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RANDOM SOLUTIONS OF FUNCTIONAL DIFFERENTIAL 
INCLUSIONS OF NEUTRAL TYPE 

Carmina GEORGESCU1 

În această lucrare studiem existenţa soluţiilor pentru incluziuni diferenţiale 
funcţionale aleatoare, de tip neutral, definite pe un spaţiu Banach separabil. Mai 
întâi demonstrăm existenţa soluţiilor pentru o clasă de incluziuni funcţionale 
aleatoare de tip neutral, cu memorie; apoi stabilim o condiţie în care existenţa 
soluţiilor viabile pentru incluziuni functionale neutrale conduce la existenţa 
soluţiilor viabile în cazul nedeterminist, pentru aceeaşi clasă de incluziuni.  

 
 This paper is devoted to the study of neutral functional differential 

inclusions defined on a separable Banach space and depending in a measurable way 
on a random parameter. We first prove an existence result for a class of neutral 
functional differential inclusions with memory. Then we establish a condition under 
which the existence of viable solutions yields the existence of random viable 
solutions to neutral functional differential inclusions..  

Key words: functional-differential inclusions with memory, random inclusions, 
viable solutions, measurable selections.  
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1. Introduction 

There are two typical methods in proving the existence of random 
solutions of differential inclusions; in the first one, the measurability of solutions 
with respect to a random parameter is proved step by step ([8], [9], [10]), in the 
second one, random fixed point theorems are used ([11]).   

In the case of random functional differential inclusions, conditions for the 
existence of random viable solutions were obtained by Rybinski in [12] and by the 
author in [6]. The used in these papers was to reduce the problem of the existence 
of random solutions to the related deterministic problem and then to apply a 
suitable measurable selection theorem. 

The purpose of the present paper is to study the existence of solutions for 
random neutral functional differential inclusions in a separable Banach space. 
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Based on an earlier result obtained by Benchohra and Ntouyas ([2]), we first 
prove the existence of random solutions for partial neutral functional differential 
inclusions with memory governed by convex valued orientor field. Next we derive 
the existence of the desired random solution to neutral functional differential 
inclusions with viability condition from the existence of the deterministic solution 
via a random fixed point principle applied to multivalued operators in the function 
space 0([ , ], )pL t T E−Δ . The idea of applying the random fixed point principle 
due to Rybinski in the space of derivatives of the solutions belongs to Engl ([5]) 
and it was already used for obtaining a similar result for random functional 
differential inclusions ([12]). Our results extend those in [10] and [12] to the case 
of neutral functional differential inclusions.  

The paper is organized as follows: definitions, notations and basic results 
are given in the next section and the main results are presented in Section 3. 

 

2. Notations and preliminary results  

Throughout this paper ( ,|| . ||)E  is a separable Banach space and ( )EP  
will stand for the set of all subsets of E . If  e E∈ , the distance from the point x  
to the set A E⊆  will be denoted by ),( Axd . For any , ( )A B E∈P , the Hausdorff 
distance between A  and B  is defined as  

{ }( , ) : max sup ( , ),sup ( , ) .H
a A b B

d A B d a B d b A
∈ ∈

=  

For any topological space S , the script ( )B S  will stand for the σ -field of 
Borel subsets of  S . 

If [ , ]I a b=  is a real interval, let ( , )C I E  be the Banach space of 
continuous functions (.) :x I E→  with the norm }:)(sup{(.) Ittxx ∈=

∞
. By 

1( , )C I E  we denote the space of continuously differentiable mappings 
(.) :x I E→  endowed with norm 1(.) (.) '(.)

C
x x x

∞ ∞
= +  and by ( , )pL I E  we 

denote the Lebesgue-Bochner space with the norm  
1/

(.) ( ) .p

p
p

L
I

x x t dt
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫  

Consider the integral operator (.) : ( , ) ( , )pL I E C I EΓ →  defined by the 
Bochner integral 

( (.))( ) ( ) .
t

a
y t y s dsΓ = ∫  
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By ( , )pW I E  we denote a subspace of ( , )C I E  composed of the elements 

1(.) (.) ( (.))x x y= +Γ where 1(.) :x I E→  is a constant mapping and (.) ( , )py L I E∈ . 
Clearly, every (.) ( , )px W I E∈  is differentiable almost everywhere with 

'(.) ( , )px L I E∈  and (.) ( ) ( '(.))x x a x= +Γ . On this space we consider the norm  

 (.) ( ) '(.) .p pW L
x x a x= +  

Note that ( , )pW I E  is a Banach space with respect to this norm. 

Let ),,( μΣΩ  be a σ -finite measure space (not necessarily complete) and 
1( , )L EΩ  be the space of integrable functions (.) :f EΩ→  equipped with the 

norm ∫Ω= )(((.)
1

ωμω dff . 

Recall that a function (.,.) :f E EΩ× →  is said to be Caratheodory if 
),( xf ωω →  is measurable for any x E∈  and ),( xfx ω→  is continuous for any 

Ω∈ω . 

Let (.) : ( )F EΩ→P  with nonempty, closed values. (.)F  is said to be 
(weakly) measurable if any of the following equivalent conditions holds:   

i) for any open subset U E⊆ ,  { : ( ) }F Uω ω∈Ω ∩ ≠∅ ∈Σ ; 
ii) for all x E∈ , ))(,( ωω Fxd→  is measurable. 

If, in addition, μ  is complete, then the statements i) and ii) above are equivalent 
to any of the following ones 

iii) Graph ( (.)) : {( , ) : ( )} ( )F x E x F B Eω ω= ∈Ω× ∈ ∈Σ⊗  (graph measurabi-
lity); 

iv) for any closed subset C E⊆ , { : ( ) }F Cω ω∈Ω ∩ ≠∅ ∈Σ  (strong 
measurability). 

 
By 1

FS we will denote the set of Bochner integrable selections of (.)F , 
 1 1{ (.) ( , ) : ( ) ( ) a.e.}FS f L E f Fω ω μ= ∈ Ω ∈ − . 

 
The following lemmas will be used in the next section. 
 
Lemma 2.1. ([8])  Let ),,( μΣΩ  be a σ -finite measure space, Y a locally compact 
separable metric space and Z  a metric space. Then ZYf →×Ω:  is a 
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Caratheodory function if and only if  ,.)(:)(.)( ωωω fg =→  is measurable as a 
mapping from Ω  to the space ),( ZYC  endowed with the compact-open topology. 
 
Lemma 2.2. ([5]) Let (.) : ( )F EΩ→ P  be weakly measurable and (.) :f EΩ→  
be measurable. Then the function ( ( ), ( ))d f Fω ω ω→  is measurable. 
 
Lemma 2.3. ([12]) Let X  be a Polish space. Assume that (.,.) : ( )F X EΩ× → P  
is weakly measurable and (.) :f XΩ→  is measurable. Then the multivalued map 

(.) : ( ),   ( ) ( ,  ( ))G E G F fω ω ωΩ→ =P  is weakly measurable. 
 
Lemma 2.4. ([12]) Let (.) : ( )G I E→ P  be a weakly measurable set-valued map 
with closed values and such that  

(0, ( )) .p

I

d G t dt < ∞∫  

Then the set { (.) ( , ) :  ( ) ( ) a.e. ( )}pM y L I E y t G t I= ∈ ∈ is nonempty and for every 
(.) ( , )pv L I E∈  one has 

1/

( (.), ) ( ( ), ( )) .
p

p

I

d v M d v t G t dt
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫  

Let ,  Y Z  be two Hausdorff topological spaces and let (.) : ( )F Y Z→ P  be a 
multifunction with nonempty, closed values. (.)F  is said to be upper semiconti-
nuous (u.s.c) if for any open subset U Z⊂ , the set ( ) { :  ( ) }F U y Y F y U+ = ∈ ⊆  
is open in Y . 
 

Let ],[ 0 TtI =  be a real interval and 00 tT −<Δ< . Let λ  be the Lebesgue 
measure on I  and consider the following partial neutral functional differential 
inclusion 

 [ ]( ) ( , (.) ( , (.))  a.e.,t t
d x t f t x F t x
dt

λ− ∈ −  a.e. )(I ,  (1) 

 
0 0

0[ , ]
           (.) (.),

t t
x x

−Δ
=  (2) 

where 0 0(.,.) : ([ , ], ) ( )F I C t t E E× −Δ → P  is a bounded, closed, convex set-
valued map, 0 0(.) : ([ , ], )f I C t t E E× −Δ → , 0 0 0(.) :[ , ]x t t E−Δ →  is a given 
continuous function and for all It∈ , 0 0:[ , ]tx t t E−Δ →  is a continuous function 
defined by 0( ) ( )tx s x t s t= + − . Hence (.)tx  describes the history of the state (.)x  
from time Δ−t  up to the present time t . 
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Definition 2.5. By a solution of (1)-(2) we mean a continuous function 
0(.) :[ , ]x t T E−Δ →  such that ( ) ( , (.))tt x t f t x→ −  is absolutely continuous on I ,  

0 0
0[ , ]

(.) (.)
t t

x x
−Δ

=  and the inclusion (1) holds a.e. on I . 

 
Hypothesis 2.6. i) There exist 1 [0,1)c ∈  and 2 0c ≥  such that for all It∈  and 

0 0(.) ([ , ], )y C t t E∈ −Δ  one has  

1 2( , (.)) (.) .f t y c y c
∞

≤ +  
ii) (.,.)f  is completely continuous and for any bounded set 

0([ , ], )A C t T E⊂ −Δ , the set{ ( , (.)) :  (.) }tt f t x x A→ ∈  is equicontinuous in 
( , )C I E . 

iii) 0 0(.,.) : ([ , ], ) ( )F I C t t E E× −Δ → P  has nonempty bounded, closed convex 
values and is measurable. 

iv) For any It∈ , ( ,.)F t  is u.s.c. and for each fixed 0 0(.) ([ , ], )y C t t E∈ −Δ , 

 1
, (.) : { (.) ( , ) :  ( ) ( , (.))  a.e.( )} .F yS g L I E g t F t y I= ∈ ∈ ≠ ∅  

v) There exist 1(.) ( , )L Iϕ +∈ R  and a continuous and increasing function 
: (0, )ψ + → ∞R  such that for all 0 0(.) ([ , ], ),y C t t E∈ −Δ  

{ } ( )( , (.)) : sup :  ( , (.)) ( ) (.)  a.e. on F t y z z F t y t y Iϕ ψ
∞

= ∈ ≤  and  

0

( )  ,
( )

T

t c

dss ds
s

ϕ
ψ

∞
<∫ ∫  

where 1 0 2
1

1 (1 ) (.) 2 .
1

c c x c
c ∞
⎡ ⎤= + +⎣ ⎦−

 

vi) For each bounded ( )0 0[ , ], ,B C t t E⊂ −Δ  (.)y B∈  and t I∈  the set is 
relatively compact. 

In what follows we will need the following theorem. 
 
Theorem 2.7. ([2])  Assume that ( )0 0(.,.) : [ , ], ( )F I C t t E E× −Δ → P  and 

( )0 0(.) : [ , ],f I C t t E E× −Δ →  satisfy Hypothesis 2.6. Then the Cauchy problem 
(1)-(2) admits at least one solution. 
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3. Main results  

We prove two existence theorems for random neutral functional 
differential inclusions. One is about partial neutral functional differential 
inclusions defined on ( )0 0[ , ],C t t E−Δ  and the other for neutral functional 

differential inclusions defined on a subset of ( )0[ , ],C t T E−Δ , namely 

( )0[ , ],pW t T E−Δ . This leads us to what is known in applied mathematics as 
"viability theory". 

 
Consider the following random version of inclusion (1)-(2) 

 [ ]( , ) ( , , ( ,.)) ( , , ( ,.))   a.e.t t
d x t f t x F t x
dt

ω ω ω ω ω μ λ− ∈ × −  a.e. )(I , (3) 

0 0
0[ , ]

    ( ,.) ( ,.) 
t t

x xω ω ω
−Δ

= ∀ ∈Ω   (4) 

where 
0 0(.,.,.) : ([ , ], ) ( )F I C t t E EΩ× × −Δ → P , 0 0(.,.,.) : ([ , ], )f I C t t E EΩ× × −Δ → , 

0 0 0(.,.) : [ , ]x t t EΩ× −Δ →  is a given Caratheodory function  and for all t I∈  and 

0 0,  ( ,.) :[ , ]tx t t Eω ω∈Ω −Δ →  is a continuous function defined by 
),(),( 0tstxsxt −+= ωω .  

 
Definition 3.1.  A solution to the random neutral functional differential inclusions 
(3)-(4) is a stochastic process 0(.,.) : [ , ]x t T EΩ× −Δ →  with continuous paths 
(i.e., for all ],[ 0 Ttt Δ−∈ , )(., tx  is measurable and for all Ω∈ω , 

0( ,.) ([ , ], )x C t T Eω ∈ −Δ ) such that ( , ) ( , , (.))tt x t f t xω ω→ −  is absolutely 
continuous on I , 

0 0
0[ , ]

( ,.) ( ,.)
t t

x xω ω
−Δ

=  for every Ω∈ω  and the inclusion (3)  

holds a.e. on IΩ× . 
 
Assume that the following Hypothesis is satisfied. 
Hypothesis 3.2.  i) There exist 1 : [0,1)c Ω→  and 2 : [0, )c Ω→ ∞  both measurable 
such that for almost all ,  t Iω∈Ω ∈  and 0 0(.) ([ , ], )y C t t E∈ −Δ  one has  

1 2( , , (.)) ( ) (.) ( ).f t y c y cω ω ω
∞

≤ +  
ii) (.,.,.)f  is completely continuous, for all 0 0( , (.)) ([ , ], )t y I C t t E∈ × −Δ , 

( , , (.))f t yω ω→  is measurable and for any bounded set 

0([ , ], )A C t T E⊂ −Δ , the set { ( , , (.)) :  (.) }tt f t x x Aω→ ∈  is equicontinuous 
in ( , )C I E . 



Random solutions of functional differential inclusions of neutral type                         29 
 

iii) 0 0(.,.,.) : ([ , ], ) ( )F I C t t E EΩ× × −Δ → P  has nonempty bounded, closed 
convex values and is jointly measurable. 

iv) For any ( , )t Iω ∈Ω× , the set-valued map ( ,.)F t  is u.s.c. and for each fixed 
ω∈Ω  and 0 0(.) ([ , ], )y C t t E∈ −Δ , 

 1
, , (.) : { (.) ( , ) :  ( ) ( , , (.))  a.e.( )} .F yS g L I E g t F t y Iω ω= ∈ ∈ ≠ ∅  

v) There exist 1(.,.) ( , )L Iϕ +∈ Ω× R  and a continuous and increasing function 
: (0, )ψ + → ∞R  such that for all 0 0(.) ([ , ], ),y C t t E∈ −Δ  

( )( , , (.)) ( , ) (.)  a.e. on F t y t y Iω ϕ ω ψ
∞

≤ Ω×  and  

0 ( )
( , )  ,

( )
T

t c

dss ds
sω

ϕ ω
ψ

∞
<∫ ∫  

where 1 0 2
1

1( ) (1 ( )) ( ,.) 2 ( ) .
1 ( )

c c x c
c

ω ω ω ω
ω ∞

⎡ ⎤= + +⎣ ⎦−
 

vi) For each bounded ( )0 0[ , ], ,B C t t E⊂ −Δ  (.)y B∈  and t I∈  the set  

 { }
0

, , (.)( ) :  (.)
t

F yt
g s ds g Sω∈∫  

is relatively compact. 
 

Theorem 3.3. Let 0 0(.,.,.) : ([ , ], ) ( )F I C t t E EΩ× × −Δ → P  and (.,.,.) :f IΩ× ×  

0 0([ , ], )C t t E E× −Δ →  as above. Then the Cauchy problem (3)-(4) admits a 
solution. 

 
Proof. Let 1 0[ , ]I t T= −Δ  and consider the functions 1 1: ( , )p I C I EΩ× × ×  

1( , )L I E E× →  and 1
1: ( , ) ( , )q C I E L I EΩ× × →R  defined respectively by  

 

0

0 0 0

0 0 0 0

( ) ( , )                                        if  [ , ]  
( , , (.), (.)) ( ) ( , ) ( , , ( ,.))

      ( , , (.)) ( )                 if  
t

t t

x t x t t t t
p t x g x t x t f t x

f t x g s ds t I

ω
ω ω ω ω

ω

⎧
− ∈ −Δ⎪

⎪= − +⎨
⎪

− − ∈⎪⎩ ∫

 

.

1
( ,., )        ( , (.), (.)) ( (.), ).F xq x g d g S ωω =  

Since 0 ( ,.)xω ω→  is measurable and (.,.,.)f  is continuous, we have that 
( , , (.), (.))p t x gω ω→  is measurable and ( , (.), (.)) ( , , (.), (.))t x g p t x gω→  is 
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continuous. Applying Lemma III-14 of Castaing and Valadier ([3]) we obtain that 
( , , (.), (.)) ( , , (.), (.))t x g p t x gω ω→  is measurable. Let D  be a dense subset of 

0[ , ] t T−Δ  and define 1
1 1: ( , ) ( , )p C I E L I E EΩ× × →  by 

1( , (.), (.)) sup ( , , (.), (.)).
t D

p x g p t x gω ω
∈

=  

Then 1( , (.), (.)) ( , (.), (.))x g p x gω ω→  is jointly measurable.  
With a same reasoning as in the proof of Theorem 2 in [10] we claim that 

( , (.), (.)) ( , (.), (.))x g q x gω ω→  is also measurable.  
Now consider the multifunction 1

1(.) : ( ( , ) ( , ))R C I E L I EΩ→ ×P  defined 
by  

{ }1
1 1( ) ( (.), (.)) ( , ) ( , ) :  ( , (.), (.)) 0,  ( , (.), (.)) 0 .R x g C I E L I E p x g q x gω ω ω= ∈ × = =  

From Theorem 2.7 we have that for all ,  ( )Rω ω∈Ω ≠∅ . Using measurability of 

1(.,.,.)p  and (.,.,.)q  we get that ( (.))Graph R  is measurable. 
Apply Theorem 3 of Saint-Beuve ([13]) to get 1 1: ( , )C I Eλ Ω→  and 

1
2 1: ( , )L I Eλ Ω→  both measurable such that 1 2( ( ), ( )) ( )  a.e.( ).Rλ ω λ ω ω μ∈ − Ω  

Set 
1( , ) ( )( ).x t tω λ ω=  

Also from Lemma 16 of Dunford and Schwartz ([4]) we get the existence of a 
function 1(.,.) ( , )g L I E∈ Ω×  such that 

2( , ) ( )( )  a.e..g t tω λ ω μ= −  
By Lemma 2.1, (.,.)x  and (.,.)g  are Caratheodory functions and satisfy 

0
0 0 0 0

0 0 0

( , ) ( , , ( ,.)) ( , ) ( , , ( ,.)) ( , )   a.e.,  

                           ( , ) ( , )  [ , ].

t

t t
x t f t x x t f t x g s ds t I

x t x t t t t

ω ω ω ω ω ω ω μ

ω ω

− = − + − ∀ ∈

= ∀ ∈ −Δ

∫

 
So (.,.)x  is the desired random trajectory which solves the problem (3)-(4). 


 
Remark 3.4. Several remarks are in order.  
i) If  ( , , (.)) 0f t yω ≡ then our result yields Theorem 2 in [10] (see also 

Theorem 3.3 in [6]). 
ii) If  (.,.,.)F  and (.,.,.)f  are constant with respect to the random parameter  

in the sense that 1( , , (.)) ( , (.))F t y F t yω =  and 1( , , (.)) ( , (.))f t y f t yω = ,  
then the above theorem yields the result of  Benchohra and Ntouyas [2] 
(Theorem 3.4). 
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In what follows X  will denote the space 0([ , ], )pW t T E−Δ  and Y  will 
denote the space 0([ , ], )pL t T E−Δ . Consider the following random neutral 
functional differential inclusion without memory 

( , ) ( , , ( ,.), ( ,.))  a.e. ( ),t
d dx t F t x x I
dt dt

ω ω ω ω μ λ∈ × −  (5) 

0 0
0[ , ]

 ( ,.) ( ,.)   
t t

x xω ω ω
−Δ

= ∀ ∈Ω  (6) 

   ( ,.) ( )      x Kω ω ω∈ ∀ ∈Ω  (7) 
where 

(.,.,.) : ( )F I X Y EΩ× × × → P , (.) : ( )K XΩ→ P  and 0 0 0(.,.) : [ , ]x t t EΩ× −Δ →  
is a measurable function with 0 ( ,.) ( )x Kω ω∈  for each ω∈Ω . 

Theorem 3.5.  Assume that (.,.,.,.) : ( )F I X Y EΩ× × × →P  and 
(.) : ( )K XΩ→ P  are weakly measurable, (.,.,.)F  has closed values and for every 

( , (.), (.))x y X Yω ∈Ω× ×  one has 

 
0

(0, ( , , (.), (.))) .
T p

t
d F t x y dtω

−Δ
< ∞∫  

If for every ω∈Ω  there exists a solution to the problem (5)-(7), then there exists 
a random solution to this problem. 

Proof. For 0 0[ , ]t t t∈ −Δ , we extend (.,.,.)F  putting 0( , , (.), (.)) ( , )dF t x y x t
dt

ω ω=   

Note that (.,.,.)F  is weakly measurable. Define (.,.,.) : ( )G X Y YΩ× × → P  
letting  

 { }1( , (.), (.)) (.) :  ( ) ( , , (.), (.)) a.e.( ) .G x y z Y z t F t x y Iω ω= ∈ ∈  
Using Lemma 2.4 we get that for every ( , (.), (.))x y X Yω ∈Ω× ×  the sets 

( , (.), (.))G x yω  are nonempty and for every (.)v Y∈  we have  

 ( )
0

1/

( (.), ( , (.), (.))) ( ( ), ( , , (.), (.))) .
pT p

t
d v G x y d v t F t x y dtω ω

−Δ
= ∫  

By Lemma 2.2 the map ( , , (.), (.)) ( ( ), ( , , (.), (.))) pt x y d v t F t x yω ω→  is measurable 
and thus, by Fubini’s theorem, the map ( , (.), (.)) ( (.), ( , (.), (.)))x y d v G x yω ω→  is 
also measurable, hence (.,.,.)G  is weakly measurable (Theorem 3.3 in [7]). 

Consider the integral operator 0 (.,.) : Y XΓ Ω× →  defined by  
 0 0 0( , (.)) ( , ) ( (.))y x t yω ωΓ = −Δ +Γ  

and define the set-valued map (.,.) : ( )H Y YΩ× → P  by  
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 0( , (.)) ( , ( , (.)), (.)).H y G y yω ω ω= Γ   
Then (.,.)H  has closed values and, by Lemma 2.3, is weakly measurable. 

Let (.) : ( )L YΩ→ P  be defined by  
 { }0( ) (.) :  ( , (.)) ( )L y Y y Kω ω ω= ∈ Γ ∈  

and note that (.)L  has measurable graph. Define (.) : ( )HP YΩ→ P ,  
 { }( ) (.) :  (.) ( , (.)) .HP y Y y H yω ω= ∈ ∈  

By assumption, for every ω∈Ω  the set ( ) (.)HL Pω ∩  is nonempty. Invoking 
Proposition 1 in [12] we obtain the existence of a measurable map (.) :z YΩ→  
such that ( ) ( ) ( ) a.e.Hz L Pω ω ω μ∈ ∩ −  Notice that for every ω∈Ω , ( ,.)x ω  is a 

solution to (5)-(7) if and only if ( ,.) ( ) ( ).H
d x L P
dt

ω ω ω∈ ∩  Thus we define  

0(.,.) :[ , ]x t T E−Δ ×Ω→  by  
 0( , ) ( , ( ))( ).x t z tω ω ω= Γ  

Clearly (., )x t  is measurable (Lemma 2.3) and this is the desired random viable 
trajectory. 


 
Remark 3.6. 
 

i) If ( )   K Xω ω= ∀ ∈Ω , then the above theorem extends to the whole 
class of random neutral functional differential inclusions the result in 
Theorem 3.3. 

ii)  If  (.,.,.,.)F  does not depend on the forth variable, then Theorem 3.5 
yields Theorem 1 in [12] (see also Theorem 3.6 in [6]). 

 
 

Example 3.7.  The model of the endotoxin tolerance is a good example of 
uncertainty. The mathematical model ([14]) considers a non-autonomous first 
order differential system of two equations with two unknowns, i.e. the 
concentrations of a TNF-α pro-inflammatory cytokine and of the inhibitor of the 
cytokines, denoted by x  and y , respectively. The system is: 

( )

( )

3 3
1

1 3
1

2 2
2

2 22

1
1 1

( ) ,
1

x Edx A t D x
dt x F y

y Edy A t F D t y
dt y

+
= ⋅ ⋅ ⋅ −

+ +

+
= ⋅ ⋅ −

+

 (8) 
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where (.)A  represents the LPS endotoxin concentration and 2 (.)D  is the clearance 
rate of the inhibitor and is supposed to be a time-dependent function. All the 
variables and parameters are non negative. We may suppose for the beginning that 

2D  is our uncertain variable. 
Using differential inclusions as the main modeling tool, both the steady-

state behaviour and also the transient behaviour of the system in question may be 
covered by the information obtained from reachability computation in the set-
valued context.  

Let U  be the set of control parameters, i.e.  
 { }2 0 2 0: ( ( ), ) : [ , ], [0.1, 4] ,   0U A t D t t T D T t= ∈ ∈ > ≥  

and define the multifunction 2 2
0(.,.) :[ , ] ( )G t T × →R RP  by  

( ) ( ) ( )
3 3 2 2

1 2
1 2 2 23 2

1

1( , ( , )) ,   : ( ),
1 1 1

x E y EG t x y A t D x A t F D y A t D U
x F y y

⎧ ⎫⎛ ⎞+ +⎪ ⎪= ⋅ ⋅ ⋅ − ⋅ ⋅ − ∈⎨ ⎬⎜ ⎟+ + +⎪ ⎪⎝ ⎠⎩ ⎭
We associate to the system (8) the following differential inclusion 

0 0

'( ) ( , ( ))
( )

z t G t z t
z t z

∈
=

 (9) 

The reason to treat the uncertain variables in a non probabilistic way is 
that the analysis of the reachable set of inclusion (9) gives us informations about 
possible extreme values. This also may be useful if we expect that the uncertain 
variable 2D  (or other variables) could be intentionally generated to move the sys-
tem to the extreme values. A detailed discussion will be made in a future work. 
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