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RANDOM SOLUTIONS OF FUNCTIONAL DIFFERENTIAL
INCLUSIONS OF NEUTRAL TYPE

Carmina GEORGESCU!

In aceastd lucrare studiem existenta solutiilor pentru incluziuni diferentiale
functionale aleatoare, de tip neutral, definite pe un spatiu Banach separabil. Mai
intdi demonstram existenta solutiilor pentru o clasa de incluziuni functionale
aleatoare de tip neutral, cu memorie; apoi stabilim o conditie in care existenta
solutiilor viabile pentru incluziuni functionale neutrale conduce la existenta
solutiilor viabile in cazul nedeterminist, pentru aceeasi clasa de incluziuni.

This paper is devoted to the study of neutral functional differential
inclusions defined on a separable Banach space and depending in a measurable way
on a random parameter. We first prove an existence result for a class of neutral
functional differential inclusions with memory. Then we establish a condition under
which the existence of viable solutions yields the existence of random viable
solutions to neutral functional differential inclusions..
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1. Introduction

There are two typical methods in proving the existence of random
solutions of differential inclusions; in the first one, the measurability of solutions
with respect to a random parameter is proved step by step ([8], [9], [10]), in the
second one, random fixed point theorems are used ([11]).

In the case of random functional differential inclusions, conditions for the
existence of random viable solutions were obtained by Rybinski in [12] and by the
author in [6]. The used in these papers was to reduce the problem of the existence
of random solutions to the related deterministic problem and then to apply a
suitable measurable selection theorem.

The purpose of the present paper is to study the existence of solutions for
random neutral functional differential inclusions in a separable Banach space.
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Based on an earlier result obtained by Benchohra and Ntouyas ([2]), we first
prove the existence of random solutions for partial neutral functional differential
inclusions with memory governed by convex valued orientor field. Next we derive
the existence of the desired random solution to neutral functional differential
inclusions with viability condition from the existence of the deterministic solution
via a random fixed point principle applied to multivalued operators in the function
space L’ ([t,—A,T],E). The idea of applying the random fixed point principle
due to Rybinski in the space of derivatives of the solutions belongs to Engl ([5])
and it was already used for obtaining a similar result for random functional
differential inclusions ([12]). Our results extend those in [10] and [12] to the case
of neutral functional differential inclusions.

The paper is organized as follows: definitions, notations and basic results
are given in the next section and the main results are presented in Section 3.

2. Notations and preliminary results

Throughout this paper (E,||.||) is a separable Banach space and P(E)

will stand for the set of all subsets of £. If ee€ E, the distance from the point x
to the set 4 < £ will be denoted by d(x, A). For any 4, B € P(F), the Hausdorff

distance between 4 and B 1s defined as

d, (A,B):=max supd(a,B),supd(b, A);.

acA beB
For any topological space S, the script B(S) will stand for the o -field of

Borel subsets of S.
If I=[a,b] is a real interval, let C(/,E) be the Banach space of

continuous functions x(.):/ — E with the norm ||x(.)||w = sup{||x(t)|| :tel}. By

C'(I,E) we denote the space of continuously differentiable mappings
x(.):I > E endowed with norm ||x(.)||cl =||x(.)||w +||x'(.)||oc and by L’(I,E) we

denote the Lebesgue-Bochner space with the norm

L= U”x(t)”p dt] .

Consider the integral operator I'(.):L”(/,E)— C(I,E) defined by the
Bochner integral

[<C)

LGN = [ v(s)ds.
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By W?(I,E) we denote a subspace of C(/,E) composed of the elements
x()=x,()+T(»¥()) where x,(.): ] — E is a constant mapping and y(.) € L” ([, E).
Clearly, everyx(.)eW?”(l,E) is differentiable almost everywhere with
x'()el’(I,E) and x(.) =x(a)+T(x'()). On this space we consider the norm

[y = @]+ [x'0)
Note that W (I, E) is a Banach space with respect to this norm.

-

Let (©2,%, 1) be a o -finite measure space (not necessarily complete) and
L'(Q,E) be the space of integrable functions f(.):Q — E equipped with the

norm [0, = J, I/ (@]du(e).

Recall that a function f(.,.):QQxE — E is said to be Caratheodory if
o —> f(w,x) is measurable for any x € £ and x — f(w,x) is continuous for any
weQ).

Let F(.):QQ—>P(E) with nonempty, closed values. F(.) is said to be

(weakly) measurable if any of the following equivalent conditions holds:

i) foranyopensubset UcC E, {weQ:F(o)nU #J}eX;

ii) forall xe £, @ - d(x, F(w)) is measurable.
If, in addition, ux is complete, then the statements i) and ii) above are equivalent
to any of the following ones

ii1) Graph (F(.)) ={(w,x) e Qx E:x € F(w)} e Z® B(E) (graph measurabi-

lity);
iv) for any closed subset CcE, {weQ:F(w)nC#J}eX (strong

measurability).

By S, we will denote the set of Bochner integrable selections of F(.),
SL={f()e (QE): f(w)e F(w) u—ae.}.

The following lemmas will be used in the next section.

Lemma 2.1. ([8]) Let (€2, %, 1) be a o -finite measure space, Y a locally compact
separable metric space and Z a metric space. Then f:QxY —>Z is a
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Caratheodory function if and only if @ — g(w)(.) = f(w,.) is measurable as a
mapping from Q to the space C(Y,Z) endowed with the compact-open topology.

Lemma 2.2. ([5]) Let F(.):Q — P(E) be weakly measurable and f(.):Q— E
be measurable. Then the function ® — d( f(w), F(®)) is measurable.

Lemma 2.3. ([12]) Let X be a Polish space. Assume that F(.,.):Qx X — P(E)
is weakly measurable and f(.):Q — X is measurable. Then the multivalued map
G(): Q> P(E), G(w)=F(w, f(w)) is weakly measurable.

Lemma 2.4. ([12]) Let G(.):1 — P(E) be a weakly measurable set-valued map
with closed values and such that

jd(o, G(1))" dt < .

1

Then the set M ={y(.)e L”(I,E): y(t) € G(¢) a.e. (I)} is nonempty and for every
v(.)e L (I,E) one has

d(v(.),M)= [Id(v(t), G(t))Pdtj .

Let Y, Z be two Hausdorff topological spaces and let F(.):Y = P(Z) be a
multifunction with nonempty, closed values. F'(.) is said to be upper semiconti-

nuous (u.s.c) if for any open subset U = Z, the set F"(U)={yeY: F(y)cU}
isopenin Y.

Let [ =[t,,T] be areal interval and 0 <A <T —¢,. Let 4 be the Lebesgue

measure on / and consider the following partial neutral functional differential
inclusion

%[x(t)— ft,x,0)] e Ft,x,() A-ae., ae.(l), (1)

3Oy gy =50 @)
where F(.,.):IxC([t,—A,t,],E) > P(E) is a bounded, closed, convex set-
valued map, f():IxC([t,—A¢t,E)>E, x,(.):[t,—At,]>E 1is a given
continuous function and for all e/, x, :[t,—A,t,] > E 1is a continuous function
defined by x,(s)=x(t+s—t,). Hence x,(.) describes the history of the state x(.)
from time #—A up to the present time ¢ .
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Definition 2.5. By a solution of (1)-(2) we mean a continuous function
x(.):[t,—A,T]— E such that t — x(t) - f(¢,x,(.)) is absolutely continuous on 7/,

x(.)|[l07AJ0] = x,(.) and the inclusion (1) holds a.e. on /.

Hypothesis 2.6. i) There exist ¢, €[0,1) and ¢, >0 such that for all e/ and
y()eC([t,—A,t,],E) one has
lf@yO)<ealyOl, +e
i)  f(,.) is completely continuous and for any bounded set
Ac C([t,—AT],E), the set{t > f(¢,x,(.)): x(.) € A} 1s equicontinuous in
C(,E).
)  F(,.):IxC([t,—A,t,],E) = P(E) has nonempty bounded, closed convex

values and is measurable.
iv) Forany te!l, F(¢,.) isu.s.c. and for each fixed y(.) e C([¢,—A,¢,],E),

Se,o=1g()e L(I,E): gt)e F(t,y(.) ae(l)}=D.

v) There exist ¢(.)eL'(I,R,) and a continuous and increasing function
w:R, —(0,0) such  that for  all y(.) e C([t, - A1, ], E),

|F . yO)|:=sup{|z]: ze Ft.y()} <@ty (|»()],) ae.on ] and

ds
w(s)’

.[zﬂT gD(S)dS < -[coo

1
where ¢ :E[(Prcl)”xo(.)"w +2c, |.

vi)  For each bounded Bc C([t,—A,t,],E), y()€B and tel the set is

relatively compact.

In what follows we will need the following theorem.

Theorem 2.7. ([2]) Assume that F(..):IxC([t,—A,%],E)—> P(E) and
f():Ix C([t0 —A,to],E) — E satisfy Hypothesis 2.6. Then the Cauchy problem

(1)-(2) admits at least one solution.
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3. Main results

We prove two existence theorems for random neutral functional
differential inclusions. One is about partial neutral functional differential

inclusions defined on C ([tO -At, ), E ) and the other for neutral functional
differential inclusions defined on a subset ofC([t,—A,T],E), namely

w? ([t0 -AT)E ) This leads us to what is known in applied mathematics as
"viability theory".

Consider the following random version of inclusion (1)-(2)

%[x(a),t)—f(a),t,x[(a),.))] e F(o,t,x,(w,.)) uxA— ae. ae.(I), 3)

x(w,.) =x,(w,.) VoeQ 4)

1At
where
F(,,):QxIxC([t,—At,1,E) > P(E), f(.,...): QxIxC([t,—At,],E) > E,

X (.,.) 1 Qx[t, —A,t,]—> E is a given Caratheodory function and for all 1€/ and
weQ, x(w,):[t,-At,]>E is a continuous function defined by

x,(w,5)=x(w,t +s—1,).

Definition 3.1. A solution to the random neutral functional differential inclusions
(3)-(4) is a stochastic process x(.,.):Qx[t,—A,T]— E with continuous paths
(e, for all re[t,—A,T], x(,t) is measurable and for all weQ,
x(w,)eC([t,—A,T],E)) such that t— x(w,t)- f(®,tx,()) 1is absolutely

continuous on 7, x(@,.) =x,(w,.) for every weQ and the inclusion (3)

holds a.e. on Qx /.

[t9-Ax]

Assume that the following Hypothesis is satisfied.
Hypothesis 3.2. 1) There exist ¢, : Q —[0,1) and ¢, : Q —[0,0) both measurable

such that for almost all @€ Q, e and y(.) e C([t, —A,¢,], E) one has

|/ (@.t, (D)< @)y, +ex(@).

i)  f(,.,.) is completely continuous, for all (¢, y(.))eIxC([t,—A¢],E),
o— f(w,t,y()) is measurable and for any bounded set
AcC([t,—AT],E), the set {t > f(w,t,x,(.)): x(.) € A} is equicontinuous
in C(,E).
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i)  F(.,.,.):QxIxC([t,—A,t,],E) > P(E) has nonempty bounded, closed
convex values and is jointly measurable.
iv) For any (w,t) € Qx 1, the set-valued map F(¢,.) is u.s.c. and for each fixed
weQ and y()eC([t,-At,).E),
S, run =180 e L(I,E): g(t)e F(w,t,y()) ae(l)}#D.
v)  There exist ¢(.,.) e L'(Qx1,R,) and a continuous and increasing function
v :R, - (0,00) such that for all y(.)e C([z, —A,¢,],E),

|F(@.t.yO))| < (e, (|¥()], ) ae. on QxT and

T o dS
J.IU o(w,s)ds < J.C(w) ok
1

@) [(1 +¢, (@))%, (@,.)], + 2c2(a))].

vi)  For each bounded B < C([t,—-A,%,],E), y()€B and el the set

where ¢(w) =

{ [ g)ds: g()e SMJ(A)}

is relatively compact.

Theorem 3.3. Let F(.,.,.):QxIxC([t,—A,¢t,],E) > P(E) and f(.,.,.):QxIx

xC([t,—A,t,],E)—> E as above. Then the Cauchy problem (3)-(4) admits a
solution.

Proof. Let/ =[t,—A,T] and consider the functionsp:Qx/[ xC(/,,E)x
xL'(I,E)— E and q:QxC(I,,E)xL'(I,E)— R defined respectively by

x(t)—xy(@,t) if teft,—Az]
p(@,1,x(.), () = x(1) = x,(@,1,) + f(@,1), %) (@,.))
— f(@,t,x,() - j g(s)ds if tel

q(0,x(.), () =d(g(), Sp(o..))-

Since @ — x,(®,.) is measurable and f'(.,.,.) is continuous, we have that
o — p(w,t,x(.),g(.)) is measurable and (¢,x(.),g(.)) > p(w,t,x(.),g(.)) is
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continuous. Applying Lemma III-14 of Castaing and Valadier ([3]) we obtain that
(@,t,x(.),2(.) = p(w,t,x(.),g(.) is measurable. Let D be a dense subset of

[t,—A,T] and define p, :QxC(I,,E)xL'(I,E)— E by

p(@,x(.),g() = Sup plo,t,x(.),g(.)).

Then (@,x(.),g(.)) = p,(®,x(.),g(.)) is jointly measurable.
With a same reasoning as in the proof of Theorem 2 in [10] we claim that
(@0,x(.),2(.) = g(w,x(.),g(.)) is also measurable.

Now consider the multifunction R(.):Q — P(C(I,,E)x L (I,E)) defined
by
R(0) ={(x(.),g() € C(I,, E)x L'(I,E): p,(@,x(.),&()) =0, g(e,x(),g()) =0}.

From Theorem 2.7 we have that for all w € Q, R(w) # . Using measurability of
p,(.,.,.) and q(.,.,.) we get that Graph(R(.)) is measurable.

Apply Theorem 3 of Saint-Beuve ([13]) to get 4, :Q— C(/,,E) and
A, :Q— L'(I,,E) both measurable such that (4 (@), 4 (@))€ R(w) p—a.e(Q).
Set

x(@,1) = 2, (@)(1).

Also from Lemma 16 of Dunford and Schwartz ([4]) we get the existence of a
function g(.,.) e L'(Qx I, E) such that

g(o,t)=4L(o)t) p-ae.
By Lemma 2.1, x(.,.) and g(.,.) are Caratheodory functions and satisfy
X(a),t)—f(a),t,xt(a),.)) = xo(a)ato) _f(a)’to,xo(a)")) +J‘: g(a),S)dS H—ac, Vtel

x(w,t) =x,(w,t) Vte[t,—At,]

So x(.,.) is the desired random trajectory which solves the problem (3)-(4).
O
Remark 3.4. Several remarks are in order.
1) If f(w,t,y(.))=0then our result yields Theorem 2 in [10] (see also
Theorem 3.3 in [6]).
ii) If F(,.,.) and f(.,.,.) are constant with respect to the random parameter
in the sense that F(w,t,y(.)) = F(¢t,y(.)) and f(w,t,y(.)) = f,(¢,y()),

then the above theorem yields the result of Benchohra and Ntouyas [2]
(Theorem 3.4).
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In what follows X will denote the space W*([t,—A,T],E) and Y will
denote the space L’([t,—A,T],E). Consider the following random neutral
functional differential inclusion without memory

d d
Ex(a), t)e F(w,t,x, (w,.),ax(a), ) uxA-ae. (1), %)
x(a),.)|[tn_AJn] =x,(w,.) YoeQ (6)
x(w,)eK(w) VweQ @)

where
F(,,):QxIxXxY >P(E), K(.):Q—>P(X) and x,(.,.): Qx[t, —A,t,] > E

is a measurable function with x,(®,.) € K(®) for each w e Q).

Theorem 3.5. Assume that F(.,.,.,.):QxIx X xY — P(E) and
K(.):QQ—> P(X) are weakly measurable, F(.,.,.) has closed values and for every
(@,x(.),y(.)) e Qx X xY one has

-[t:—A d(0, F(@,t,x(.), y(.)))" dt <o0.

If for every w € Q there exists a solution to the problem (5)-(7), then there exists
a random solution to this problem.

Proof. For ¢t €[t,—A,¢,], we extend F(.,.,.) putting F(@,t,x(.), y(.)) = %xo(a),t)

Note that F(.,.,.) is weakly measurable. Define G(,,.,.): Qx X xY — P(Y)
letting

G(w,x(.),y() = {z(.) eY: z(t) e F(a,t,x(.), ¥(.) a.e.(]l)}.
Using Lemma 2.4 we get that for every (@, x(.), y(.)) e Qx X' xY the sets
G(w,x(.), y(.)) are nonempty and for every v(.) e Y we have

400630y = ([ 400, FoxO.oy )

By Lemma 2.2 the map (w,,x(.), y(.)) > d(v(¢), F(@,t,x(.), ¥(.)))” is measurable
and thus, by Fubini’s theorem, the map (@, x(.), y(.)) = d(v(.), G(@, x(.), y(.))) is
also measurable, hence G(.,.,.) is weakly measurable (Theorem 3.3 in [7]).
Consider the integral operator I';(.,.): Q2xY — X defined by
Ly(@,y() = x) (0,4, = A) +T(y(.)
and define the set-valued map H(.,.):QxY — P(Y) by
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H(w,y())=G(o,I'y(o,y()), ().
Then H(.,.) has closed values and, by Lemma 2.3, is weakly measurable.
Let L(.):Q — P(Y) be defined by
L(w)={y()eY: T (o) € K(v)]
and note that L(.) has measurable graph. Define P,(.): Q2 — P(Y),
Py(@)={y()eY: y()e H (@, y()}.
By assumption, for every weQ the set L(w)NP,(.) is nonempty. Invoking
Proposition 1 in [12] we obtain the existence of a measurable map z(.):Q—>Y
such that z(w) € L(w) N P, (w) u—a.e. Notice that for every weQ, x(w,.) is a

solution to (5)-(7) if and only if %x(a),.)eL(w)mPH(a)). Thus we define

x(.,.):[t, = A, T]xQ — E by
x(w,t) =T (@, z(®))(?).

Clearly x(.,t) is measurable (Lemma 2.3) and this is the desired random viable
trajectory.

Remark 3.6.

1) If K(w)=X Vwe2,then the above theorem extends to the whole
class of random neutral functional differential inclusions the result in
Theorem 3.3.

i) If F(,.,.,.) does not depend on the forth variable, then Theorem 3.5
yields Theorem 1 in [12] (see also Theorem 3.6 in [6]).

Example 3.7. The model of the endotoxin tolerance is a good example of
uncertainty. The mathematical model ([14]) considers a non-autonomous first
order differential system of two equations with two unknowns, i.e. the
concentrations of a TNF-a pro-inflammatory cytokine and of the inhibitor of the
cytokines, denoted by x and y, respectively. The system is:

(8)
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where A(.) represents the LPS endotoxin concentration and D, (.) is the clearance

rate of the inhibitor and is supposed to be a time-dependent function. All the
variables and parameters are non negative. We may suppose for the beginning that
D, is our uncertain variable.

Using differential inclusions as the main modeling tool, both the steady-
state behaviour and also the transient behaviour of the system in question may be
covered by the information obtained from reachability computation in the set-
valued context.

Let U be the set of control parameters, i.e.

U= {(A(t),D2):t €[t,,T1,D, 6[0.1,4]}, T>t,20
and define the multifunction G(.,.):[t,,T]xR*> — P(R*) by

X +E 1 V +E?
G(t,(x,y))=<| A(t)-D, - ——L ————x, A(t)-F, - =—2— (A@®),D,)eU
et ={( a0 B (a0
We associate to the system (8) the following differential inclusion
z'(t) e G(1,2(1))
_ 9
z(t,) =z,

The reason to treat the uncertain variables in a non probabilistic way is
that the analysis of the reachable set of inclusion (9) gives us informations about
possible extreme values. This also may be useful if we expect that the uncertain
variable D, (or other variables) could be intentionally generated to move the sys-

tem to the extreme values. A detailed discussion will be made in a future work.
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