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AN ABSTRACT VIEW ON PATTERN RECONGNITION
BASED ON CORRELATION

Octavian-Florian GEORGESCU', Florica MOLDOVEANU?

In this paper we propose an abstract view on pattern recognition, pointing
out some fundamental relations around the central concept of correlation between
the main representation domains of the signals, both analogical and digital. These
domains are: the temporal or spatial domain, the frequency domain and the
probabilistic domain. In a unitary, but also reflexive vision upon these domains we
will refer to the principle of orthogonal decomposition in all the three domains, but
also to the Heisenberg’s uncertainty principle applied to the signal time-frequency
analysis. This way, we specify a framework for the pattern recognition problem, that
is, in essence, a problem of correlation / decorrelation.

Keywords: correlation, spatial domain, frequency domain, unitary transform,
Fourier transform, uncertainty principle, probabilistic domain,
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1. Introduction

It is said that humans think and get the most quality information from
images and concepts. It is given big picture and the central concept of our
discourse in Fig. 1.

Observation: We refer to “spatial domain”, considering we are working
with digital images, but we could also refer to ‘temporal domain’ or ‘time
domain’. Generally, they used the terms ‘spatial filtering’ and ‘frequency domain’
[10]. In fact, the frequency could be spatial, temporal or of other kind, depending
on the domain in which we apply the Fourier Transform (direct or inverse
transform, this is the meaning of the bidirectional arrow).
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Fig. 1. Our «big picture»

Therefore:

- our central concept is the correlation; we will see how this concept is

applied in all the mentioned domains

- there are some relations between the domains:

1. The convolution theorem establishes a relation between the
spatial domain and the frequency domain. This theorem is
equivalent with the correlation theorem from Fourier analysis.
In fact, for an image-signal, by definition, the convolution is a
correlation with the mirrored mask.

2. The Karhunen—Loéve theorem by which a stochastic process
could be represented as an infinite linear combination of
orthogonal functions (forming an orthonormal basis), analogous
to a Fourier series representation of a function on a bounded
interval. The importance of the Karhunen—Lo¢ve theorem is that
it yields the best such basis in the sense that it minimizes the
total mean squared error.

3. The relation between spatial domain and probabilistic domain is
that between what we see on an actual scene and the history of
the events on the same scene. While ‘x N’ means the
accumulation of spatial «images» which could generate a
reasonable statistic, E[.] means the expectation or media
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operator which estimates the most probable realization conform
to the probabilistic data.

In the “Conclusions” section we also mention, without details, a main
relationship between these domains and the «fuzzy» domain.

Someone could ask: What good is this synthesis? When a researcher has to
analyze some signals in order to extract meaning from them, his ability to analyze
signals in the main signals representation domains is almost a condition for the
success of his investigation. This synthesis is also interesting because it catch in a
clear picture, in an “orthophoto” view, the main approaches of signal processing
and the intrinsic relations between these approaches. The author needed this view
in front of various problems of signal processing and analysis.

2. Fourier transform - a prototype tool for frequency domain
representations

First we have to state that our discussion takes place inside Linear time-
invariant (LTI) system theory — see [1]. The fundamental result in LTI system
theory is that any LTI system can be characterized entirely by a single function
called the system's impulse response. The output of the system is simply the
convolution of the system’s input with the system's impulse response. This
method of analysis is often called the “time domain” point-of-view. The same
result is true for discrete-time linear shift-invariant systems in which signals are
discrete-time samples, and convolution is defined on sequences.

Equivalently, any LTI system can be characterized in the frequency
domain by the system's transfer function, which is the Laplace transform of the
system's impulse response (or Z transform in the case of discrete-time systems).
As a result of the properties of these transforms, the output of the system in the
frequency domain is the dot product of the transfer function and the transform of
the input. In other words, convolution in the time domain is equivalent to
multiplication in the frequency domain: this is the general meaning of the
convolution theorem.

For all LTI systems, the eigenfunctions, and the basis functions of the
transforms, are complex exponentials. Thus, if the input to a system is the
complex waveform Ae® for some “complex” amplitude A and complex frequency
s, the output will be some complex constant times the input, say Be™ for some new
complex amplitude B. The ratio B / A is the transfer function at frequency S.

LTI system theory is suitable for describing many important systems - any
system that can be modeled as a linear homogeneous differential equation with
constant coefficients is an LTI system. In DSP, filtering operations could be seen
as LTI systems - the filtering mask corresponds to the impulse response. Through
the complex exponentials we could represent frequency components => LTI
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systems cannot produce frequency components that are not in the input. Most LTI
systems are considered «easy» to analyze, at least compared to the time-varying
and/or nonlinear case.

The Fourier transform could be seen as a special case of the Laplace
transform - when the exponential have a purely imaginary argument -, giving the
eigenvalues for pure complex sinusoids. The Fourier Transform (FT) for a real
signal f(x) with finite energy is:

F@):Tfumﬂmwx (D)

This _transform, compared with the Laplace transform, has the major advantage to
be invertible: under suitable conditions, f can be reconstructed from F by the
inverse transform:

F@):Tfumﬂmwx )

F(u) are the Fourier coefficients, i.e. the coefficients of the representation
of the signal in the Fourier domain, the domain of the pure (spatial or temporal or
any other parameter) frequencies u. FT is an integral transform with a separable
and symmetric kernel — it operates on the entire image-signal and, for a 2-D
input, in order to reduce the time of computation, we could apply the only a 1-D
transform: first on rows, then on columns or inversely - see [3] for example.
Regarding our central concept of correlation we point out that for a symmetric
kernel the spatial convolution is equivalent with a spatial correlation.

In [2] he said: «Very broadly speaking, the Fourier transform is a
systematic way to decompose «generic» functions into a superposition of
«symmetric» functions. These symmetric functions are usually quite explicit (such
as a trigonometric function sin(nx) or cos(nx)), and are often associated with
physical concepts such as frequency or energy. A suggestive example of such a
unique decomposition is:we can always write a function f as the superposition f =
fe +fo of an even function fe and an odd function fo, by the formulae:

fe(x) := [f(x) + f(—x)] /2 and 3)
fo(x) :=[f(x) - f(—x)] /2 4)
fe(x) and fo(x) are decorrelated components, which form an orthogonal
decomposition. The correlation and orthogonality are perfect antonyms.
This concept of symmetry is intimately related with the concept of
correlation, which is defined by the inner product over a vector space.
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3. The inner product and the orthogonal decomposition. Unitary
transforms

The inner product over a vector space permits the rigorous introduction of
the notion of length of a vector. An inner product naturally induces an associated
norm, thus an inner product space is also a normed vector space. A complete
space (by definition, a metric space in which every Cauchy sequence is
convergent) with an inner product is called a Hilbert space. The inner product also
permits the rigorous introduction of the notion of the angle between two vectors.
In particular, it also provides a high level abstract definition of the orthogonality
between vectors: two orthogonal vectors have a zero inner product.

A sequence space is a vector space whose elements are infinite sequences
of real or complex numbers. For us this is the space of sampled signals. The most
important sequences spaces in functional / signal analysis are the (° spaces,
consisting of the p-power summable sequences, with the p-norm. The ¢ space,
the space of the signals with finite energy — a sufficient condition for the existence
of the Fourier transform -, has found to be the only sequence Hilbert space of this
class. Theorem: any Hilbert space has an orthonormal basis: a basis in which all
the elements are orthogonal and have unit norm. Why is so important to have an
orthonormal basis? Because for a general inner product space V, an orthonormal
basis can be used to define normalized orthogonal coordinates on V. Under these
coordinates, the inner product becomes simple dot product of vectors. Thus the
presence of an orthonormal basis reduces the study of a finite-dimensional inner
product space to the study of R" under dot product. This is a fundamental tool
from the computational and also representational point of view. The big advantage
is that through such an orthogonal decomposition, we decorrelate the components
of the signal, having the freedom to analyze separately every such a component.

So, we know that for our space of signals exists at least one orthonormal /
orthogonal basis. How to build it? Using the Gram-Schmidt Process we may start
with an arbitrary basis and transform it into an orthonormal basis. But some
orthogonal decompositions have exceptional properties and meanings: these are
the unitary transforms, which preserve the energy or information contained in the
signal. A unitary transform is defined by a unitary matrix A, i.e. with

Al =AT (5)
the inverse of a unitary matrix is equal to its conjugate transpose. The forward 1-
D transform for an input vector v, representing the samples of the input signal is:

u=Av (6)
, and the inverse transform, i.e. the reconstruction of v, is:
v=A"u (7)

Conform [3], a deep meaning of a unitary transform could be extracted if
we point out the columns of A :
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AT =[Ag, Ay, Ay (3)
Relation (4) becomes:
u(k) =< A,,v>,withk=0..N-1 9

, where <.,.> is the dot product, and relation (5) becomes:
N-1
v=> u(k)A,
k=0 (10)

Therefore: the input vector (v) is decomposed into the basis formed by the
columns (A ) of A™ - the coefficients in this expansion is even (u(k)) the

components of the transformed vector; the coefficients are the dot products (<A, ,

v>) between the mentioned columns and the input vector (v). This basis is
orthonormal, conform (5).

The set of functions f,(X) = exp(2minx), where n € Z is an orthonormal
basis for the Hilbertian space L*([0,1]) (L* generalizes ¢* from sequences to
functions): here is the foundation of the Fourier analysis.

Similar with the 1-D case, for the 2-D case, the unitary transform of an
image-signal represents the expression of this signal as a linear combination over
some «basic» images.

The inner product expresses the resemblance between a (sampled) signal
and a (sampled) pattern (see also the ‘image matching’ described in [5] and the
explanation given in [6]).

Thus, until now, we sketch the big picture of the paper. Further we will
use these “mise-en-sceéne”, to fill our big picture.

4. The uncertainty principle in time—frequency representations

Observation: ‘time—frequency domain’ is the term used in the most of
reference materials. For this reason, in this chapter, instead of ‘spatial domain’
we will use the term ‘time domain’.

Let us briefly review the theory. A signal, as a function of time, may be
considered as a representation with perfect time resolution.

In contrast, the FT of the signal may be considered as a representation with
perfect frequency resolution, but with no time information because it does not
convey when, in time, different events occur in the signal. Generally speaking, the
more concentrated f(x) is, the more spread out its FT, F(u) must be. In particular,
the scaling property of the Fourier transform may be interpreted as: if we
«squeeze» a function in X, its FT «stretches out» in u. It is not possible to
arbitrarily concentrate both a function and its Fourier transform.

The trade-off between the compaction of a function and its Fourier
transform can be formalized in the form of an uncertainty principle which states
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that, if f(x) is absolutely continuous and the functions x-f(x) and f'(x) are square
integrable, then the product between the (normalized) dispersion about zero in the
time domain and the (normalized) dispersion about zero in the frequency domain
is limited inferior by a constant:

f(t) & F(w) = 0,0, >const , with: (11)

o [e)fofa o [o*F @) dt
of =t —, oL =t —
j|f(t)| dt [|F (@) dt

The equality is attained only f{(t) is a Gaussian function.

Conform [4], in quantum mechanics, the momentum and position wave
functions are like Fourier transform pairs: the above inequality becoming the
statement of the Heisenberg uncertainty principle.

The Short-Time FT localizes the signal with a window function, before
performing the FT [7]. A drawback of the STFT is that it has a fixed resolution —
given by the width of the windowing function. A wide window gives better
frequency resolution, but poorer time resolution. A narrower window gives better
time resolution, but poor frequency resolution. To illustrate this we mention an
experiment regarding STFT: observing the spectrograms of a signal consisting of
two sinusoidal (first with a frequency of 10 Hz, second with a frequency of 25
Hz), for different width (T) of the windowing function:

(12)
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Fig. 2. Observing the spectrograms of a signal that could be described as a concatenation of two
sinusoidal [8]

The intelligent compromise between the spatial resolution and frequency
resolution is the wavelet transform (WT) [9], or, generalizing, the multiresolution
analysis. The uncertainty principle was illustrated graphically, assigning to each
basis function / signal used in the representation of a signal a tile in the time-
frequency plane. The tile, also called Heisenberg box or cell, shows the frequency
content of the basis function that it represents and where this function resides in
time:
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Fig. 3. The coverage [10] of the main types of basis: impulses (time domain), sinusoids (frequency
domain) and WT (approximating / scaling + detail) functions

The area of each tile in the last representation is the same.WT is the good choice
in the most practical cases: nonstationary signals — with frequencies varying in
time. In plus, it is a more flexible representation, having the capability to obtain
various shapes inside Heisenberg’s uncertainty principle:
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Fig. 4. a.The more flexible coverage of a signal [11] and b. an original view of the Wavelet
representation as a common son of the time / spatial representation and frequency representation

5. The bi-orthogonal decomposition of a stochastic process: the
Karhunen—Loéve Theorem

There exist many orthonormal decompositions of a stochastic process: if
the process is indexed over [a,b], any orthonormal basis of L*[a, b] yields such an
expansion. As we have already mentioned the importance of the Karhunen—Loéve
theorem or transform (KLT) is that it provides the best basis in the sense that it
minimizes the total mean square error.
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If in a Fourier series the coefficients are real numbers and the expansion
basis consists of sinusoidal functions, the coefficients in the KLT are random
variables and the expansion basis depends on the process. In fact, the orthogonal
basis functions used in this representation are determined by the covariance
function of the process — it is like the KLT adapts to the process in order to
produce the best possible basis for its expansion.

After Wikipedia [12], Karhunen-Loéve Theorem: “A stochastic process
{Xi}t € [a, b] with zero media / expectation (E[X;] (if not, we consider the process
(X; - E[X{])), satisfying some technical continuity conditions (easy to meet in
reality), admits a decomposition

X, =3 7,1 (13)

, where Z are pairwise uncorrelated random variables and the functions ey are
continuous real-valued functions on [a, b] that are pairwise orthogonal on L’[a, b].
We could think that the expansion is bi-orthogonal since the random coefficients
Zy are orthogonal in the probability space, i.e. decorrelated, while the basis
functions ex are orthogonal in the time domain. Moreover, if the process is
Gaussian, then the random variables Zy are Gaussian and stochastically
independent.”

KLT is also called the principal component analysis, the Proper
Orthogonal Decomposition (POD), or the Hotelling Transform (HT). It is
associated with Principal Component Analysis (PCA) approach. Further we will
present the effective process of the decomposition for a typical sampled signal
[10].

Let a X (N x 1) vector be a multidimensional random variable representing
some related characteristics of an object, for example the X (3 x 1) vector could
be the representation (on 3 channels) of a certain pixel’s color. We know that the
autocovariance matrix of X, the same as its autocorrelation matrix, Sy (N x N), is
real and symmetric, diagonalizable to:

Sy =07S,0Q (14)
with Q(N x N) built with the eigen(and orthonormal) vectors of Sx,

Sy = diag(vy, vy, ... vy), 1.€. having non-zero elements only on the principal diagonal
— these are the Sy’s eigenvalues, the same as Sx’s eigenvalues. The HT is:

Y = Q(X — My) (15)
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where My is the average vector for X and Q is the above matrix, in which
eigenvectors were sorted after the decreasing of the corresponding eigenvalues
and inserted in Q (on the first row is the eigenvector corresponding to the highest
eigenvalue). This transform produces a random variable with remarkable
properties:

1. zero mean value: My =0

2. decorrelated components: the covariance matrix is Sy

3. reconstruction:

X=0QTY + My (16)

If we do not use the entire Sx to form the HT matrix — suppose that from N we use
K lines, the reconstruction will be approximate:

)

They have shown that the ‘mean square error’ is:
ms = Xie1 Vi — Xic1 Vi = Dilga Vi (18)

Thus, we could have a better approximation if we select the top lines. For
this reason we sorted the eigenvalues.The KLT has the optimum Energy
concentration property: no other unitary transform packs as much energy into the
first J coefficients, for any J! For any unitary transform, the inverse transform can
be interpreted in terms of the superposition of «basis images». With KLT
transform, the basis images, which are the eigenvectors of the autocorrelation
matrix of the stochastic process, are called eigenimages. If energy concentration
works well, only a limited number of eigenimages is needed to approximate well
the input set of images.

KLT is rarely used in practice in its original form, because it is not
separable transform, therefore with an O(N* ) complexity. In practice we could
use suboptimal approximations for KLT, with efficient implementation — the most
used is Discrete Cosinus Transform that works well for high correlated signals.

We could refine KLT in order to find a more general solution for a
powerful decomposition and decorrelation of a signal, knowing his history
(probability). To recognize complex patterns (e.g., faces), large portions of an
image (say of size MN) might have to be considered. High dimensionality of
«image space» means high computational burden. Example: nearest-neighbor
search requires pairwise comparison with every image in a data base. The
solution is to reduce the dimensionality from MN to J, by tailoring KLT to the
specific set of images, so that the recognition task to preserve the salient features.
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After [13], let us suppose a concrete pattern recognition task: detecting in a
passport photo if the person is male or female. For J = 8, MIT Media Lab

obtained:

Fig. 5. The eigenfaces (eigenimages) obtained from a training set of 500 frontal views
conform [13]

Can be used the above basis for face recognition by nearest neighbor
search in 8-D «image face»? Or, can we use it to generate «sufficient» faces by

adjusting 8 coefficients?

Eigenimage method maximizes the «scatter» within the linear subspace
over the entire image set, regardless of classification task. Linear discriminant
analysis (LDA) and the related Fisher's linear discriminant (FLD) are methods
that maximize between-class scatter, while minimizing within-class scatter, taking
in account the generalized eigenvectors, i.e. corresponding to the largest
eigenvalues. Minimizing within-class scatter address also the problem when
differences due to varying illumination can be much larger than differences

between faces. In [13] they illustrated comparatively the two approaches:

Fig. 6. 2-D example conform [13]: Samples for 2 classes are projected onto 1-D subspace using
the PCA (KLT) or Fisher FLD (LDA). PCA preserves maximum energy, but the 2 classes are no
longer distinguishable. FLD separates the classes by choosing a better 1-D subspace.
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6. Conclusions

We mention some intimately related terms grouped from different points
of view:

e linear algebra: inner product over a vector space, symmetric and
separable kernel, orthogonal basis, projection and decomposition,
factorization, eigenvalues & eigenvectors, unitary transforms;

e Heisenberg’s uncertainty principle: state-process, position (or
time)-frequency, incompatibility principle in fuzzy theory;

e probability theory: variance, covariance, correlation (= normalized
covariance),

e 1image processing and analysis: spatial correlation (= mirrored
convolution), dot product in frequency domain, template matching,
pattern recognition, principal component analysis and so on.

Fig.1, Fig.4.b. and Fig.8. are original synthetical images, together
sketching an abstract view on signal analysis. This paper could be seen as a
scientific-mathematical view to the pattern recognition problem, in the classical
representation domains of a signal. We address «the essence» of the general
pattern recognition problem: recognition means correlation. A general
observation, also from experimental results of a large category of researchers, is
that the performance of a method comes with the adaptability of the method to the
concrete problem space. The KLT is a prototype from this point of view. Given
the geometrical interpretation of a unitary transform as a rotation of the coordinate
axes, we could think KLT as the unitary transform by which we represent the
input form / signal in his eigenvectors’ coordinate system. Working in this system
is very useful in the pattern recognition problem.
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Fig. 7. KLT as a transform in the eigenvectors’ coordinate system [13]
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For almost two decades the term “adaptive research” has coined. It refers a
research where one assesses the adaptivity of something. The practical problems
from which emerged this term were related especially with clinical research and
land use projects. From the first point of view, they used Bayesian methods:
<<One of the most exciting benefits of Bayesian data analysis is being able to
evaluate data “on the fly”, as they are being collected, and decide whether or not
to continue data collection and how to optimize the experimental treatment for the
next observation. Bayesian adaptive research design can be especially helpful in
clinical applications, when experimental treatments with null or detrimental
effects should be discontinued as quickly as possible, and treatments with clearly
beneficial effects should be disseminated as quickly as possible>> ([14] and
[15]). From the second point of view "adaptive research programs must be
directed to investigate the actual and real problems associated with the planning,
design, implementation and management of land use projects. It is important that
the resulting methodology to be technically feasible, environmentally and
economically viable and socially acceptable” [16].

Most of all, the contemporary pattern recognition problems are complex
classification problems, with uncertain border between classes (they could overlay
one another). The theoretic framework for this kind of problems is the fuzzy
theory. The theory of possibility was introduced by Zadeh [17] as a generalization
of the theory of probability; further the Bart Kosko studies [18] proved this using
as membership function the proportion in which a set could be considered a subset
of another set.

probabilistic
domain

Fig. 8. KLT as a transform in the eigenvectors’ coordinate system [13]

The “fuzzy” domain has become classic since his logic entered
successfully not only in the official scientific language, but also in industry. If for
the previous domains we talked about the orthogonal decomposition, in the
“fuzzy” domain we talk about graduation and granulation — here, the partitions /
classes / primitives could overlap each other in a certain degree. We could say
that, if the probabilistic domain express a “statistic adaptation” to the problems
solution space, the “fuzzy” approach express a “possibilistic or intuitionistic
adaptation” to the same space. Further, we consider it would be interesting the
analysis of the concept of correlation in fuzzy domain.
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