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ON THE NUMBER OF ORBITS ARISING FROM THE ACTION OF

PSL(2,Z) ON IMAGINARY QUADRATIC NUMBER FIELDS

Abdulaziz Deajim1, Muhammad Aslam2

For square-free positive integers n, we study the action of the modular group

PSL(2,Z) on the subsets { a+
√
−n

c
∈ Q(

√
−n) | a, a2+n

c
, c ∈ Z } of the imaginary qua-

dratic number fields Q(
√
−n). In particular, we compute the number of orbits of this

action and show, for n > 3, that it is equal to

d(n) +
2

3

bn−1
2
c∑

i=1

[d(i2 + n)− 2d≤i(i
2 + n)],

where d(k) is the number of positive divisors of k, and d≤i(k) is the number of positive

divisors of k which do not exceed i. We also provide a C++ code to calculate these

numbers for square-free integers n with 1 ≤ n ≤ 100.

Keywords: imaginary quadratic field, modular group, orbit.

MSC2020: 05A18, 05E18, 11R11, 11A25, 20F05.

1. Introduction

Throughout this paper, we denote by G the modular group PSL(2,Z), whose elements

are all the Möbius transformations z 7→ (az + b)/(cz + d), a, b, c, d ∈ Z, ad − bc = 1. It

is known that G has the finite presentation 〈x, y : x2 = y3 = 1〉, where x and y are,

respectively, the transformations z 7→ −1/z and z 7→ (z − 1)/z (see [3] for a proof that

uses coset diagrams). The modular group belongs to a more general family of groups called

Hecke groups. The Hecke group Hn, 3 ≤ n ∈ N, is the group generated by the two Möbius

transformations z 7→ −1/z and z 7→ z + λn, where λn = 2 cos(π/n). It can be shown that

G ∼= H3. Actions of the modular group, and Hecke groups in general, on many discrete and

non-discrete structures play significant roles in different branches of mathematics (see [4]).

Among the important discrete structures upon which the modular group acts are

quadratic number fields. Let Q(
√
n) be a real quadratic number field, where n is a square-

free positive integer. Q. Mushtaq (in [7]) studied the action of G on the following subset of

Q(
√
n):

Q∗(
√
n) =

{
a+
√
n

c
∈ Q(

√
n) | a, a

2 − n
c

, c ∈ Z
}
.

Subsequent works by several authors considered properties emerging from this action (see

for instance [5], [6], and [8]).
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We shift the emphasis in this work towards studying the action of the modular group

on imaginary quadratic number fields. Throughout this paper, n denotes a square-free

positive integer. It is not hard to see that there is a natural action of G on Q(
√
−n)

(inherited from the action of G on C by Möbius transformations). Consider the following

subset of the imaginary quadratic number field Q(
√
−n):

Q∗(
√
−n) :=

{
a+
√
−n

c
∈ Q(

√
−n) | a, b =

a2 + n

c
, c ∈ Z

}
.

It can be checked that Q∗(
√
−n) is the collection of the complex roots of all quadratic

polynomials of the form cx2 − 2ax + b of the fixed discriminant −4n, with a, b, c ∈ Z and

0 ≤ a2 < bc. The aim of this paper is to study the action of G on Q∗(
√
−n) and, in

particular, count the number of orbits in Q∗(
√
−n) emerging from this action and present

an interesting congruence property of this number (Theorem 2.1).

In studying the action of similar groups on imaginary quadratic number fields, the

following should be recorded. M. Ashiq and Q. Mushtaq (in [1]) studied the action of the

subgroup 〈u, v : u3 = v3 = 1〉 of G on Q∗(
√
−n) (here u = y and v = xyx), where they

computed the number of orbits in the subset Q∗(
√
−n) under this action. A. Razaq (in [9])

studied the action of the group 〈x, y : x2 = y6 = 1〉 on Q(
√
−n), where he computed the

number of orbits in the subset
{
a+
√
−n

3c ∈ Q(
√
−n) | a, a

2+n
3c , c ∈ Z

}
.

2. The action of G on Q∗(
√
−n)

For α = a+
√
−n
c ∈ Q∗(

√
−n), we use the notation aα := a, bα := b = a2+n

c , and

cα := c.

Proposition 2.1. Q∗(
√
−n) is a G-set.

Proof. As G acts on Q(
√
−n), it remains only to show that Q∗(

√
−n) is

invariant under this action. Let α = a+
√
−n
c ∈ Q∗(

√
−n). To show that g(α) ∈ Q∗(

√
−n)

for every g ∈ G, it suffices to show that x(α), y(α) ∈ Q∗(
√
−n) since {x, y} is a complete

set of generators of G. We see, first, that

x(α) =
−1

α
=

−c
a+
√
−n

=
−c(a−

√
−n)

a2 + n
=
−a+

√
−n

b
.

Now, ax(α) = −a ∈ Z, cx(α) = b ∈ Z, and bx(α) =
a2x(α)+n

cx(α)
= a2+n

b = c ∈ Z, we get that

x(α) ∈ Q∗(
√
−n). Similarly, we see that

y(α) = 1− 1

α
= 1 + x(α) =

(−a+ b) +
√
−n

b
.

As ay(α) = −a+ b ∈ Z, cy(α) = b ∈ Z, and

by(α) =
a2y(α) + n

cy(α)
=

(−a+ b)2 + n

b
= −2a+ b+

a2 + n

b
= −2a+ b+ c ∈ Z,

we get that y(α) ∈ Q∗(
√
−n) as well. �

Remark 2.1. For some use in the sequel, the following table summarizes the action of each

g ∈ {x, y, y2} on an arbitrary element α = a+
√
−n
c ∈ Q∗(

√
−n). The first two lines of the

table were verified in the above proof, while the third line can be checked in a similar manner.
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g(α) ag(α) bg(α) cg(α)
x(α) −a c b

y(α) b− a −2a+ b+ c b

y2(α) c− a c −2a+ b+ c

Table 1: Signatures of x(α), y(α), and y2(α)

We recall and introduce here some needed terminology.

Definition 2.1. (see [2])

1. An element α ∈ Q∗(
√
−n) is said to be totally positive (resp. totally negative) if aαcα > 0

(resp. aαcα < 0).

2. The ordered triple (aα, bα, cα) is called the signature of α ∈ Q∗(
√
−n).

3. Define the map ‖.‖ : Q∗(
√
−n)→ N∪{0} by ‖α‖ = |aα|. We call ‖α‖ the norm of α (not

to be confused with the classical notion of norm).

Definition 2.2. For α ∈ Q∗(
√
−n), we call the set {α, y(α), y2(α)} the

α-cycle and denote it by α̂. We say that α̂ is a totally positive cycle if α, y(α), and y2(α) are

all totally positive. We denote by T+(−n) the set of all totally positive cycles in Q∗(
√
−n).

Remark 2.2.

1. For a+
√
−n
c ∈ Q∗(

√
−n), bc = a2 + n is always positive. So, b and c always have the

same sign. So, an equivalent useful definition to Definition 2.1 (part 1) can go like this:

α ∈ Q∗(
√
−n) is said to be totally positive if either aα, bα, cα > 0 or aα, bα, cα < 0; and α

is said to be totally negative if either (aα < 0 and bα, cα > 0) or (aα > 0 and bα, cα < 0).

Note that any α ∈ Q∗(
√
−n) is either totally positive, totally negative, or has norm zero.

2. In Definition 2.2, note that α̂ = ŷ(α) = ŷ2(α), so we can equally call α̂ the y(α)-cycle or

the y2(α)-cycle.

Example 2.1. For n = 5, α = 1+
√
−5

2 ∈ Q∗(
√
−5) is totally positive. From Table 1, we

have y(α) = 2+
√
−5

3 and y2(α) = 1+
√
−5

3 . It is clear that y(α) and y2(α) are both totally

positive as well. So, α̂ ∈ T+(−5).

For α ∈ Q∗(
√
−n), denote the orbit

{
β ∈ Q∗(

√
−n) | β = g(α), g ∈ G

}
by αG. De-

note the set of orbits in Q∗(
√
−n) under the action ofG by OG(Q∗(

√
−n)); so OG(Q∗(

√
−n)) :

=
{
αG | α ∈ Q∗(

√
−n)

}
. We adopt the standard notation d(n) for the number of positive

divisors of n. For two positive integers k ≤ m, denote by d≤k(m) the number of pos-

itive divisors of m which are less than or equal to k. For instance, d≤4(10) = 2 and

d≤10(10) = d(10) = 4.

We state our main result, which gives a formula for the number of orbits |OG(Q∗(
√
−n))|

and an interesting congruence property of such a number.

Theorem 2.1. Let n be a square-free positive integer. Then the number of orbits in

Q∗(
√
−n) under the action of G is

|OG(Q∗(
√
−n))| =


2 , if n = 1, 2

4 , if n = 3

d(n) + 2
3

∑b(n−1)/2c
i=1 [d(i2 + n)− 2d≤i(i

2 + n)] , otherwise.

Moreover, |OG(Q∗(
√
−n))| ≡ 0 (mod 4) for n ≥ 3.
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3. Lemmas and Proof of Theorem 2.1

3.1. Lemmas

In preparation for the proof of Theorem 2.1, we consider crucial lemmas, some of

which are interesting in their own right.

The following lemma shows that the sign of the denominators of elements in any given

orbit is the same.

Lemma 3.1. For α ∈ Q∗(
√
−n), sign(cβ) = sign(cα) for any β ∈ αG.

Proof. It is sufficient to show that cx(α) and cy(α) have the same sign as cα. By Remark 2.2,

bα and cα have the same sign. Since cx(α) = cy(α) = bα (Table 1), cx(α) and cy(α) have the

same sign as cα. �

The effect of the action of x on elements of Q∗(
√
−n) and their norms is given below.

Lemma 3.2. Let α ∈ Q∗(
√
−n). Then,

1. α is totally negative if and only if x(α) is totally positive.

2. ‖α‖ = ‖x(α)‖. Further, α has norm zero if and only if x(α) has norm zero.

Proof.

1. This follows from the fact that bαcα > 0, ax(α) = −aα, and cx(α) = bα; see Table 1 and

Remark 2.2.

2. The first statement is clear from Table 1, while the second statement follows from the

first. �

Some aspects of the actions of y and y2 on elements of Q∗(
√
−n) and their norms are

given below.

Lemma 3.3. Let α = a+
√
−n
c ∈ Q∗(

√
−n).

1. If α has norm zero, then y(α) and y2(α) are both totally positive.

2. If α is totally negative, then y(α) and y2(α) are both totally positive with ‖α‖ < ‖y(α)‖
and ‖α‖ < ‖y2(α)‖.
3. The α-cycle α̂ is totally positive if and only if either (0 < a, a < b, and a < c) or (0 > a,

a > b, and a > c).

Proof.

1. Since a = 0, it follows from Table 1 that ay(α)cy(α) = b2 > 0 and so y(α) is totally

positive. Similarly, ay2(α)cy2(α) = c(b + c) = n + c2 > 0 and so y2(α) is totally positive as

well.

2. Since α is totally negative, we have ac < 0 and, by Remark 2.2, ab < 0. We then have,

from Table 1, ay(α)cy(α) = (b− a)b = b2 − ab > 0 and so y(α) is totally positive. Similarly,

ay2(α)by2(α) = (c − a)c = c2 − ac > 0. Thus, by Remark 2.2, ay2(α)cy2(α) > 0 and so y2(α)

is totally positive as well. As for the norms in this case, we have ‖y(α)‖ = |b− a| = b− a >
−a = ‖α‖ and ‖y2(α)‖ = |c− a| = c− a > −a = ‖α‖.
3. Suppose that α̂ is a totally positive cycle. Since α is totally positive, a, b, c > 0 or

a, b, c < 0. Assume that a, b, c > 0. Since cy(α) = b > 0 and y(α) is totally positive,

ay(α) = b− a > 0. So b > a as desired. On the other hand, since by2(α) = c > 0 (and, hence,

cy2(α) > 0) and y2(α) is totally positive, ay2(α) = c−a > 0. So c > a as desired. Similarly, if
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a, b, c < 0, it follows that a > b and a > c. Conversely, suppose that 0 < a, a < b, and a < c.

Since ac > 0, α is totally positive. As ay(α) = b − a > 0 and cy(α) = b > 0, y(α) is totally

positive too. Also, as ay2(α) = c− a > 0 and by2(α) = c > 0 (and, hence, cy2(α) > 0), y2(α)

is totally positive as well. This shows that α̂ is a totally positive cycle. A similar argument

works if 0 > a, a > b, and a > c. �

Remark 3.1. It is apparent from the above lemma that for any three elements α, y(α), y2(α)

of Q∗(
√
−n), either all three are totally positive, one is totally negative and the other two are

totally positive, or one is of norm zero and the other two are totally positive. This remark

shall show to be useful shortly. In the terminology of coset diagrams (see [6], [7], or [11] for

example), the triangle whose vertices are α, y(α), y2(α) always has one of three properties:

either all vertices are totally positive, one vertex is totally negative and the other two are

totally positive, or one vertex is of norm zero and the other two are totally positive. We

chose, however, to not use the machinery of coset diagrams in this paper as combinatorial

arguments suffice.

Lemma 3.4. Under the action of G, every orbit in Q∗(
√
−n) contains both a totally negative

element and a totally positive element.

Proof. Consider an orbit αG for some α ∈ Q∗(
√
−n). By Remark 2.2 (part 1), α is either

totally negative, totally positive, or has norm zero. By Lemma 3.2, if α is totally negative,

then x(α) is totally positive, and conversely. Finally, if α is of norm zero, then y(α) is totally

positive by Lemma 3.3 and so xy(α) is totally negative. �

The following lemma specifies the elements of C fixed by x or y.

Lemma 3.5. Under the action of G on C, the only complex numbers fixed by x are ±i ∈
Q∗(
√
−1) and the only numbers fixed by y are 1±

√
−3

2 ∈ Q∗(
√
−3).

Proof. Let z ∈ C be such that x(z) = z. Then z2 = −1, which implies that z = ±i. If

y(z) = z, then z2 − z + 1 = 0, which implies that z = 1±
√
−3

2 . �

Remark 3.2. The latter statement in Lemma 3.5 entails that every α-cycle in Q∗(
√
−n)

consists of 3 distinct elements except when n = 3 and α is 1+
√
−3

2 or −1+
√
−3

−2 , in which cases

the α-cycle is a singleton.

From Definition 2.2, recall that

T+(−n) :=
{
α̂ | α ∈ Q∗(

√
−n) and α̂ is a totally positive cycle

}
.

According to Definition 2.1 (part 2), consider the two sets of signatures of totally positive

elements of Q∗(
√
−n) (by Lemma 3.3):

A+(−n) :=

{
(a, b, c) ∈ Z3 | a > 0, b =

a2 + n

c
> a, c > a

}
,

A−(−n) :=

{
(a, b, c) ∈ Z3 | a < 0, b =

a2 + n

c
< a, c < a

}
.

It is clear that a+
√
−n
c ∈ Q∗(

√
−n) for every (a, b, c) ∈ A+(−n) ∪A−(−n).

Next, we use the action of the cyclic subgroup Gy of G generated by y on Q∗(
√
−n)

induced from the action of G to define an action of Gy on A+(−n) when A+(−n) is non-

empty. Considering the signature in A+(−n) of some α ∈ Q∗(
√
−n), it is obvious that
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such a desired action of y on A+(−n) is to map the signature of α to the signature of

y(α). Namely, define the map Gy × A+(−n) → A+(−n), denoted by g · (a, b, c) for g ∈ Gy
and (a, b, c) ∈ A+(−n), by 1 · (a, b, c) = (a, b, c), y · (a, b, c) = (b − a,−2a + b + c, b) and

y2 · (a, b, c) = y · (y · (a, b, c)) = (c−a, c,−2a+ b+ c), see Table 1. To show that this is indeed

a map into A+(−n), it suffices to show that y · (a, b, c) ∈ A+(−n) for (a, b, c) ∈ A+(−n). We

have 0 < a, a < b, and a < c. So, 0 < b − a = ay(α), ay(α) = b − a < b − a + c − a = by(α)
and ay(α) = b − a < b = cy(α), from which is follows that y · (a, b, c) ∈ A+(−n) as desired.

Now, by the way we defined this map, it is obvious that it satisfies the axioms of a group

action. Hence, A+(−n) is a Gy-set under this induced action. Due to the symmetry between

A+(−n) and A−(−n), the action of Gy on A−(−n) is defined similarly. Indeed, we have

just proved the following Lemma.

Lemma 3.6. If A+(−n) and A−(−n) are non-empty, then A+(−n) and A−(−n) are Gy-

sets under the induced action defined in the above paragraph.

The following two lemmas show, in particular, that the sets A+(−n) and T+(−n) are

finite and give a formula that compares their respective cardinalities for n 6= 3.

Lemma 3.7. We have that A+(−1) = A+(−2) = ∅. If n ≥ 3 and (a, b, c) ∈ A+(−n), then

a ≤ n−1
2 and b, c ≤ n+1

2 . Furthermore, |A+(−n)| ≤ n2−1
8 .

Proof. Let (a, b, c) ∈ A+(−n). Since a+1 ≤ b and a+1 ≤ c, we have a2+2a+1 = (a+1)2 ≤
bc = a2 + n, from which it follows that a ≤ n−1

2 . If n ≤ 2, this leads to a contradiction,

therefore A+(−1) = A+(−2) = ∅. For n ≥ 3, consider f : [1, n−12 ] → R defined by

f(x) = x2+n
x+1 . From the sign of f ′, it follows that f is decreasing on [1,−1 +

√
n+ 1] and

increasing on [−1 +
√
n+ 1, n−12 ]. On the other hand, f(1) = f(n−12 ) = n+1

2 . Hence,

b ≤ a2+n
a+1 = f(a) ≤ n+1

2 . Now, an element (a, b, c) ∈ A+(−n) is determined by a choice of a

and b (as c = a2+n
b ) with 1 ≤ a < b ≤ n+1

2 . Since the number of such pairs (a, b) is
(n+1

2
2

)
,

we have |A+(−n)| ≤ 1
2

(
n+1
2

) (
n+1
2 − 1

)
= n2−1

8 . �

Lemma 3.8.

1. |A+(−1)| = |A+(−2)| = 0.

2. |A+(−n)| = 1 if and only if n = 3.

3. |A+(−n)| ≡ 0 (mod 3) for n 6= 3.

4. |T+(−n)| = 2
3 |A

+(−n)| for n 6= 3

Proof.

1. It is obvious from Lemma 3.7.

2. Since (1, 2, 2) ∈ A+(−3) and |A+(−3)| ≤ 32−1
8 = 1, we get |A+(−3)| = 1.

3. Let n 6= 3. If A+(−n) = ∅, then |A+(−n)| = 0 and we are done. Suppose that

(a, b, c) ∈ A+(−n) and α is the element of Q∗(
√
−n) whose signature is (a, b, c). Since the

set A+(−n) is finite (by Lemma 3.7), the number of orbits in A+(−n) under the action

of Gy (Lemma 3.6) is finite as well. Considering the action of Gy on Q∗(
√
−n) induced

from the action of G, we see that the totally positive α-cycle α̂ is Gy-invariant and so is

the corresponding set of signatures {(a, b, c), (b − a,−2a + b + c, b), (c − a, c,−2a + b + c)}
in A+(−n). Since n 6= 3, the elements of the set α̂ are distinct and so are the elements of

the corresponding set of signatures {(a, b, c), (b − a,−2a + b + c, b), (c − a, c,−2a + b + c)}.
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This means that each orbit in A+(−n), under the action of Gy, consists precisely of three

elements and, hence, |A+(−n)| is divisible by 3 as claimed.

4. Let n 6= 3. It is clear that the two sets A+(−n) and A−(−n) are disjoint and that

there is a bijection between them. It can also be easily seen that the same arguments in

parts 1, 2, and 3 above apply also to A−(−n). Let OGy (A+(−n)) and OGy (A−(−n)) be the

sets of orbits in A+(−n) and A−(−n), respectively, under the action of Gy. It follows from

the argument in the proof of Lemma 3.6 and part 3 above that there is the bijection from

T+(−n) into the disjoint union OGy (A+(−n)) ∪ OGy (A−(−n)) given by

α̂ 7→ {(a, b, c), (b− a,−2a+ b+ c, b), (c− a, c,−2a+ b+ c)}.

Since we have, by part 3 above,

|OGy (A+(−n))| = (1/3) |A+(−n)| = (1/3) |A−(−n)| = |OGy (A−(−n))|

and the two sets of orbits are disjoint, we get |T+(−n)| = 2
3 |A

+(−n)|. �

Lemma 3.9. The number of elements of norm zero in Q∗(
√
−n) is equal to 2d(n).

Proof. For α =
√
−n
cα
∈ Q∗(

√
−n), bα = n

cα
∈ Z if and only if cα is a divisor of n. Considering

positive and negative divisors of n, the conclusion follows. �

The last round in our effort to prove Theorem 2.1 is Corollary 3.1 below. For this,

we need the following two lemmas.

Lemma 3.10.

1. Every orbit in Q∗(
√
−n) contains at most one element of T+(−n).

2. Every orbit in Q∗(
√
−n) contains at most two elements of norm zero.

Proof.

1. Suppose that α̂ ∈ T+(−n) for some α ∈ Q∗(
√
−n). Let β ∈ αG \ α̂. We show that

β̂ 6∈ T+(−n) by showing that the β-cycle β̂ must contain a totally negative element. Since

the action of G on the orbit αG is transitive and α̂ 6= β̂, there is some g ∈ G \ {1, y, y2} such

that g(α) = β. Since x and y are of order 2 and 3, respectively, it can be checked that g is

of one of the following forms:

g1 = x,

g2 = xyε1xyε2x . . . xyεk , k ≥ 1, εi = 1 or 2, i = 1, . . . , k,

g3 = xyε1xyε2x . . . xyεkx, k ≥ 1, εi = 1 or 2, i = 1, . . . , k,

g4 = yε1xyε2x . . . xyεk , k ≥ 1, εi = 1 or 2, i = 1, . . . , k,

g5 = yε1xyε2x . . . xyεkx, k ≥ 1, εi = 1 or 2, i = 1, . . . , k.

If g = g1, then β = x(α) is totally negative (since α is totally positive), by Lemma 3.2. So β̂ 6∈
T+(−n). Assume that g = g2. As yεk(α) ∈ α̂, it follows that yεk(α) is totally positive and

so xyεk(α) is totally negative, by Lemma 3.2. Then, by Lemma 3.3, yεk−1xyεk(α) is totally

positive. Continuing in this manner by applying x to yεk−1xyεk(α) then applying yεk−2 and

so on, we get that γ = yε1xyε2x . . . xyεk(α) is totally positive. Thus, β = g2(α) = x(γ) is

totally negative and so β̂ 6∈ T+(−n). The case g = g3 is similar to the case g = g2 starting

with yεkx(α) being totally positive instead of yεk(α). Now, if g = g4, we follow the same

argument to get that δ = xyε2x . . . xyεk(α) is totally negative. Since β = g4(α) = yε1(δ),
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β̂ = δ̂ (see Remark 2.2 (2)). So, β̂ 6∈ T+(−n) since δ ∈ β̂ and δ is totally negative. The case

g = g5 is similar to the case g = g4. By this, we showed in all cases that β̂ 6∈ T+(−n) and

so α̂ is the only element of T+(−n) lying in the orbit αG.

2. Let α be of norm zero. Then, x(α) is also of norm zero (Lemma 3.2). Let β ∈ αG \
{α, x(α)}. We show that β must be either totally negative or totally positive and so can

never be of norm zero. By the transitivity of the action of G on αG, let h ∈ G be such that

h(β) = α. It can be checked that h is of one of the following forms:

h1 = yε, ε = 1 or 2,

h2 = xyε1xyε2x . . . xyεk , k ≥ 1, εi = 1 or 2, i = 1, . . . , k,

h3 = xyε1xyε2x . . . xyεkx, k ≥ 1, εi = 1 or 2, i = 1, . . . , k,

h4 = yε1xyε2x . . . xyεk , k ≥ 1, εi = 1 or 2, i = 1, . . . , k,

h5 = yε1xyε2x . . . xyεkx, k ≥ 1, εi = 1 or 2, i = 1, . . . , k.

If h = h1, then β = yε(α) is totally positive (Lemma 3.3). Assume that h = h2, then yεk(α)

is totally positive (Lemma 3.3) and so xyεk(α) is totally negative (Lemma 3.2). Applying

yεk−1 to xyεk(α) followed by x, then yεk−2 followed by x and so on, we get that β = h2(α) is

totally negative. In a similar manner, we get that h3(α) is totally negative, h4(α) is totally

positive, and h5(α) is totally positive. This shows that β is never of norm zero. �

Lemma 3.11. Every orbit in Q∗(
√
−n) contains either an element of T+(−n) or an element

of norm zero, but not both.

Proof. Let αG be an orbit in Q∗(
√
−n). On the one hand, suppose that αG contains some

β̂ ∈ T+(−n). It remains, in this direction, to show that αG contains no element of norm zero.

Obviously, no element in β̂ is of norm zero. It also follows from the argument in the proof

of Lemma 3.10 (part 1) that for any γ ∈ αG \ β̂, one of the elements of γ̂ = {γ, y(γ), y2(γ)}
is totally negative. Now, as an easy consequence of Lemma 3.3, γ cannot be of norm zero

(as, otherwise, γ̂ would not have a totally negative element).

On the other hand, suppose that αG contains no element of T+(−n). We show

that αG must contain an element of norm zero. By Lemma 3.4, let α1 ∈ αG be a totally

negative element and so x(α1) is totally positive (Lemma 3.2). If the cycle x̂(α1) contains

an element of norm zero, then we are done. Otherwise, since x̂(α1) 6∈ T+(−n) and x(α1) is

totally positive, x̂(α1) contains a totally negative element α2 = yε1x(α1) with ε1 = 1 or 2.

Moreover, by Lemmas 3.2 and 3.3,

‖α2‖ < ‖y3−ε1(α2)‖ = ‖x(α1)‖ = ‖α1‖.

Now, if x̂(α2) contains an element of norm zero, then we are done. Otherwise, since

x̂(α2) 6∈ T+(−n) and x(α2) is totally positive, x̂(α2) contains a totally negative element

α3 = yε2x(α2) with ε2 = 1 or 2. Moreover, an argument similar to the one above yields

the inequality ‖α3‖ < ‖α2‖. Suppose that this process of getting totally negative elements

in αG never terminates (i.e. the process never yields an element of norm zero). Then,

we would have a sequence α1, α2, α3, . . . of totally negative elements in the orbit αG with

strictly decreasing norms

‖α1‖ > ‖α2‖ > ‖α3‖ > . . .



PSL(2,Z) Action on Imaginary Quadratic Fields 69

However, the latter sequence of norms is a strictly decreasing sequence of positive integers

which obviously must terminate. This contradicts the non-termination of the sequence of

totally negative elements α1, α2, α3, . . . , which in turn proves that αG has to contain an

element of norm zero. �

Corollary 3.1.

1. Every orbit in Q∗(
√
−1) contains a unique element of norm zero.

2. Every orbit in Q∗(
√
−2) contains a unique pair of distinct elements of norm zero.

3. Every orbit in Q∗(
√
−n), for n ≥ 3, contains either a unique pair of distinct ele-

ments of norm zero or a unique element of T+(−n), but not both. In this case, we have

|OG(Q∗(
√
−n))| = d(n) + |T+(−n)|.

Proof.

1. By Lemma 3.8, T+(−1) = ∅. So, every orbit in Q∗(
√
−1) contains an element of norm

zero, by Lemma 3.11. Since the only elements of norm zero in Q∗(
√
−1) are i and −i

(Lemma 3.9) and they lie in distinct orbits (Lemma 3.1), the conclusion follows.

2. By Lemma 3.8, T+(−2) = ∅. So, every orbit in Q∗(
√
−2) contains an element of

norm zero, by Lemma 3.11. By Lemma 3.9, there are precisely 4 elements of norm zero in

Q∗(
√
−2); namely

√
−2, −

√
−2,

√
−2
2 and −

√
−2
2 . Note further that

√
−2
2 = x(

√
−2) and

−
√
−2
2 = x(−

√
−2). Now, by Lemma 3.1, the two pairs

(√
−2,

√
−2
2

)
and

(
−
√
−2, −

√
−2
2

)
lie in distinct orbits. The conclusion now follows.

3. For n ≥ 3, it follows from Corollary 3.1 (part 3) that the orbits in Q∗(
√
−n) are precisely

of two types. There are those orbits each of which contains a unique element of T+(−n)

and contains no zero-norm elements, and there are those orbits each of which contains a

unique pair of distinct zero-norm elements and contains no elements of T+(−n). Thus, the

total number of orbits in Q∗(
√
−n) is equal to |T+(−n)| plus half the number of zero-norm

elements in Q∗(
√
−n). So, by Lemma 3.9, the claimed formula for the total number of orbits

follows. �

3.2. Proof of Theorem 2.1

Proof. (Theorem 2.1)

For n = 1 and n = 2, it follows from Corollary 3.1 (parts 1 and 2) and their proofs

that |OG(Q∗(
√
−1))| = |OG(Q∗(

√
−2))| = 2.

For n = 3, it follows from Lemma 3.5 and the argument in the proof of Lemma

3.8 (part 2) that T+(−3) =
{{

1+
√
−3

2

}
,
{
−1+

√
−3

−2

}}
. Thus, by Corollary 3.1 (part 3),

|OG(Q∗(
√
−3))| = d(3) + |T+(−3)| = 2 + 2 = 4.

For n > 3, it follows from Corollary 3.1 (part 3) and Lemma 3.8 that

|OG(Q∗(
√
−n))| = d(n) + |T+(−n)| = d(n) +

2

3
|A+(−n)|. (1)

So the desired claim in this case holds if and only if

|A+(−n)| =
bn−1

2 c∑
i=1

[d(i2 + n)− 2d≤i(i
2 + n)].
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We seek now to prove this last equality. Making use of Lemma 3.7, we first write the set

A+(−n) as a disjoint union of subsets in the form

A+(−n) = A+
1 (−n) ∪A+

2 (−n) ∪ · · · ∪A+

bn−1
2 c

(−n),

where, for each i = 1, 2, . . . , bn−12 c,

A+
i (−n) :=

{
(i, b, c) ∈ Z3 | i > 0, b =

i2 + n

c
> i, c > i

}
.

For a fixed such i, we can see that A+
i (−n) = A+

i,d1
(−n)−

{
A+
i,d2

(−n) ∪A+
i,d3

(−n)
}

, where

A+
i,d1

(−n) :=

{
(i, d1,

i2 + n

d1
) ∈ A+

i (−n) | d1|(i2 + n)

}
,

A+
i,d2

(−n) :=

{
(i, d2,

i2 + n

d2
) ∈ A+

i (−n) | d2 ≤ i, d2|(i2 + n)

}
,

A+
i,d3

(−n) :=

{
(i,
i2 + n

d3
, d3) ∈ A+

i (−n) | d3 ≤ i, d3|(i2 + n)

}
.

Note that |A+
i,d1

(−n)| = d(i2 + n) and |A+
i,d2

(−n)| = |A+
i,d3

(−n)| = d≤i(i
2 + n). If the

latter two sets have a point in common, then for some d2 ≤ i and d3 ≤ i we would have

d2d3 = i2 + n ≤ i2, which is absurd. So, these two sets are disjoint and, hence,

|A+
i (−n)| = |A+

i,d1
(−n)| − |A+

i,d2
(−n)| − |A+

i,d3
(−n)| = d(i2 + n)− 2d≤i(i

2 + n).

As |A+(−n)| = |A+
1 (−n)|+ |A+

2 (−n)|+ · · ·+ |A+

bn−1
2 c

(−n)|, the desired equality follows.

We now prove that |OG(Q∗(
√
−n))| ≡ 0 ( mod 4) for n 6= 1 or 2. Since |OG(Q∗(

√
−3))| =

4, |OG(Q∗(
√
−3))| ≡ 0 (mod4). Let n > 3. Then, by (1), |OG(Q∗(

√
−n))| = d(n) +

2
3 |A

+(−n)|. It thus follows that

|OG(Q∗(
√
−n))| ≡ d(n) + 2 |A+(−n)| (mod 4).

We write the set A+(−n) as the disjoint union of subsets in the form

A+(−n) = A+
b 6=c(−n) ∪A+

b=c(−n),

where

A+
b 6=c(−n) := {(a, b, c) ∈ A+(−n) | b 6= c}

and

A+
b=c(−n) := {(a, b, c) ∈ A+(−n) | b = c}.

By Lemma 3.7, the two sets A+
b6=c(−n), and A+

b=c(−n) are finite. As a general observation,

we can see that (a, b, c) ∈ A+(−n) if and only if (a, c, b) ∈ A+(−n), which implies that

elements in the set A+
b6=c(−n) occur in pairs. Thus, |A+

b6=c(−n)| is always even. For the rest

of the proof, we deal with three cases separately: when n is an even composite integer, when

n is an odd prime, and when n is an odd composite integer.

Case 1: Let n be an even composite integer with n = 2m for some m > 1 with m odd

(as n is square-free). Since d(n) = d(2)d(m) = 2d(m) and 2|d(m), d(n) ≡ 0 (mod 4). So,

|OG(Q∗(
√
−n))| ≡ 2|A+(−n)| (mod 4). Since |A+(−n)| = |A+

b 6=c(−n)| + |A+
b=c(−n)| and

|A+
b 6=c(−n)| is even, |OG(Q∗(

√
−n))| ≡ 2|A+

b=c(−n)| (mod 4) in this case. Let (a, b, b) ∈
A+
b=c(−n). Then b2 = a2 + n, which implies that (b + a)(b − a) = n = 2m. If 2|(b + a),

then b − a = m
k , where b + a = 2k and k is odd (as m is odd). Thus, 2b = 2k + m

k is
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odd, which is impossible. A similar contradiction occurs if 2|(b− a). We thus conclude that

A+
b=c(−n) = ∅ in this case and, hence, |OG(Q∗(

√
−n))| ≡ 0 (mod 4).

Case 2: Let n be an odd prime. So, d(n) = 2 and so d(n) ≡ 2 ( mod 4). Then, |OG(Q∗(
√
−n))|

≡ 2 + 2 |A+(−n)| (mod 4) and, therefore, it suffices to show that |A+(−n)| is odd in this

case. Since |A+(−n)| = |A+
b 6=c(−n)| + |A+

b=c(−n)| and |A+
b 6=c(−n)| is even, we show that

|A+
b=c(−n)| is odd. We, in fact, show that |A+

b=c(−n)| = 1. For (a, b, b) ∈ A+
b=c(−n),

b2 = a2 + n and, thus, (b+ a)(b− a) = n. Since b+ a > b− a and n is prime, we must have

b+ a = n and b− a = 1. Thus, b = n+1
2 and a = n−1

2 . That is,
(
n−1
2 , n+1

2 , n+1
2

)
is the only

element in A+
b=c(−n). Hence, the claimed congruence is settled in this case too.

Case 3: Let n be an odd composite integer with n = p1p2 . . . pr, r ≥ 2, where the pi are dis-

tinct primes (as n is square-free). It then follows that

d(n) =
∏r
i=1 d(pi) = 2r ≡ 0 (mod4). So, |OG(Q∗(

√
−n))| ≡ 2 |A+(−n)| (mod4) and,

therefore, it suffices to show that |A+(−n)| is even in this case. Since |A+(−n)| = |A+
b 6=c(−n)|

+|A+
b=c(−n)| and |A+

b6=c(−n)| is even, we show that |A+
b=c(−n)| is even as well. In fact, we

prove the following stronger claim:

|A+
b=c(−n)| =

{ (
r
0

)
+
(
r
1

)
+ · · ·+

(
r

r
2−1
)
r

+ 1
2

(
r
r
2

)
; if r is even(

r
0

)
+
(
r
1

)
+ · · ·+

(
r

r−1
2 −1

)
+
(
r
r−1
2

)
; if r is odd,

where
(
r
k

)
are the binomial coefficients. For (a, b, b) ∈ A+

b=c(−n), we have b2 = a2 + n and,

thus, (b + a)(b − a) = n = p1p2 . . . pr. We notice that b + a > b − a and investigate all the

possible ways of factoring b+a and b−a. Suppose that r is even. Then, there is
(
r
0

)
= 1 way

to write b+a as the product of r primes (i.e. b+a = n) and b−a is the product of no primes

(i.e. b−a = 1), and there is
(
r
1

)
possibilities that b+a is the product of r−1 primes and b−a is

the product of one prime. We continue in this manner until we get to the final scenario, which

is where there are 1
2

(
r
r
2

)
ways of writing both of b+a and b−a as a product of r2 primes each.

Seeing obviously that each single possibility among the above ways of factorizations of b+ a

and b−a corresponds uniquely to a single point of A+
b=c(−n), the conclusion of the claim when

r is even follows immediately. The case when r is odd is handled similarly. From elementary

combinatorics (see [10] for instance), we know that
∑r
k=0

(
r
k

)
= 2r and

(
r
k

)
=
(
r

r−k
)

for

k = 0, . . . , r. If r is even, then
(
r
0

)
+
(
r
1

)
+· · ·+

(
r

r
2−1
)
+ 1

2

(
r
r
2

)
= 1

2

(
r
r
2

)
+
(

r
r
2+1

)
+· · ·+

(
r
r

)
. Thus,

2r =
∑r
k=0

(
r
k

)
= 2

((
r
0

)
+
(
r
1

)
+ · · ·+

(
r

r
2−1
)

+ 1
2

(
r
r
2

))
= 2|A+

b=c(−n)|. Hence, |A+
b=c(−n)| =

2r−1 which is even, as desired. The same conclusion is reached similarly if r is odd. This

concludes the proof. �

Corollary 3.2. The action of G on Q∗(
√
−n) is intransitive.

Proof. We have, by Theorem 2.1, |OG(Q∗(
√
−1))| = |OG(Q∗(

√
−2))| = 2, |OG(Q∗(

√
−3))| =

4, and |OG(Q∗(
√
−n))| ≥ d(n) ≥ 2 for n > 3. The conclusion thus follows. �

Example 3.1. As an illustration, we compute in this example the value |OG(Q∗(
√
−n))| for

n = 11 in such a way that verifies Theorem 2.1 in this case. By Corollary 3.1 and Lemma

3.8, |OG(Q∗(
√
−11))| = d(11) + |T+(−11)| = d(11) + 2

3 |A
+(−11)|. Of course, d(11) = 2.

So, it remains to find |A+(−11)|. By Lemma 3.7, for (a, b, c) ∈ A+(−11), a ≤ 5 and c ≤ 6.

We try these values one by one. For a = 1, 12+11
c ∈ Z if and only if c|12. So, by Lemma

3.7 again, the possible candidate values of c are 1, 2, 3, 4, and 6. Since a < c, we discard

the value c = 1. For c = 2, we have b = 6 and we get that (1, 2, 6) ∈ A+(−11). For c = 3,
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we have b = 4 and we get that (1, 3, 4) ∈ A+(−11). For c = 4, we have b = 3 and we get

that (1, 4, 3) ∈ A+(−11). For c = 6, we have b = 2 and we get that (1, 6, 2) ∈ A+(−11).

For a = 2, 22+11
c ∈ Z if and only if c|15. By an argument similar to the above, we get in

this case only two elements (2, 3, 5), (2, 5, 3) ∈ A+(−11). For a = 3, 32+11
c ∈ Z if and only

if c|20. We also get in this case only two elements (3, 4, 5), (3, 5, 4) ∈ A+(−11). For a = 4,
42+11
c ∈ Z if and only if c|27. The values c = 1 and 3 are discarded as a < c. Thus, for

a = 4 we get no element in A+(−11). For a = 5, it can be checked similarly that we only

get only the element (5, 6, 6) ∈ A+(−11). In summary, we have |A+(−11)| = 9 and, thus,

|OG(Q∗(
√
−11))| = d(11) + 2

3 (9) = 8.

On the other hand, by Theorem 2.1, we have

|OG(M−11)| = d(11) +
2

3

5∑
i=1

[d(i2 + 11)− 2d≤i(i
2 + 11)]

= 2 +
2

3
{ [d(12) + d(15) + d(20) + d(27) + d(36)]

− 2 [d≤1(12) + d≤2(15) + d≤3(20) + d≤4(27) + d≤5(36)] }

= 2 +
2

3
{[6 + 4 + 6 + 4 + 9]− 2 [1 + 1 + 2 + 2 + 4]} = 8.

Appendix

Using a C++ code to compute the sets A+(−n) for all 1 ≤ n ≤ 100 with n square-free,

the following table gives the values of |T+(−n)| and |OG(Q∗(
√
−n))| for all such n. So

that the table fits the page, we denote |T+(−n)| and |OG(Q∗(
√
−n))| by |T+

−n| and |OG−n|,
respectively.

n |T+
−n| |OG−n| n |T+

−n| |OG−n| n |T+
−n| |OG−n|

1 0 2 33 4 8 67 6 8

2 0 2 34 4 8 69 12 16

3 2 4 35 12 16 70 0 8

5 2 4 37 2 4 71 26 28

6 0 4 38 8 12 73 6 8

7 2 4 39 12 16 74 16 20

10 0 4 41 14 16 77 12 16

11 6 8 42 0 8 78 0 8

13 2 4 43 6 8 79 18 20

14 4 8 46 4 8 82 4 8

15 4 8 47 18 20 83 22 24

17 6 8 51 12 16 85 4 8

19 6 8 53 10 12 86 16 20

21 4 8 55 12 16 87 20 24

22 0 4 57 4 8 89 22 24

23 10 12 59 22 24 91 12 16

26 8 12 61 10 12 93 4 8

29 10 12 62 12 16 94 12 16

30 0 8 65 12 16 95 28 32
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31 10 12 66 8 16 97 6 8

Table 2: The number of orbits in Q∗(
√
−n) for square-free 1 ≤ n ≤ 100

Below is the C++ code used to compute the sets A+(−n) for 1 ≤ n ≤ 100.
#include<iostream> using namespace std;
int main (){

int n, a, b, c,count = 0,check = 0;
for (n = 1;n < 101;n++){

if ((n%4! = 0)&&(n%9! = 0)&&(n%25! = 0)&&(n%49! = 0)){
for (a = 1; a < 100; a++){

for (b = 2; b < 100; b++){
for (c = 2; c < 100; c++){

if ((b > a)&&(c > a)){
if ((b ∗ c− a ∗ a) == n){
cout<<"when n ="<< n <<", a ="<< a <<", b ="

<< b <<", c ="<< c <<endl;
count++;
check= 1;

}
}

}
}

}
if (check== 1){
cout<<"Possibilities for"<< n <<":"<<count<<endl<<endl;

count = 0;
check = 0;

}
}
}

return 0;
}
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