o) = ba; see Table 1 and
Remark 2.2.

2. The first statement is clear from Table 1, while the second statement follows from the
first. (|

Some aspects of the actions of y and y? on elements of Q*(y/—n) and their norms are
given below.

Lemma 3.3. Let a = @ € Q*(v/—n).

1. If a has norm zero, then y(c) and y*() are both totally positive.

2. If « is totally negative, then y(a) and y?(a) are both totally positive with ||a| < |ly(a)|
and llal) < [l2(@)]]

3. The a-cycle @ is totally positive if and only if either (0 < a, a < b, and a < ¢) or (0 > a,
a>b, and a > c).

Proof.

1. Since a = 0, it follows from Table 1 that a,)cy) = b?> > 0 and so y(a) is totally
positive. Similarly, a,z2(q)cy2(a) = ¢(b+¢) = n+ ¢ > 0 and so y*(«a) is totally positive as
well.

2. Since « is totally negative, we have ac < 0 and, by Remark 2.2, ab < 0. We then have,

from Table 1, ayq)c (b —a)b = b?—ab > 0 and so y(«a) is totally positive. Similarly,

y(a) =

Ay2(a)by2(a) = (¢ —a)c = c? —ac > 0. Thus, by Remark 2.2, Ay (a)Cy2(a) > 0 and so y? ()
is totally positive as well. As for the norms in this case, we have |ly(a)|| =]b—a|=b—a >
—a = [lafl and [ly*(a)|| = |c—al =c—a > —a = ||a].

3. Suppose that a is a totally positive cycle. Since « is totally positive, a,b,c > 0 or
a,b,c < 0. Assume that a,b,c > 0. Since cyo) = b > 0 and y(a) is totally positive,
Ay(a) =b—a > 0. So b > a as desired. On the other hand, since b,2(,) = ¢ > 0 (and, hence,
Cy2(a) > 0) and y*(a) is totally positive, ay2(q) = c—a > 0. So ¢ > a as desired. Similarly, if
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a,b,c <0, it follows that a > b and a > ¢. Conversely, suppose that 0 < a, a < b, and a < c.
Since ac > 0, « is totally positive. As ay) =b—a > 0 and cyq) = b > 0, y(a) is totally
positive too. Also, as a,2(q) = ¢ —a > 0 and by2(o) = ¢ > 0 (and, hence, c,2(4) > 0), y? ()
is totally positive as well. This shows that @ is a totally positive cycle. A similar argument
works if 0 > a, a > b, and a > c. O

Remark 3.1. It is apparent from the above lemma that for any three elements a, y(«a), y*(a)
of Q*(v/—n), either all three are totally positive, one is totally negative and the other two are
totally positive, or one is of norm zero and the other two are totally positive. This remark
shall show to be useful shortly. In the terminology of coset diagrams (see [6], [7], or [11] for
example), the triangle whose vertices are a, y(a),y?(«) always has one of three properties:
either all vertices are totally positive, one vertex is totally negative and the other two are
totally positive, or one vertex is of norm zero and the other two are totally positive. We
chose, however, to not use the machinery of coset diagrams in this paper as combinatorial
arguments suffice.

Lemma 3.4. Under the action of G, every orbit in Q*(v/—n) contains both a totally negative
element and a totally positive element.

Proof. Consider an orbit a® for some o € Q*(y/—n). By Remark 2.2 (part 1), a is either
totally negative, totally positive, or has norm zero. By Lemma 3.2, if « is totally negative,
then z(«) is totally positive, and conversely. Finally, if « is of norm zero, then y(«) is totally
positive by Lemma 3.3 and so zy(«a) is totally negative. O

The following lemma specifies the elements of C fixed by x or y.

Lemma 3.5. Under the action of G on C, the only complex numbers fized by x are +i €
Q*(v/—1) and the only numbers fized by y are % € Q*(v/-3).

Proof. Let z € C be such that z(z) = z. Then z? = —1, which implies that z = +i. If

y(2) = 2, then 22 — 2z + 1 = 0, which implies that z = &T\/TS O

Remark 3.2. The latter statement in Lemma 3.5 entails that every a-cycle in Q*(v/—n)

1+y=3 . =1+v=3
2 -2

consists of 3 distinct elements except when n = 3 and « is , in which cases

the a-cycle is a singleton.
From Definition 2.2, recall that
T*(—n):={@| o € Q*(v/—n) and & is a totally positive cycle} .

According to Definition 2.1 (part 2), consider the two sets of signatures of totally positive
elements of Q*(v/—n) (by Lemma 3.3):

2
At (—n) ::{(a,b,C)EZ3|a>0,b: o tn >a,c>a},
c
a+n
A(—n)::{(a,b,c)eZg|a<O,b: - <a,c<a}.

Tt is clear that @ € Q*(y/—n) for every (a,b,c) € AT(—n)U A~ (—n).

Next, we use the action of the cyclic subgroup G, of G generated by y on Q*(y/—n)
induced from the action of G to define an action of G, on A" (—n) when A" (—n) is non-
empty. Considering the signature in A*(—n) of some o € Q*(v/—n), it is obvious that
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such a desired action of y on AT(—n) is to map the signature of « to the signature of
y(c). Namely, define the map G, x AT (—n) — A" (—n), denoted by ¢ - (a,b,c) for g € G,
and (a,b,c) € A*(—n), by 1 (a,b,¢c) = (a,b,¢), y- (a,b,¢) = (b —a,—2a + b+ ¢,b) and
y*-(a,b,c) =y-(y-(a,b,c)) = (c—a,c,—2a+b+c), see Table 1. To show that this is indeed
a map into At (—n), it suffices to show that y- (a,b,c) € AT (—n) for (a,b,c) € AT (—n). We
have 0 < a, a <b, and a < ¢. S0, 0 < b—a = ay(a), Gya) =b—a <b—a+c—a=byq
and ay(a) = b —a < b = ¢y(q), from which is follows that y - (a,b,¢) € AT(—n) as desired.
Now, by the way we defined this map, it is obvious that it satisfies the axioms of a group
action. Hence, A*(—n) is a G-set under this induced action. Due to the symmetry between
A*(—n) and A~ (—n), the action of G, on A~ (—n) is defined similarly. Indeed, we have
just proved the following Lemma.

Lemma 3.6. If AT (—n) and A~ (—n) are non-empty, then A™(—n) and A~ (—n) are G-
sets under the induced action defined in the above paragraph.

The following two lemmas show, in particular, that the sets AT (—n) and T (—n) are
finite and give a formula that compares their respective cardinalities for n # 3.

Lemma 3.7. We have that AT (—1) = AT (=2) = @. Ifn >3 and (a,b,c) € AT (—n), then
a <251 and b,c < "L Furthermore, |A*(—n)| < %.

Proof. Let (a,b,c) € A*(—n). Since a+1 < band a+1 < ¢, we have a®+2a+1 = (a+1)% <
bc = a® 4+ n, from which it follows that a < "7*1 If n < 2, this leads to a contradiction,

therefore A*(—1) = AT(-2) = @. For n > 3, consider f : [1,251] — R defined by

f(z) = f”:jrrf From the sign of f/, it follows that f is decreasing on [1,—1 4 v/n + 1] and
increasing on [—1 + v/n+ 1, 252]. On the other hand, f(1) = f(25%) = 2. Hence,

b< Cian — f(a) < ™. Now, an element (a,b,c) € AT (—n) is determined by a choice of a

a+1
and b (as ¢ = ‘12;") with 1 < a < b < 25, Since the number of such pairs (a,b) is (”%1),
we have |A*(—n)| < § (#1) (242 - 1) = =5 .

Lemma 3.8.

1A (-1)] = |A*(~2) 0.

2. |[AT(=n)| =1 if and only if n = 3.
3. |AT(=n)| =0 (mod 3) for n # 3.

4. |T*(=n)| = 2 |A*(—n)| for n #3

n

Proof.

1. It is obvious from Lemma 3.7.

2. Since (1,2,2) € AT(=3) and |AT(=3)| < Z=L =1, we get [AT(=3)| = L.

3. Let n # 3. If AT(—n) = &, then |[A*(—n)] = 0 and we are done. Suppose that
(a,b,c) € A*(—n) and « is the element of Q*(y/—n) whose signature is (a,b,c). Since the
set A*(—n) is finite (by Lemma 3.7), the number of orbits in AT(—n) under the action
of G, (Lemma 3.6) is finite as well. Considering the action of G, on Q*(y/—n) induced
from the action of G, we see that the totally positive a-cycle & is G-invariant and so is
the corresponding set of signatures {(a,b,¢), (b —a,—2a + b+ ¢,b), (c —a,c,—2a + b+ ¢)}
in A*(—n). Since n # 3, the elements of the set & are distinct and so are the elements of
the corresponding set of signatures {(a,b,¢), (b — a,—2a + b+ ¢,b), (¢ —a,c,—2a+ b+ ¢)}.
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This means that each orbit in A™(—n), under the action of G, consists precisely of three
elements and, hence, |A*(—n)| is divisible by 3 as claimed.
4. Let n # 3. It is clear that the two sets AT(—n) and A=(—n) are disjoint and that
there is a bijection between them. It can also be easily seen that the same arguments in
parts 1, 2, and 3 above apply also to A~ (—n). Let O% (A% (—n)) and O (A~ (—n)) be the
sets of orbits in A*(—n) and A~ (—n), respectively, under the action of G,. It follows from
the argument in the proof of Lemma 3.6 and part 3 above that there is the bijection from
T+ (—n) into the disjoint union O% (AT (—n)) U O% (A~ (—n)) given by
a— {(a,b,c),(b—a,—2a+b+c,b),(c—a,c,—2a+b+c)}.

Since we have, by part 3 above,

09 (AT (=n))| = (1/3) AT (=n)| = (1/3) |[A™ (=n)| = |09 (A™ (=n))]
and the two sets of orbits are disjoint, we get [T (—n)| = 2 [AT(—n)|. 0O
Lemma 3.9. The number of elements of norm zero in Q*(y/—n) is equal to 2d(n).

Proof. For a = Von oo Q*(v/—n), by = €L if and only if ¢,, is a divisor of n. Considering

Ca

positive and negative divisors of n, the conclusion follows. O

The last round in our effort to prove Theorem 2.1 is Corollary 3.1 below. For this,
we need the following two lemmas.

Lemma 3.10.
1. Every orbit in Q*(\/—n) contains at most one element of TT(—n).
2. Every orbit in Q*(v/—n) contains at most two elements of norm zero.

Proof.

1. Suppose that @ € T*(—n) for some a € Q*(v/—n). Let B € o\ @ We show that
B ¢ TT(—n) by showing that the 3-cycle B must contain a totally negative element. Since
the action of G on the orbit aC is transitive and @ # 3, there is some g € G\ {1,y, 32} such
that g(a) = 8. Since z and y are of order 2 and 3, respectively, it can be checked that g is
of one of the following forms:

g1 =1,
go = xytayr...ayt, k>1,g=1o0r2,i=1,... k,
g3 = xytayx .. axyte, k>1l,e,=1lor2,i=1,...,k,

€k

g1 =y"zyx. oy, k>1,g=1lor2,i=1,...,k,
g5 =y ayr. . oy, k>1,e,=1or2,i=1,...,k

If g = g1, then § = z(«) is totally negative (since « is totally positive), by Lemma 3.2. So B o4
T*(—n). Assume that g = go. As y°*(a) € @, it follows that y°*(«a) is totally positive and
so xy®* () is totally negative, by Lemma 3.2. Then, by Lemma 3.3, y=*—t2y°* () is totally
positive. Continuing in this manner by applying x to y**—1xy°* () then applying y**-2 and
so on, we get that v = y*lay®2x ... xy®* («) is totally positive. Thus, 8 = ga(a) = z(y) is
totally negative and so B ¢ Tt (—n). The case g = g3 is similar to the case g = go starting
with y®*x(a) being totally positive instead of y°*(«). Now, if g = g4, we follow the same
argument to get that 6 = zy®2x...zy%* (a) is totally negative. Since S = g4(a) = y*1(d),
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B =35 (see Remark 2.2 (2)). So, 3 & T*(—n) since § € 3 and § is totally negative. The case
g = g5 is similar to the case g = g4. By this, we showed in all cases that B ¢ TT(—n) and
so @ is the only element of 7% (—n) lying in the orbit a“.

2. Let a be of norm zero. Then, z(a) is also of norm zero (Lemma 3.2). Let 8 € a%\
{a,z(a)}. We show that S must be either totally negative or totally positive and so can
never be of norm zero. By the transitivity of the action of G on %, let h € G be such that
h(B) = a. Tt can be checked that h is of one of the following forms:

hi =v%, e=1or?2,
ha
hs = 2y~ 2y, .. oy*x, k>1,g5=10r2,i=1,...,k,

cyStey2a .. axytt, k>1l,eg=1or2,i=1,...k,

hy =y ay>e...xy™, k>1,g,=1o0r2,i=1,...,k,
hs =yay=e...oy*x, k>1l,g=10r2,i=1,... k.

If h = hyq, then 8 = y*(«) is totally positive (Lemma 3.3). Assume that h = ho, then y°* (@)
is totally positive (Lemma 3.3) and so zy°*(«) is totally negative (Lemma 3.2). Applying
y°k=1 to xy°* (a) followed by x, then y*+-2 followed by x and so on, we get that 5 = ha(«) is
totally negative. In a similar manner, we get that hs(«) is totally negative, hy(a) is totally
positive, and hs(«) is totally positive. This shows that /5 is never of norm zero. O

Lemma 3.11. Every orbit in Q*(v/—n) contains either an element of T+ (—n) or an element
of norm zero, but not both.

Proof. Let a® be an orbit in Q*(y/=n). On the one hand, suppose that a® contains some
B € T*(—n). It remains, in this direction, to show that a“ contains no element of norm zero.
Obviously, no element in E is of norm zero. It also follows from the argument in the proof
of Lemma 3.10 (part 1) that for any v € o€ \ B, one of the elements of 7 = {v,y(7),y2(7)}
is totally negative. Now, as an easy consequence of Lemma 3.3, v cannot be of norm zero
(as, otherwise, 4 would not have a totally negative element).

On the other hand, suppose that a® contains no element of TF(—n). We show
that a® must contain an element of norm zero. By Lemma 3.4, let a; € a® be a totally
negative element and so xz(«;) is totally positive (Lemma 3.2). If the cycle I/(O‘T) contains
an element of norm zero, then we are done. Otherwise, since @ Z Tt (—n) and z(ay) is
totally positive, @ contains a totally negative element s = y* 'z () with &7 = 1 or 2.
Moreover, by Lemmas 3.2 and 3.3,

3761(

[lea|l < [ly™ " (@2) || = [[z(an)]| = [laa]-

Now, if @ contains an element of norm zero, then we are done. Otherwise, since
@ ¢ TT(—n) and z(az) is totally positive, @ contains a totally negative element
ag = y*2x(ag) with eg = 1 or 2. Moreover, an argument similar to the one above yields
the inequality ||as|| < ||az||. Suppose that this process of getting totally negative elements
in a“ never terminates (i.e. the process never yields an element of norm zero). Then,
we would have a sequence aq, s, as, ... of totally negative elements in the orbit a“ with

strictly decreasing norms

loa]l > flaz]l > flas] > ...
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However, the latter sequence of norms is a strictly decreasing sequence of positive integers
which obviously must terminate. This contradicts the non-termination of the sequence of
totally negative elements o, as, s, ..., which in turn proves that o® has to contain an

element of norm zero. O

Corollary 3.1.

1. Every orbit in Q*(v/—1) contains a unique element of norm zero.

2. Every orbit in Q*(\/—2) contains a unique pair of distinct elements of norm zero.

3. Ewvery orbit in Q*(v/—n), for n > 3, contains either a unique pair of distinct ele-
ments of norm zero or a unique element of TT(—n), but not both. In this case, we have

09(Q*(v=n))| = d(n) + |T*(-n)|.

Proof.

1. By Lemma 3.8, T*(—1) = @. So, every orbit in Q*(y/—1) contains an element of norm
zero, by Lemma 3.11. Since the only elements of norm zero in Q*(v/—1) are i and —i
(Lemma 3.9) and they lie in distinct orbits (Lemma 3.1), the conclusion follows.

2. By Lemma 3.8, T7(-2) = @. So, every orbit in Q*(y/—2) contains an element of
norm zero, by Lemma 3.11. By Lemma 3.9, there are precisely 4 elements of norm zero in
Q*(v/=2); namely =2, —/-2, @ and 77\/?2 Note further that @ = x(v/—2) and
—v=2 = 2(—/—2). Now, by Lemma 3.1, the two pairs (\/TQ, ‘/7_72) and (—Mj, = 2_2)
lie in distinct orbits. The conclusion now follows.

3. For n > 3, it follows from Corollary 3.1 (part 3) that the orbits in Q*(y/—n) are precisely
of two types. There are those orbits each of which contains a unique element of T+ (—n)

and contains no zero-norm elements, and there are those orbits each of which contains a
unique pair of distinct zero-norm elements and contains no elements of 7+ (—n). Thus, the
total number of orbits in Q*(y/—n) is equal to |TT(—n)| plus half the number of zero-norm
elements in Q*(y/—n). So, by Lemma 3.9, the claimed formula for the total number of orbits
follows. O

3.2. Proof of Theorem 2.1

Proof. (Theorem 2.1)

For n = 1 and n = 2, it follows from Corollary 3.1 (parts 1 and 2) and their proofs
that [0°(Q* (v=T))| = |0°(Q"(v=2))| = 2.

For n = 3, it follows from Lemma 3.5 and the argument in the proof of Lemma
3.8 (part 2) that T1(-3) = {{1+\2/T3}7 {_1'5\2/:9’}} Thus, by Corollary 3.1 (part 3),
09(Q*(V=3))| =d(3) + |IT*(-3)| =2+ 2=4.

For n > 3, it follows from Corollary 3.1 (part 3) and Lemma 3.8 that

" 2
09(@Q" (V=n)| = d(n) + [T*(=n)| = d(n) + 5 |[A" (=n)]. (1)
So the desired claim in this case holds if and only if
L5
AT (=n)| = > [d(i* +n) — 2d_,(i* + n)].

i=1
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We seek now to prove this last equality. Making use of Lemma 3.7, we first write the set
AT (—n) as a disjoint union of subsets in the form

A*(n) = AT (-m) U A (=m) U+ U AT, (),

where, for each ¢ =1,2,..., L";lj,

Z4+n

Af(—n):{(i,b,c)ez?’|z'>0,b= >i,c>i}.

For a fixed such i, we can see that Af (—n) = A7, (—n) — {A;fcb(—n) U A:fd3(—n)}, where

ALy (=n) = {(z‘,dl, ' i ) € Af (—n) | dy|(i —|—n)},

i’4+n

) € Af (—n) | da < i, do|(i* + n)

)

A:dz(—n) = {(i,dQ,

+ . 7;2 +n + . .2
Ay (=n) =1 (G, Tg,dg) € A (—n) |ds <1, ds|(i"+n)p.
Note that |Ai+7d1(—n)| = d(i® + n) and |Aid2(—n)| = |Ai+7d3(—n)| = d_,(i* + n). If the
latter two sets have a point in common, then for some ds < i and d3 < ¢ we would have
daods = i% +n < 42, which is absurd. So, these two sets are disjoint and, hence,

AT (=)l = AL, (=n)| = |47y, (=n)] = |4, (=n)| = d(i* +n) — 2d_,(i* +n).

As |AT(=n)| = |AT (—n)| + |AF (=n)| + - + |AE“L1J (—n)|, the desired equality follows.

We now prove that |0%(Q*(y/—n))| = 0 ( mod 4) for n # 1 or 2. Since |0%(Q*(v/=3))| =
4, |09(Q*(v/=3))| = 0 (mod4). Let n > 3. Then, by (1), |0%(Q*(v/=n))| = d(n) +
2 |A*(—n)|. It thus follows that

|0%(Q*(v—n))| = d(n) +2|AT (—n)| (mod 4).
We write the set A*(—n) as the disjoint union of subsets in the form

AT (—n) = A,;;C(—n) UA (—n),

where

A;;éc(fn) = {(a,b,c) € AT(—=n) | b #c}
and

A (—n) == {(a,b,c) € AT (-n) | b=rc}.
By Lemma 3.7, the two sets Ag};c(—n)7 and A;__(—n) are finite. As a general observation,
we can see that (a,b,c) € AT(—n) if and only if (a,c,b) € A*(—n), which implies that
elements in the set Al;;c(—n) occur in pairs. Thus, |Al‘];c(—n)| is always even. For the rest
of the proof, we deal with three cases separately: when n is an even composite integer, when
n is an odd prime, and when n is an odd composite integer.
Case 1: Let n be an even composite integer with n = 2m for some m > 1 with m odd
(as n is square-free). Since d(n) = d(2)d(m) = 2d(m) and 2|d(m), d(n) = 0 (mod4). So,
09(Q* (v=)| = 2/A*(=n)| (mod4). Since |A*(-m)| = |Af,, (—n)| + A, (~n)| and
|A;;£c(—n)| is even, |09(Q*(v/—n))| = 2|4;_.(—n)| (mod4) in this case. Let (a,b,b) €
A _(—n). Then b = a? + n, which implies that (b + a)(b —a) = n = 2m. If 2|(b + a),

then b —a = 7', where b+ a = 2k and k is odd (as m is odd). Thus, 2b = 2k + 7 is
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odd, which is impossible. A similar contradiction occurs if 2|(b — a). We thus conclude that
Al .(—n) = o in this case and, hence, |0%(Q*(v/=n))| = 0 (mod 4).

Case 2: Let n be an odd prime. So, d(n) = 2 and sod(n) = 2 ( mod 4). Then, |0%(Q*(v/—n))|
=2+ 2|AT(—n)| (mod4) and, therefore, it suffices to show that |AT(—n)| is odd in this
case. Since |At(—n)| = |Ab#( n)| + |4} .(—n)| and |Ab#( n)| is even, we show that
|A_.(—n)| is odd. We, in fact, show that |[A4;_.(—n)| = 1. For (a,b,b) € A/ (-n),
b? = a? +n and, thus, (b+a)(b—a) =n. Since b+a > b— a and n is prime, we must have
b+a=nand b—a=1. Thus, b= "% and a = 271, That is, (251, 241, 241) is the only
element in AJ__(—n). Hence, the claimed congruence is settled in this case too.

Case 3: Let n be an odd composite integer with n = pi1ps...p., 7 > 2, where the p; are dis-
tinct  primes (as mn is  square-free). It  then  follows  that
d(n) = [[;_, d(p;) = 2" = 0 (mod4). So, |0%(Q*(v/—n))| = 2|A*(—n)| (mod4) and,
therefore, it suffices to show that | A™(—n)]| is even in this case. Since |[AT(—n)| = |Ab¢c( n)|
+|4;_.(—n)| and |Ab¢c( n)| is even, we show that |A;__(—n)| is even as well. In fact, we
prove the following stronger claim:

L@@+ () + (L) s ifris odd,

where (}) are the binomial coefficients. For (a,b,b) € Aj__(—n), we have b* = a® + n and,
thus, (b+a)(b—a) =n = p1ps...p,.. We notice that b+ a > b — a and investigate all the
possible ways of factoring b+ a and b—a. Suppose that r is even. Then, there is (g) =1 way
to write b+ a as the product of r primes (i.e. b+a = n) and b—a is the product of no primes
(i.e. b—a = 1), and there is (}) possibilities that b+a is the product of r—1 primes and b—a is
the product of one prime. We continue in this manner until we get to the final scenario, which
is where there are %(2) ways of writing both of b+a and b—a as a product of § primes each.
Seeing obviously that each single possibility among the above ways of faCtOI“lZ&thIlb of b+a
and b—a corresponds uniquely to a single point of A;;C(—n), the conclusion of the claim when
r is even follows immediately. The case when r is odd is handled similarly. From elementary
combinatorics (see [10] for instance), we know that >, o (;) = 2" and (}) = (,.”,) for

k=0,...,r. If r is even, then (g)—l—(;)—l——i—(%’;l)—l—%(%) = %(£>+(T+1)+ -+ (7). Thus,

2
=2 k=o (1) =2 (( )+ () ++ (57;1) + %(g)) = 2|A)_(-n)|. Hence, [A]_.(-n)| =
2"~! which is even, as desired. The same conclusion is reached similarly if r is odd. This
concludes the proof. O

Corollary 3.2. The action of G on Q*(\/—n) is intransitive.

Proof. We have, by Theorem 2.1, |0%(Q*(v/—1))| = |0%(Q*(v/~-2))| = 2, |0%(Q*(v/-3))| =
4, and |0%(Q*(/=n))| > d(n) > 2 for n > 3. The conclusion thus follows. O

Example 3.1. As an illustration, we compute in this example the value |0%(Q*(v/=n))| for
n = 11 in such a way that verifies Theorem 2.1 in this case. By Corollary 3.1 and Lemma
3.8, |09(Q*(vV=11))| = d(11) + [TF(-11)| = d(11) + 2 |[A*(-11)|. Of course, d(11) = 2.
So, it remains to find |[A*(—11)|. By Lemma 3.7, for (a,b,c) € A*(—11), a <5 and ¢ < 6.
L 4l ¢ Z if and only if ¢[12. So, by Lemma
3.7 again, the possible candidate values of ¢ are 1,2,3,4, and 6. Since a < ¢, we discard
the value ¢ = 1. For ¢ = 2, we have b = 6 and we get that (1,2,6) € AT(—11). For ¢ = 3,

We try these values one by one. For a = 1,
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we have b = 4 and we get that (1,3,4) € AT(—11). For ¢ = 4, we have b = 3 and we get
that (1,4,3) € AT(—11). For ¢ = 6, we have b = 2 and we get that (1,6,2) € AT(—11).
For a = 2, 22%11 € Z if and only if ¢|/15. By an argument similar to the above, we get in
this case only two elements (2,3,5),(2,5,3) € AT(—11). For a = 3, 32%11 € Z if and only
if ¢|20. We also get in this case only two elements (3,4,5),(3,5,4) € AT(—11). For a = 4,
L1 ¢ 7 if and only if ¢|27. The values ¢ = 1 and 3 are discarded as a < ¢. Thus, for

a = 4 we get no element in A*(—11). For a = 5, it can be checked similarly that we only

get only the element (5,6,6) € AT(—11). In summary, we have |AT(—11)| = 9 and, thus,
|09(Q*(v~11))| = d(11) + 5 (9) = 8.
On the other hand, by Theorem 2.1, we have

5

|09(M_11)| = d(11) + ; ;[d(iQ 4 11) — 2d<;(i* + 11)]

—o4 % {[d(12) + d(15) + d(20) + d(27) + d(36)]
-2 [d§1(12) + d§2(15) + dgg(QO) + d§4(27) + d§5(36)} }

2
:2+§{[6+4+6+4+9]—2[1+1+2+2—|—4]}:8.

Appendix

Using a C++ code to compute the sets AT (—n) for all 1 < n < 100 with n square-free,
the following table gives the values of |T+(—n)| and |0%(Q*(v/=n))| for all such n. So
that the table fits the page, we denote |TF(—n)| and |0%(Q*(v/—n))| by |TT,| and |O% |,
respectively.

n | [TF,] 0%, o [T, 0%, | n | |TF,] |0¢,
1] o 2 [33] 4 8 |67] 6 8
2 0 2 34 4 8 69 12 16
31 2 4 |35 12 16 |70 0 8
50 2 4 37| 2 4 | 71| 26 28
6| 0 4 |38 8 12 | 73| 6 8
7| 2 4 39| 12 16 | 74| 16 20
10 0 4 [41] 14 16 |77 12 16
11| 6 8 |42] o0 8 |78] 0 8
13 2 4 43| 6 8 | 79| 18 20
14| 4 8 |46] 4 8 |82 4 8
15| 4 8 |47] 18 20 |83 22 24
17| 6 8 |51 12 16 85| 4 8
19 6 8 |53] 10 12 | 86| 16 20
21| 4 8 |55] 12 16 |87 20 24
22| 0 4 57| 4 8 [89] 22 24
23 10 12 59 22 24 91 12 16
26| 8 12 61| 10 12 |93| 4 8
29| 10 12 |62 12 16 |94 12 16
30| 0 8 |65] 12 16 95| 28 32
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/31 10 12 |66 8 16 |97| 6 8

Table 2: The number of orbits in Q*(v/—n) for square-free 1 < n < 100
Below is the C++ code used to compute the sets AT (—n) for 1 < n < 100.
#include<iostream> using namespace std;
int main (){
int n,a,b,c,count = 0,check =0;
for (n=1;n < 101;n++){
if ((n%4! = 0)&&(n%9! = 0)&&(n%25! = 0)&&(n%49! = 0)){
for (a = 1;a < 100;a++){
for (b=2;b < 100;b++){
for (¢ =2;c < 100;c++){
if ((b> a)&&(c > a)){
if (bxc—axa)==n){
cout<<"when n ="<<n <<"a="<<a<<" b="
<< b<<" c="<< ¢<<endl;
count++;
check=1;

}
}
if (check== 1){
cout<<"Possibilities for"<< n <<":"<<count<<endl<<endl;

count =0;
check =0;
}
}
}
return 0;
}
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