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AN ABSTRACT VIEW ON PATTERN RECONGNITION 
BASED ON CORRELATION 

Octavian-Florian GEORGESCU1, Florica MOLDOVEANU2 

In this paper we propose an abstract view on pattern recognition, pointing 
out some fundamental relations around the central concept of correlation between 
the main  representation domains of the signals, both analogical and digital. These 
domains are: the temporal or spatial domain, the frequency domain and the 
probabilistic domain. In a unitary, but also reflexive vision upon these domains we 
will refer to the principle of orthogonal decomposition in all the three domains, but 
also to the Heisenberg’s uncertainty principle applied to the signal time-frequency 
analysis. This way, we specify a framework for the pattern recognition problem, that 
is, in essence, a problem of correlation / decorrelation. 
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1. Introduction  

It is said that humans think and get the most quality information from 
images and concepts. It is given big picture and the central concept of our 
discourse in Fig. 1. 

 
Observation: We refer to “spatial domain”, considering we are working 

with digital images, but we could also refer to ‘temporal domain’ or ‘time 
domain’. Generally, they used the terms ‘spatial filtering’ and ‘frequency domain’  
[10]. In fact, the frequency could be spatial, temporal or of other kind, depending 
on the domain in which we apply the Fourier Transform (direct or inverse 
transform, this is the meaning of the bidirectional arrow).  
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Fig. 1. Our «big picture» 

 
Therefore: 
 - our central concept is the correlation; we will see how this concept is 

applied in all the mentioned domains 
 - there are some relations between the domains: 
1. The convolution theorem establishes a relation between the 

spatial domain and the frequency domain. This theorem is 
equivalent with the correlation theorem from Fourier analysis. 
In fact, for an image-signal, by definition, the convolution is a 
correlation with the mirrored mask. 

2. The Karhunen–Loève theorem by which a stochastic process 
could be represented as an infinite linear combination of 
orthogonal functions (forming an orthonormal basis), analogous 
to a Fourier series representation of a function on a bounded 
interval. The importance of the Karhunen–Loève theorem is that 
it yields the best such basis in the sense that it minimizes the 
total mean squared error. 

3. The relation between spatial domain and probabilistic domain is 
that between what we see on an actual scene and the history of 
the events on the same scene. While ‘x N’ means the 
accumulation of spatial «images» which could generate a 
reasonable statistic, E[.] means the expectation or media 
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operator which estimates the most probable realization conform 
to the probabilistic data.  

In the “Conclusions” section we also mention, without details, a main 
relationship between these domains and the «fuzzy» domain. 

Someone could ask: What good is this synthesis? When a researcher has to 
analyze some signals in order to extract meaning from them, his ability to analyze 
signals in the main signals representation domains is almost a condition for the 
success of his investigation. This synthesis is also interesting because it catch in a 
clear picture, in an “orthophoto” view, the main approaches of signal processing 
and the intrinsic relations between these approaches. The author needed this view 
in front of various problems of signal processing and analysis. 

2. Fourier transform - a prototype tool for frequency domain 
representations 

First we have to state that our discussion takes place inside Linear time-
invariant (LTI) system theory – see [1]. The fundamental result in LTI system 
theory is that any LTI system can be characterized entirely by a single function 
called the system's impulse response. The output of the system is simply the 
convolution of the system’s input with the system's impulse response. This 
method of analysis is often called the “time domain” point-of-view. The same 
result is true for discrete-time linear shift-invariant systems in which signals are 
discrete-time samples, and convolution is defined on sequences. 

Equivalently, any LTI system can be characterized in the frequency 
domain by the system's transfer function, which is the Laplace transform of the 
system's impulse response (or Z transform in the case of discrete-time systems). 
As a result of the properties of these transforms, the output of the system in the 
frequency domain is the dot product of the transfer function and the transform of 
the input. In other words, convolution in the time domain is equivalent to 
multiplication in the frequency domain: this is the general meaning of the 
convolution theorem. 

For all LTI systems, the eigenfunctions, and the basis functions of the 
transforms, are complex exponentials. Thus, if the input to a system is the 
complex waveform Aest for some “complex” amplitude A and complex frequency 
s, the output will be some complex constant times the input, say Best for some new 
complex amplitude B. The ratio B / A is the transfer function at frequency s. 

LTI system theory is suitable for describing many important systems - any 
system that can be modeled as a linear homogeneous differential equation with 
constant coefficients is an LTI system. In DSP, filtering operations could be seen 
as LTI systems - the filtering mask corresponds to the impulse response. Through 
the complex exponentials we could represent frequency components =>  LTI 
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systems cannot produce frequency components that are not in the input. Most LTI 
systems are considered «easy» to analyze, at least compared to the time-varying 
and/or nonlinear case.  

The Fourier transform could be seen as a special case of the Laplace 
transform - when the exponential have a purely imaginary argument -, giving the 
eigenvalues for pure complex sinusoids. The Fourier Transform (FT) for a real 
signal f(x) with finite energy is: 

∫
∞

∞−

−= dxexfuF ixuπ2)()(         (1) 

This  transform, compared with the Laplace transform, has the major advantage to 
be  invertible: under suitable conditions, ƒ can be reconstructed from F by the 
inverse transform: 

∫
∞

∞−

−= dxexfuF ixuπ2)()(         (2) 

F(u) are the Fourier coefficients, i.e. the coefficients of the representation 
of the signal in the Fourier domain, the domain of the pure (spatial or temporal or 
any other parameter) frequencies u. FT is an integral transform with a separable 
and symmetric kernel  – it operates on the entire image-signal and, for a 2-D 
input, in order to reduce the time of computation, we could apply the only a 1-D 
transform: first on rows, then on columns or inversely - see [3] for example. 
Regarding our central concept of correlation we point out that for a symmetric 
kernel the spatial convolution is equivalent with a spatial correlation.  
 In [2] he said: «Very broadly speaking, the Fourier transform is a 
systematic way to decompose «generic» functions into a superposition of 
«symmetric» functions. These symmetric functions are usually quite explicit (such 
as a trigonometric function sin(nx) or cos(nx)), and are often associated with 
physical concepts such as frequency or energy. A suggestive example of such a 
unique decomposition is:we can always write a function f as the superposition f = 
fe +fo of an even function fe and an odd function fo, by the formulae: 
 

 fe(x) := [f(x) + f(−x)] / 2 and      (3) 
 fo(x) := [f(x) - f(−x)] / 2      (4) 

fe(x) and fo(x) are decorrelated components, which form an orthogonal 
decomposition.  The correlation and orthogonality are perfect antonyms.  

This concept of symmetry is intimately related with the concept of 
correlation, which is defined by the inner product over a vector space. 
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3. The inner product and the orthogonal decomposition. Unitary 
transforms 

The inner product over a vector space permits the rigorous introduction of 
the notion of length of a vector. An inner product naturally induces an associated 
norm, thus an inner product space is also a normed vector space. A complete 
space (by definition, a metric space in which every Cauchy sequence is 
convergent) with an inner product is called a Hilbert space. The inner product also 
permits the rigorous introduction of the notion of the angle between two vectors. 
In particular, it also provides a high level abstract definition of the orthogonality 
between vectors: two orthogonal vectors have a zero inner product. 

A sequence space is a vector space whose elements are infinite sequences 
of real or complex numbers. For us this is the space of sampled signals. The most 
important sequences spaces in functional / signal analysis are the ℓp spaces, 
consisting of the p-power summable sequences, with the p-norm. The ℓ2 space, 
the space of the signals with finite energy – a sufficient condition for the existence 
of the Fourier transform -, has found to be the only sequence Hilbert space of this 
class. Theorem: any Hilbert space has an orthonormal basis: a basis in which all 
the elements are orthogonal and have unit norm. Why is so important to have an 
orthonormal basis? Because for a general inner product space V, an orthonormal 
basis can be used to define normalized orthogonal coordinates on V. Under these 
coordinates, the inner product becomes simple dot product of vectors. Thus the 
presence of an orthonormal basis reduces the study of a finite-dimensional inner 
product space to the study of Rn under dot product. This is a fundamental tool 
from the computational and also representational point of view. The big advantage 
is that through such an orthogonal decomposition, we decorrelate the components 
of the signal, having the freedom to analyze separately every such a component. 

So, we know that for our space of signals exists at least one orthonormal / 
orthogonal basis. How to build it? Using the Gram-Schmidt Process we may start 
with an arbitrary basis and transform it into an orthonormal basis. But some 
orthogonal decompositions have exceptional properties and meanings: these are 
the unitary transforms, which preserve the energy or information contained in the 
signal. A unitary transform is defined by a unitary matrix A, i.e. with 

TAA *1 =−         (5) 
the inverse of a unitary matrix is equal to its conjugate transpose. The forward 1-
D transform for an input vector v, representing the samples of the input signal is: 

 Avu =         (6) 
, and the inverse transform, i.e. the reconstruction of v, is: 

uAv T*=         (7) 
Conform [3], a deep meaning of a unitary transform could be extracted if 

we point out the columns of TA* : 
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]A ... ,A ,[A 1-N10
* ≡TA       (8) 

Relation (4) becomes: 
 1-0...N =k  with ,,)( >=< vAku k      (9) 

, where <.,.> is the dot product, and relation (5) becomes: 
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        (10)
 

Therefore: the input vector (v) is decomposed into the basis formed by the 
columns ( kA ) of TA* - the coefficients in this expansion is even (u(k)) the 
components of the transformed vector; the coefficients are the dot products (< kA , 
v>) between the mentioned columns and the input vector (v). This basis is 
orthonormal, conform (5). 

The set of functions fn(x) = exp(2πinx), where n א Z is an orthonormal 
basis for the Hilbertian space L2([0,1]) (L2 generalizes ℓ2 from sequences to 
functions): here is the foundation of the Fourier analysis.   

Similar with the 1-D case, for the 2-D case, the unitary transform of an 
image-signal represents the expression of this signal as a linear combination over 
some «basic» images. 

The inner product expresses the resemblance between a (sampled) signal 
and a (sampled) pattern (see also the ‘image matching’ described in [5] and the 
explanation given in [6]). 

Thus, until now, we sketch the big picture of the paper. Further we will 
use these “mise-en-scène”, to fill our big picture. 

4. The uncertainty principle in time–frequency representations 

Observation: ‘time–frequency domain’ is the term used in the most of 
reference materials. For this reason, in this chapter, instead of ‘spatial domain’  
we will use the term ‘time domain’. 

Let us briefly review the theory. A signal, as a function of time, may be 
considered as a representation with perfect time resolution.  

In contrast, the FT of the signal may be considered as a representation with 
perfect frequency resolution, but with no time information because it does not 
convey when, in time, different events occur in the signal. Generally speaking, the 
more concentrated f(x) is, the more spread out its FT, F(u)   must be. In particular, 
the scaling property of the Fourier transform may be interpreted as: if we 
«squeeze» a function in x, its FT «stretches out» in u. It is not possible to 
arbitrarily concentrate both a function and its Fourier transform. 

The trade-off between the compaction of a function and its Fourier 
transform can be formalized in the form of an uncertainty principle which states 
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that, if ƒ(x) is absolutely continuous and the functions x·ƒ(x) and ƒ′(x) are square 
integrable, then the product between the (normalized) dispersion about zero in the 
time domain and the (normalized) dispersion about zero in the frequency domain 
is limited inferior by a constant: 

  constF t ≥⇒↔ ωσσω )( f(t) ,   with:  (11) 
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The equality is attained only f(t) is a Gaussian function.  
 Conform [4], in quantum mechanics, the momentum and position wave 
functions are like Fourier transform pairs: the above inequality becoming the 
statement of the Heisenberg uncertainty principle. 
 The Short-Time FT localizes the signal with a window function, before 
performing the FT [7]. A drawback of the STFT is that it has a fixed resolution – 
given by the width of the windowing function. A wide window gives better 
frequency resolution, but poorer time resolution. A narrower window gives better 
time resolution, but poor frequency resolution. To illustrate this we mention an 
experiment regarding STFT: observing the spectrograms of a signal consisting of 
two sinusoidal (first with a frequency of 10 Hz, second with a frequency of 25 
Hz), for different width (T) of the windowing function:  
 

 
Fig. 2. Observing the spectrograms of a signal that could be described as a concatenation of two 

sinusoidal [8]  
 

 The intelligent compromise between the spatial resolution and frequency 
resolution is the wavelet transform (WT) [9], or, generalizing, the multiresolution 
analysis. The uncertainty principle was illustrated graphically, assigning to each 
basis function / signal used in the representation of a signal a tile in the time-
frequency plane. The tile, also called Heisenberg box or cell, shows the frequency 
content of the basis function that it represents and where this function resides in 
time:  
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Fig. 3. The coverage [10] of the main types of basis: impulses (time domain), sinusoids (frequency 

domain) and WT (approximating / scaling + detail) functions 
 

The area of each tile in the last representation is the same.WT is the good choice 
in the most practical cases: nonstationary signals – with frequencies varying in 
time. In plus, it is a more flexible representation, having the capability to obtain 
various shapes inside Heisenberg’s uncertainty principle:   
 

 

a      b 
Fig. 4. a.The more flexible coverage of a signal [11] and b. an original view of the Wavelet 

representation as a common son of the time / spatial representation and frequency representation  

5. The bi-orthogonal decomposition of a stochastic process: the 
Karhunen–Loève Theorem 

There exist many orthonormal decompositions of a stochastic process: if 
the process is indexed over [a,b], any orthonormal basis of L2[a, b] yields such an 
expansion. As we have already mentioned the importance of the Karhunen–Loève 
theorem or transform (KLT) is that it provides the best basis in the sense that it 
minimizes the total mean square error. 
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If in a Fourier series the coefficients are real numbers and the expansion 
basis consists of sinusoidal functions, the coefficients in the KLT  are random 
variables and the expansion basis depends on the process. In fact, the orthogonal 
basis functions used in this representation are determined by the covariance 
function of the process – it is like the KLT adapts to the process in order to 
produce the best possible basis for its expansion. 

After Wikipedia [12], Karhunen–Loève Theorem: “A stochastic process 
{Xt}t א [a, b] with zero media / expectation (E[Xt] (if not, we consider the process 
(Xt - E[Xt])), satisfying some technical continuity conditions (easy to meet in 
reality), admits a decomposition 

)(
1

teZX k
k

kt ∑
∞

=

=        (13) 

, where Zk are pairwise uncorrelated random variables and the functions ek are 
continuous real-valued functions on [a, b] that are pairwise orthogonal on L2[a, b]. 
We could think that the expansion is bi-orthogonal since the random coefficients 
Zk are orthogonal in the probability space, i.e. decorrelated, while the basis 
functions ek are orthogonal in the time domain. Moreover, if the process is 
Gaussian, then the random variables Zk are Gaussian and stochastically 
independent.” 

KLT is also called the principal component analysis, the Proper 
Orthogonal Decomposition (POD), or the Hotelling Transform (HT). It is 
associated with Principal Component Analysis (PCA) approach. Further we will 
present the effective process of the decomposition for a typical sampled signal   
[10].  

Let a X (N x 1) vector be a multidimensional random variable representing 
some related characteristics of an object, for example the X (3 x 1) vector could 
be the representation (on 3 channels) of a certain pixel’s color. We know that the 
autocovariance matrix of X, the same as its autocorrelation matrix, Sx (N x N), is 
real and symmetric, diagonalizable to: 

 ܵ௑ ൌ ்ܳ ܵ௒ ܳ                                                                                    (14)  

with Q(N x N) built with the  eigen(and orthonormal) vectors of SX, 

ܵ௒ ൌ ݀݅ܽ݃ሺݒଵ, ,ଶݒ …  ேሻ, i.e. having non-zero elements only on the principal diagonalݒ
– these are the SY’s eigenvalues, the same as SX’s eigenvalues. The HT is: 

 ܻ ൌ ܳሺܺ െ  ௑ሻ         (15)ܯ
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where MX is the average vector for X and Q is the above matrix, in which 
eigenvectors were sorted after the decreasing of the corresponding eigenvalues 
and inserted in Q (on the first row is the eigenvector corresponding to the highest 
eigenvalue). This transform produces a random variable with remarkable 
properties: 

1. zero mean value: ܯ௒ ൌ 0 
2. decorrelated components: the covariance matrix is SY 
3. reconstruction: 

 ܺ ൌ ்ܻܳ ൅  ௑                 (16)ܯ

If we do not use the entire SX to form the HT matrix – suppose that from N we use 
K lines, the reconstruction will be approximate: 

෠ܺ ൌ ܳ௄
்ܻ ൅ ௑ܯ        (17) 

 They have shown that the ‘mean square error’ is: 

 ݁௠௦ ൌ ∑ ௜ݒ
ே
௜ୀଵ െ  ∑ ௜ݒ

௄
௜ୀଵ ൌ  ∑ ௜ݒ

ே
௜ୀ௄ାଵ      (18) 

 Thus, we could have a better approximation if we select the top lines. For 
this reason we sorted the eigenvalues.The KLT has the optimum Energy 
concentration property: no other unitary transform packs as much energy into the 
first J coefficients, for any J! For any unitary transform, the inverse transform can 
be interpreted in terms of the superposition of «basis images». With KLT 
transform, the basis images, which are the eigenvectors of the autocorrelation 
matrix of the stochastic process, are called eigenimages. If energy concentration 
works well, only a limited number of eigenimages is needed to approximate well 
the input set of images.  

KLT is rarely used in practice in its original form, because it is not 
separable transform, therefore with an O(N4 ) complexity. In practice we could 
use suboptimal approximations for KLT, with efficient implementation – the most 
used is Discrete Cosinus Transform that works well for high correlated signals. 

 We could refine KLT in order to find a more general solution for a 
powerful decomposition and decorrelation of a signal, knowing his history 
(probability). To recognize complex patterns (e.g., faces), large portions of an 
image (say of size MN) might have to be considered. High dimensionality of 
«image space» means high computational burden. Example: nearest-neighbor 
search requires pairwise comparison with every image in a data base. The 
solution is to reduce the dimensionality from MN to J, by tailoring KLT to the 
specific set of images, so that the recognition task to preserve the salient features. 
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After [13], let us suppose a concrete pattern recognition task: detecting in a 
passport photo if the person is male or female. For J = 8, MIT Media Lab 
obtained:  

 
Fig. 5. The eigenfaces (eigenimages) obtained from a training set of 500 frontal views 

conform [13] 
 

Can be used the above basis for face recognition by nearest neighbor 
search in 8-D «image face»? Or, can we use it to generate «sufficient» faces by 
adjusting 8 coefficients? 

Eigenimage method maximizes the «scatter» within the linear subspace 
over the entire image set, regardless of classification task. Linear discriminant 
analysis (LDA) and the related Fisher's linear discriminant (FLD) are methods 
that maximize between-class scatter, while minimizing within-class scatter, taking 
in account the generalized eigenvectors, i.e. corresponding to the largest 
eigenvalues. Minimizing within-class scatter address also the problem when 
differences due to varying illumination can be much larger than differences 
between faces. In [13] they illustrated comparatively the two approaches: 

 
Fig. 6. 2-D example conform [13]: Samples for 2 classes are projected onto 1-D subspace using 
the PCA (KLT) or Fisher FLD (LDA). PCA preserves maximum energy, but the 2 classes are no 

longer distinguishable. FLD separates the classes by choosing a better 1-D subspace. 
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6. Conclusions 

We mention some intimately related terms grouped from different points 
of view: 

• linear algebra: inner product over a vector space, symmetric and 
separable kernel, orthogonal basis,  projection and decomposition, 
factorization, eigenvalues & eigenvectors, unitary transforms;  

• Heisenberg’s uncertainty principle: state-process, position (or 
time)-frequency, incompatibility principle in fuzzy theory; 

• probability theory: variance, covariance, correlation (= normalized 
covariance),  

• image processing and analysis: spatial correlation (= mirrored 
convolution), dot product in frequency domain, template matching, 
pattern recognition, principal component analysis and so on. 
 

 Fig.1, Fig.4.b. and Fig.8. are original synthetical images, together 
sketching an abstract view on signal analysis. This paper could be seen as a 
scientific-mathematical view to the pattern recognition problem, in the classical 
representation domains of a signal. We address «the essence» of the general 
pattern recognition problem: recognition means correlation. A general 
observation, also from experimental results of a large category of researchers, is 
that the performance of a method comes with the adaptability of the method to the 
concrete problem space. The KLT is a prototype from this point of view. Given 
the geometrical interpretation of a unitary transform as a rotation of the coordinate 
axes, we could think KLT as the unitary transform by which we represent the 
input form / signal in his eigenvectors’ coordinate system. Working in this system 
is very useful in the pattern recognition problem.  

 
Fig. 7. KLT as a transform in the eigenvectors’ coordinate system [13] 
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For almost two decades the term “adaptive research” has coined. It refers a 
research where one assesses the adaptivity of something. The practical problems 
from which emerged this term were related especially with clinical research and 
land use projects. From the first point of view, they used Bayesian methods: 
<<One of the most exciting benefits of Bayesian data analysis is being able to 
evaluate data ”on the fly”, as they are being collected, and decide whether or not 
to continue data collection and how to optimize the experimental treatment for the 
next observation. Bayesian adaptive research design can be especially helpful in 
clinical applications, when experimental treatments with null or detrimental 
effects should be discontinued as quickly as possible, and treatments with clearly 
beneficial effects should be disseminated as quickly as possible>>  ([14] and 
[15]). From the second point of view "adaptive research programs must be 
directed to investigate the actual and real problems associated with the planning, 
design, implementation and management of land use projects. It is important that 
the resulting methodology to be technically feasible, environmentally and 
economically viable and socially acceptable” [16]. 

Most of all, the contemporary pattern recognition problems are complex 
classification problems, with uncertain border between classes (they could overlay 
one another). The theoretic framework for this kind of problems is the fuzzy 
theory. The theory of possibility was introduced by Zadeh [17] as a generalization 
of the theory of probability; further the Bart Kosko studies [18] proved this using 
as membership function the proportion in which a set could be considered a subset 
of another set.  

  

 

 

Fig. 8. KLT as a transform in the eigenvectors’ coordinate system [13] 

The “fuzzy” domain has become classic since his logic entered 
successfully not only in the official scientific language, but also in industry. If for 
the previous domains we talked about the orthogonal decomposition, in the 
“fuzzy” domain we talk about graduation and granulation – here, the partitions / 
classes / primitives could overlap each other in a certain degree. We could say 
that, if the probabilistic domain express a “statistic adaptation” to the problems 
solution space, the “fuzzy” approach express a “possibilistic or intuitionistic 
adaptation” to the same space. Further, we consider it would be interesting the 
analysis of the concept of correlation in fuzzy domain. 

POSSIBILISTIC (FUZZY) DOMAIN 
 

probabilistic 
domain 
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