

GENERALIZED DERIVATIONS AND GENERALIZED AMENABILITY OF BANACH ALGEBRAS

Ali ZOHRI¹, Ali JABBARI^{*2}

Let \mathfrak{A} be a Banach algebra. A generalized derivation from \mathfrak{A} into itself is a linear map D such that $D(xa) = D(a)x + xd(a)$ for all $a, x \in \mathfrak{A}$, where d is a derivation from \mathfrak{A} into \mathfrak{A} . In this paper we define dual generalized derivation from Banach algebra \mathfrak{A} into dual of its \mathfrak{A}^ or dual of some Banach \mathfrak{A} -module X and study its properties.*

Keywords: dual generalized derivation, generalized amenability, generalized derivation, generalized inner derivation, triangular Banach algebras, Jordan derivations, Jordan generalized derivations.

2000 Mathematics Subject Classification: Primary 46H20; Secondary 13N15.

1. Introduction

Amenability is a cohomological property of Banach algebras which was introduced by Johnson in [14]. Let \mathfrak{A} be a Banach algebra, and suppose that X is a Banach \mathfrak{A} -bimodule such that the following statements hold

$$\|a \cdot x\| \leq \|a\| \|x\| \quad \text{and} \quad \|x \cdot a\| \leq \|a\| \|x\|$$

for each $a \in \mathfrak{A}$ and $x \in X$.

We can define the right and left actions of \mathfrak{A} on dual space X^* of X via

$$\langle x, \lambda \cdot a \rangle = \langle a \cdot x, \lambda \rangle \quad \langle x, a \cdot \lambda \rangle = \langle x \cdot a, \lambda \rangle,$$

for each $a \in \mathfrak{A}$, $x \in X$ and $\lambda \in X^*$.

Suppose that X is a Banach \mathfrak{A} -bimodule. A derivation $D : \mathfrak{A} \rightarrow X$ is a linear map which satisfies $D(ab) = a \cdot D(b) + D(a) \cdot b$ for each $a, b \in \mathfrak{A}$ and it is called Jordan derivation in case $D(x^2) = D(x) \cdot x + x \cdot D(x)$ for each $x \in \mathfrak{A}$. It is clear that every derivation is a Jordan derivation.

A derivation δ is said to be inner if there exists a $x \in X$ such that $\delta(a) = \delta_x(a) = a \cdot x - x \cdot a$ for each $a \in \mathfrak{A}$. We denote the linear space of bounded derivations from \mathfrak{A} into X by $Z^1(\mathfrak{A}, X)$ and the linear subspace of inner derivations by $N^1(\mathfrak{A}, X)$. We consider the quotient space $H^1(\mathfrak{A}, X) = Z^1(\mathfrak{A}, X)/N^1(\mathfrak{A}, X)$, it is called the first Hochschild cohomology group of \mathfrak{A} with coefficients in X . The Banach algebra \mathfrak{A} is said to be amenable if $H^1(\mathfrak{A}, X^*) = \{0\}$ for each Banach \mathfrak{A} -bimodules X . The Banach algebra \mathfrak{A} is called weakly amenable if, $H^1(\mathfrak{A}, \mathfrak{A}^*) = \{0\}$ (for more details

¹ Department of Mathematics, "PAYAME NOOR" University, Iran, E-mail: zohri_a@pnu.ac.ir

² Young Researchers and Elite Club, Ardabil Branch, "ISLAMIC AZAD" University, Ardabil, Iran, E-mail: jabbari_al@yahoo.com & ali.jabbari@iauardabil.ac.ir, *Corresponding author

see [1], [4], [11] and [12]). Let $n \in \mathbb{N}$; the Banach algebra \mathfrak{A} is called n -weakly amenable if, $H^1(\mathfrak{A}, \mathfrak{A}^{(n)}) = \{0\}$ (see [5]).

The concept of generalized derivation has been introduced by Brešer in [3]. An additive mapping $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is called generalization derivation if there exists a derivation $d : \mathfrak{A} \rightarrow \mathfrak{A}$ such that $D(xy) = D(x)y + xd(y)$ for each pairs $x, y \in \mathfrak{A}$ and we say D is a d -derivation. It is easy to see that $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is generalized derivation if and only if D is of the form $D = d + \varphi$, where d is a derivation from \mathfrak{A} into \mathfrak{A} and φ is a left module mapping.

The set of bounded \mathfrak{A} -module homomorphisms from \mathfrak{A} into an \mathfrak{A} -module M is itself an \mathfrak{A} -module, when the module operation is given by $a \cdot \phi(x) = \phi(x \cdot a)$ or $\phi(a \cdot x) = \phi(x) \cdot a$, for each $a \in \mathfrak{A}$ and each module homomorphisms ϕ . This module is denoted by $\text{Hom}(\mathfrak{A}, M)$. A map $T \in \text{Hom}(\mathfrak{A}, \mathfrak{A})$ is called a multiplier, and we write $\text{Hom}(\mathfrak{A}, \mathfrak{A}) = M(\mathfrak{A})$. The set $M(\mathfrak{A})$ is a Banach subalgebra of $B(\mathfrak{A})$, the set of all bounded operators on \mathfrak{A} . The homomorphic image of \mathfrak{A} in $M(\mathfrak{A})$ is given by $a \mapsto L_a$, where $L_a(x) = ax$, is called the regular representation of \mathfrak{A} .

The generalized derivation $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is a inner if there exist $a, b \in \mathfrak{A}$, such that $D(x) = bx - xa$. If we consider \mathfrak{A} as a right \mathfrak{A} -module, generalized derivation $\delta : \mathfrak{A} \rightarrow \mathfrak{A}$ is inner if there exist $a \in \mathfrak{A}$ and $\phi \in M(\mathfrak{A})$, such that $\delta(x) = \phi(x) - xa$, that $\phi(x) = bx$.

There are some generalizations for amenability of Banach algebras such as approximate amenability [10], character amenability [15, 17], approximate character amenability [13], ideal amenability [7] and approximate ideal amenability [6]. We denote the linear space of bounded generalized derivations from \mathfrak{A} into X by $GZ^1(\mathfrak{A}, X)$ and the linear subspace of generalized inner derivations by $GN^1(\mathfrak{A}, X)$, we consider the quotient space $GH^1(\mathfrak{A}, X) = GZ^1(\mathfrak{A}, X)/GN^1(\mathfrak{A}, X)$, called the first generalized Hochschild cohomology group of \mathfrak{A} with coefficients in X . Similar to amenability of Banach algebra we say \mathfrak{A} is a generalized amenable if $GH(\mathfrak{A}, X^*) = \{0\}$ for every Banach \mathfrak{A} -bimodule X .

2. Basic Properties

In this section let \mathfrak{A} be a Banach algebra and M be a Banach \mathfrak{A} -bimodule. We use “.” for module product between M and its dual and “.” denote the module product between M and \mathfrak{A} .

Definition 2.1. A linear mapping $\delta : M \rightarrow M^*$ is said to be dual generalized derivation on M , if there exist a derivation $d : \mathfrak{A} \rightarrow M^*$ such that

$$\delta(xa) = \delta(x) \cdot a + x.d(a)$$

for each $x \in M$ and for each $a \in \mathfrak{A}$.

Definition 2.2. Let M be a Banach algebra and let $\delta : M \rightarrow M^*$ be a dual generalized derivation. δ is said to be dual generalized inner derivation, if there exist $a, b \in M^*$ such that $\delta(x) = bx - xa$, for each $x \in M$.

As above mentioned, it is proved that $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is generalized derivation if and only if D is of the form $D = d + \varphi$, where d is a derivation from \mathfrak{A} into \mathfrak{A} and

φ is a left module mapping. In the next lemma we extend this for the case when $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$.

Lemma 2.1. *A linear mapping $\delta : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is dual generalized derivation if and only if there exist a derivation $d : \mathfrak{A} \rightarrow \mathfrak{A}^*$ and module map $\varphi : \mathfrak{A} \rightarrow \mathfrak{A}^*$ such that $\delta = d + \varphi$.*

Proof. Let δ be a dual generalized derivation on \mathfrak{A} , so there exist a derivation $d : \mathfrak{A} \rightarrow \mathfrak{A}^*$. Give $\varphi = \delta - d$. Then for each $a, x \in \mathfrak{A}$, we have

$$\varphi(xa) = \delta(xa) - d(xa) = \delta(x).a + x.d(a) - (d(x).a + x.d(a)) = \varphi(x)a.$$

Thus φ is module map and $\delta = d + \varphi$.

Conversely let d be a derivation from \mathfrak{A} to \mathfrak{A}^* and $\varphi : \mathfrak{A} \rightarrow \mathfrak{A}^*$ be a module map. Take $\delta = d + \varphi$, then clearly δ is a d -derivation. \square

Proposition 2.1. *Let \mathfrak{A} has a bounded approximate identity and $\delta : \mathfrak{A} \rightarrow \mathfrak{A}^*$ be a d -derivation. Then δ is bounded if and only if d is bounded.*

Proof. By Lemma 2.1, we can decompose δ as $\delta = d + \varphi$ and by Cohen factorization Theorem [2], φ will be bounded and boundedness of δ is only depend on boundedness of d . \square

Theorem 2.1. *Let $\delta : M \rightarrow M^*$ be a bounded linear map. Then δ is a dual generalized inner derivation if and only if there exist an inner derivation $d_a : \mathfrak{A} \rightarrow M^*$ specified by $a \in \mathfrak{A}$, such that δ is a d_a -derivation.*

Proof. Let δ be a dual generalized derivation. Then there exist $a, b \in M^*$ such that

$$\delta(x) = b.x - x.a \quad (x \in M).$$

Also for every $x \in M$ we have

$$\begin{aligned} \delta(x) \cdot c + x.d_a(c) &= (b.x - x.a) \cdot c + x.a \cdot c - x \cdot c \cdot a \\ &= b.x \cdot c - x.a \cdot c + x.a \cdot c - x \cdot c \cdot a = b.x \cdot c - x \cdot c \cdot a \\ &= \delta(x \cdot c). \end{aligned}$$

Thus δ is a d_a -derivation.

Conversely, suppose δ is a d_a -derivation for some $a \in M^*$. Define $T : M \rightarrow M^*$ by $T(x) = \delta(x) + x.a$. Then T is linear, bounded and for each $b \in \mathfrak{A}$

$$T(x \cdot b) = (\delta(x) + x.a) \cdot b = T(x) \cdot b.$$

Thus

$$\delta(x) = (\delta(x) + x.a) - x.a = T(x) - x.a.$$

Therefore δ is a dual generalized inner derivation. \square

3. Main Results

Proposition 3.1. *Let \mathfrak{A} , \mathfrak{B} and \mathfrak{C} be Banach algebras such that \mathfrak{A} and \mathfrak{B} are Banach \mathfrak{C} -bimodule. Suppose that $\theta : \mathfrak{A} \rightarrow \mathfrak{B}$ is a homeomorphism such that θ and θ^{-1} are linear module maps and $d : \mathfrak{C} \rightarrow \mathfrak{C}$ is a derivation. Then for every d -derivation $\delta_{\mathfrak{B}} : \mathfrak{B} \rightarrow \mathfrak{B}$ there exists a d -derivation $\delta_{\mathfrak{A}} : \mathfrak{A} \rightarrow \mathfrak{A}$. Converse is true when θ^{-1} is onto.*

Proof. Let $\delta_{\mathfrak{B}} : \mathfrak{B} \longrightarrow \mathfrak{B}$ be a d -derivation. So for every $y \in \mathfrak{B}$ and $c \in \mathfrak{C}$ we have $\delta_{\mathfrak{B}}(y \cdot c) = \delta_{\mathfrak{B}}(y) \cdot c + y \cdot d(c)$. Therefore, there exists a $x \in \mathfrak{A}$ such that

$$\delta_{\mathfrak{B}}(\theta(x) \cdot c) = \delta_{\mathfrak{B}}(\theta(x)) \cdot c + \theta(x) \cdot d(c).$$

Consequently

$$\delta_{\mathfrak{B}} o \theta(x \cdot c) = (\delta_{\mathfrak{B}} o \theta(x)) \cdot c + \theta(x) \cdot d(c),$$

and also we have

$$\theta^{-1} o \delta_{\mathfrak{B}} o \theta(x \cdot c) = \theta^{-1} o (\delta_{\mathfrak{B}} o \theta(x)) \cdot c + x \cdot d(c) = (\theta^{-1} o \delta_{\mathfrak{B}} o \theta(x)) \cdot c + x \cdot d(c).$$

Now, assume $\delta_{\mathfrak{A}} = \theta^{-1} o \delta_{\mathfrak{B}} o \theta$, and so proof is complete. \square

Let \mathfrak{A} , \mathfrak{B} , \mathfrak{C} and θ be defined as above Proposition. Then for every inner d -derivation $\delta_{\mathfrak{B}} : \mathfrak{B} \longrightarrow \mathfrak{B}$ there exists a $\delta_{\mathfrak{A}} : \mathfrak{A} \longrightarrow \mathfrak{A}$ such that $\delta_{\mathfrak{A}}$ is an inner d -derivation.

Proposition 3.2. *If $\delta : \mathfrak{A} \longrightarrow \mathfrak{A}$ is a d -derivation, then $\delta^{**} : \mathfrak{A}^{**} \longrightarrow \mathfrak{A}^{**}$ is a d^{**} -derivation.*

Proof. It is clear that δ^{**} is linear. For given $a, b \in \mathfrak{A}^{**}$, there exist nets (a_{α}) and (b_{β}) in \mathfrak{A} such that $a = w^* - \lim_{\alpha} a_{\alpha} = a$ and $b = w^* - \lim_{\beta} b_{\beta} = b$. Then

$$\begin{aligned} \delta^{**}(ab) &= w^* - \lim_{\alpha} w^* - \lim_{\beta} \delta(a_{\alpha} b_{\beta}) \\ &= w^* - \lim_{\alpha} w^* - \lim_{\beta} (\delta(a_{\alpha}) b_{\beta} + a_{\alpha} d(b_{\beta})) \\ &= \delta^{**}(a)b + ad^{**}(b). \end{aligned}$$

\square

Theorem 3.1. *Suppose that the following sequence is a short exact sequence*

$$0 \longrightarrow \mathfrak{I} \xrightarrow{i} \mathfrak{A} \xrightarrow{q} \mathfrak{B} \longrightarrow 0,$$

of Banach algebras, Banach \mathfrak{A} -bimodules and bounded algebra homomorphism (\mathfrak{A} is an extension of \mathfrak{B} by \mathfrak{I}). If $\delta_1 : \mathfrak{I} \longrightarrow \mathfrak{I}^$ and $\delta_2 : \mathfrak{B} \longrightarrow \mathfrak{B}^*$ be dual generalized d -derivations, then there exists a linear map $D : \mathfrak{A} \longrightarrow \mathfrak{A}$ such that D is a dual generalized d -derivation*

Proof. We may assume that \mathfrak{I} is a closed two sided ideal in \mathfrak{A} and \mathfrak{B} is the quotient space $\mathfrak{A}/\mathfrak{I}$. According to our assumption we have $\delta_1(xa) = \delta_1(x).a + x.d(a)$ and $\delta_2(ya) = \delta_2(y).a + y.d(a)$, for each $a \in \mathfrak{A}$, $x \in \mathfrak{I}$ and $y \in \mathfrak{A}/\mathfrak{I}$.

Now, we define $D = \delta_1 + \delta_2$. It is clear that D is linear and for each $z \in \mathfrak{A}$ we have

$$\begin{aligned} D(za) &= D((x + y)a) = D(xa + ya) \\ &= D(xa) + D(ya) = \delta_1(xa) + \delta_2(ya) \\ &= (\delta_1(x) + \delta_2(y)).a + (x + y).d(a) \\ &= D(x + y).a + (x + y).d(a) \end{aligned}$$

Thus, $D(za) = D(z).a + z.d(a)$, and proof is complete. \square

Let $\mathfrak{A}_1, \dots, \mathfrak{A}_n$, be Banach algebras and $D_i : \mathfrak{A}_i \rightarrow \mathfrak{A}_i^*$ be a dual d_i -derivation for each $i = 1, \dots, n$. Then $D : \prod_{i=1}^n \mathfrak{A}_i \rightarrow \mathfrak{A}_i^*$ is a dual d_i -derivation.

Proof. We have the following short exact sequence

$$0 \rightarrow \mathfrak{A}_i \xrightarrow{\tau_i} \prod_{i=1}^n \mathfrak{A}_i \xrightarrow{\pi_i} \mathfrak{A}_i \rightarrow 0.$$

According to above Theorem, D is a dual d_i -derivation. \square

Definition 3.1. Let \mathfrak{A} be a Banach algebra. We say \mathfrak{A} is generalized amenable if $GH(\mathfrak{A}, X^*) = \{0\}$ for every Banach \mathfrak{A} -bimodule X .

Definition 3.2. Let \mathfrak{A} be a Banach algebra. We say \mathfrak{A} is generalized weakly amenable if $GH(\mathfrak{A}, \mathfrak{A}^*) = \{0\}$.

Theorem 3.2. Let \mathfrak{A} be a amenable Banach algebra. Then for every Banach \mathfrak{A} -bimodule M , we have $GH^1(M, M^*) = \{0\}$.

Proof. Let $\delta : M \rightarrow M^*$ be a dual generalized derivation. Then there exists a derivation $d : \mathfrak{A} \rightarrow M^*$ such that δ is a d -derivation. Thus by Theorem 2.1, $GH(M, M^*) = \{0\}$. \square

If \mathfrak{A} is an amenable Banach algebra, then for every Banach algebra M , which is a Banach \mathfrak{A} -bimodule, we have $GH^1(M, M^{(n)}) = \{0\}$ (i.e. M is generalized-n-permanent amenable).

Theorem 3.3. Let \mathfrak{A} and M be Banach algebras and M be a right Banach \mathfrak{A} -module. If M is weakly amenable, then for every dual generalized d -derivation $\delta : M \rightarrow M^*$, d is inner derivation from \mathfrak{A} to M^* .

Proof. Let $\delta : M \rightarrow M^*$ be a dual generalized d -derivation so $\delta(x \cdot b) = \delta(x) \cdot b + x.d(b)$ for $b \in \mathfrak{A}$ and $x \in M$. Since M is weakly amenable, then δ is an inner derivation. Therefore there exists an $a \in M^*$ such that

$$\delta(x) = a \cdot x - x \cdot a.$$

So we have

$$\begin{aligned} \delta(x \cdot b) &= a \cdot x \cdot b - x \cdot b \cdot a = \delta(x) \cdot b + x.d(b) \\ &= a \cdot x \cdot b - x \cdot a \cdot b + x.d(b). \end{aligned}$$

Then $d(b) = a \cdot b - b \cdot a$ and so d is an inner derivation. \square

Theorem 3.4. Let $\mathfrak{A}_1, \dots, \mathfrak{A}_n$, be Banach algebras and M_i be a Banach \mathfrak{A}_i -module for each $i = 1, 2, \dots, n$. Let $D_i : M_i \rightarrow M_i^*$ be a dual generalized derivation for each $i = 1, \dots, n$. Then

$$D : \prod_{i=1}^n M_i \rightarrow \prod_{i=1}^n M_i^*$$

is a dual generalized derivation.

Proof. Since each D_i is a dual generalized derivation, therefore there exists a derivation such as $d_i : \mathfrak{A}_i \longrightarrow M_i^*$ such that $D_i(a \cdot x) = D_i(a) \cdot x + a.d_i(x)$ for each $a \in M_i$ and $x \in \mathfrak{A}_i$. Define $D : M_1 \times M_2 \times \dots \times M_n \longrightarrow M_1^* \times M_2^* \times \dots \times M_n^*$ by $D = (D_1, \dots, D_n) = \prod_{i=1}^n D_i$. Then for every $(a_1, a_2, \dots, a_n) \in \prod_{i=1}^n M_i$ and $(x_1, x_2, \dots, x_n) \in \prod_{i=1}^n \mathfrak{A}_i$, we have

$$\begin{aligned} D(a \cdot x) &= D((a_1, a_2, \dots, a_n) \cdot (x_1, x_2, \dots, x_n)) = D((a_1 \cdot x_1, a_2 \cdot x_2, \dots, a_n \cdot x_n)) \\ &= (D_1(a_1, x_1), D_2(a_2, x_2), \dots, D_n(a_n, x_n)) \\ &= (D_1(a_1) \cdot x_1 + a_1.d_1(x_1), \dots, D_n(a_n) \cdot x_n + a_n.d_n(x_n)) \\ &= (D_1(a_1), \dots, D_n(a_n)) \cdot (x_1, \dots, x_n) + (a_1, \dots, a_n) \cdot (d_1(x_1), \dots, d_n(x_n)). \end{aligned}$$

Now, take $d = (d_1, \dots, d_2)$. Since each d_i is a derivation, so d is a derivation from $\prod_{i=1}^n \mathfrak{A}_i$ into $\prod_{i=1}^n M_i^*$. Then we have

$$D(a \cdot x) = D(a) \cdot x + a.d(x),$$

for every $x \in \mathfrak{A}$ and $a \in M$. Thus, D is a d -derivation and proof is complete. \square

Let $\mathfrak{A}_1, \dots, \mathfrak{A}_n$, be generalized amenable Banach algebras, then $\prod_{i=1}^n \mathfrak{A}_i$ is generalized amenable.

4. Results for Triangular Banach Algebras

Let \mathcal{A} and \mathcal{B} be unital Banach algebra and suppose that \mathcal{M} is Banach \mathcal{A}, \mathcal{B} -module. We define triangular Banach algebra

$$T = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ & \mathcal{B} \end{bmatrix},$$

with the sum and product being giving by the usual 2×2 matrix operations and internal module actions. The norm on T is

$$\left\| \begin{bmatrix} a & m \\ & b \end{bmatrix} \right\| = \|a\|_{\mathcal{A}} + \|m\|_{\mathcal{M}} + \|b\|_{\mathcal{B}}.$$

Derivation on triangular Banach algebras have been studied by B. E. Forrest and L. W. Marcoux in [6] and amenability and weak amenability of these algebras are studied in [7] and [11]. T as a Banach space is isomorphic to the ℓ^1 -direct sum of \mathcal{A}, \mathcal{B} and \mathcal{M} , so we have $T^{(2m-1)} \simeq \mathcal{A}^{(2m-1)} \oplus_1 \mathcal{M}^{(2m-1)} \oplus_1 \mathcal{B}^{(2m-1)}$ and $T^{(2m)} \simeq \mathcal{A}^{(2m)} \oplus_{\infty} \mathcal{M}^{(2m)} \oplus_{\infty} \mathcal{B}^{(2m)}$ for each $m \geq 1$.

When $m = 1$, for every $\tau = \begin{bmatrix} \alpha & \mu \\ & \beta \end{bmatrix} \in T^*$ and $\omega = \begin{bmatrix} x & y \\ & z \end{bmatrix}$, the actions of ω on τ and τ on ω are given by

$$\omega \circ \tau = \begin{bmatrix} x \circ \alpha + y \circ \mu & z \circ \mu \\ & z \circ \beta \end{bmatrix} \quad \text{and} \quad \tau \circ \omega = \begin{bmatrix} \alpha \circ x & \mu \circ x \\ & \mu \circ y + \beta \circ z \end{bmatrix}$$

By above relations and easy calculations we have the following theorem:

Theorem 4.1. *Let $D : T \longrightarrow T^*$ be a bounded dual generalized derivation. Then there exist bounded dual generalized derivations $D_{\mathcal{A}} : \mathcal{A} \longrightarrow \mathcal{A}^*$, $D_{\mathcal{B}} : \mathcal{B} \longrightarrow \mathcal{B}^*$, and*

an element $\gamma_D \in \mathcal{M}$ such that

$$D \begin{bmatrix} x & y \\ & z \end{bmatrix} = \begin{bmatrix} D_{\mathcal{A}}(x) - y \circ \gamma_D & \gamma_D \circ x - z \circ \gamma_D \\ & D_{\mathcal{B}}(z) + \gamma_D \circ y \end{bmatrix} \quad (x \in \mathcal{A}, y \in \mathcal{M}, z \in \mathcal{B}).$$

Theorem 4.2. Let $\delta_{\mathcal{A}} : \mathcal{A} \rightarrow \mathcal{A}^*$ be a dual generalized derivation. Then $D_{\delta_{\mathcal{A}}} : T \rightarrow T^*$ defined by

$$\begin{bmatrix} x & y \\ & z \end{bmatrix} \mapsto \begin{bmatrix} \delta_{\mathcal{A}}(x) & 0 \\ & 0 \end{bmatrix}$$

is a bounded dual generalized derivation and $\delta_{\mathcal{A}}$ is a dual generalized inner derivation if and only if $D_{\delta_{\mathcal{A}}}$ is a dual generalized inner derivation.

Similarly, for $\delta_{\mathcal{B}} : \mathcal{B} \rightarrow \mathcal{B}^*$ with define $D_{\delta_{\mathcal{B}}} : T \rightarrow T^*$ by

$$\begin{bmatrix} x & y \\ & z \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 \\ & \delta_{\mathcal{B}}(z) \end{bmatrix}$$

above result is true.

Proof. Since $\delta_{\mathcal{A}}$ is a dual generalized derivation thus exist derivation $d : \mathcal{A} \rightarrow \mathcal{A}^*$ such that $\delta_{\mathcal{A}}(xa) = \delta_{\mathcal{A}}(x).a + x.d(a)$, for each $x, a \in \mathcal{A}$. Then for every $\omega = \begin{bmatrix} x & y \\ & z \end{bmatrix}, \nu = \begin{bmatrix} a & m \\ & b \end{bmatrix} \in T$ we have

$$\begin{aligned} D_{\delta_{\mathcal{A}}}(\omega\nu) &= D_{\delta_{\mathcal{A}}} \left(\begin{bmatrix} xa & xm + yb \\ & zb \end{bmatrix} \right) = \begin{bmatrix} \delta_{\mathcal{A}}(xa) & 0 \\ & 0 \end{bmatrix} \\ &= \begin{bmatrix} \delta_{\mathcal{A}}(x).a & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} x.d(a) & 0 \\ & 0 \end{bmatrix} \\ &= D_{\delta_{\mathcal{A}}}(\omega).\nu + \omega.D_d(\nu), \end{aligned}$$

where D_d is a derivation from T into T^* corrolaryresponding to d .

Now suppose that $\delta_{\mathcal{A}}$ is a dual generalized inner derivation, therefore d is a inner and accorrolaryding to Lemma 3.3 of [7], D_d is a dual generalized inner derivation and by Theorem 2.1, $D_{\delta_{\mathcal{A}}}$ is a dual generalized inner derivation. Converse by Lemma 3.3 of [7] is clear.

We can write the similar proof for $\delta_{\mathcal{B}}$ and $D_{\delta_{\mathcal{B}}}$, and the above results hold too. \square

5. Jordan Dual Generalized Derivation

Definition 5.1. Let \mathfrak{A} be a Banach algebra. An additive mapping $D : \mathfrak{A} \rightarrow \mathfrak{A}$ is generalized Jordan derivation if $D(x^2) = D(x)x + xd(x)$ holds for each $x \in \mathfrak{A}$ where $d : \mathfrak{A} \rightarrow \mathfrak{A}$ is a Jordan derivation.

Definition 5.2. Let \mathfrak{A} be a Banach algebra. An additive mapping $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is dual Jordan derivation if $D(x^2) = D(x).x + x.D(x)$ holds for each $x \in \mathfrak{A}$.

Definition 5.3. Let \mathfrak{A} be a Banach algebra. An additive mapping $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is dual generalized Jordan derivation if $D(x^2) = D(x).x + x.d(x)$ holds for each $x \in \mathfrak{A}$ where $d : \mathfrak{A} \rightarrow \mathfrak{A}^*$ is a dual Jordan derivation.

Theorem 5.1. Let \mathfrak{A} be a semisimple Banach algebra and let $D : \mathfrak{A} \rightarrow \mathfrak{A}^*$ be a dual generalized Jordan derivation. Then D is a dual generalized derivation.

Proof. Since D is a dual generalized Jordan derivation, we have

$$D(x^2) = D(x).x + x.d(x) \quad (x \in \mathfrak{A})$$

where d is a dual Jordan derivation from \mathfrak{A} into \mathfrak{A}^* . Since \mathfrak{A} is a semisimple, then d is a derivation. Define $\varphi = D - d$, then we have

$$\begin{aligned} \varphi(x^2) &= D(x^2) - d(x^2) = D(x).x + x.d(x) - (x.d(x) + d(x).x) \\ &= D(x).x - d(x).x = (D(x) - d(x)).x = \varphi(x).x \end{aligned}$$

therefore $\varphi(x^2) = \varphi(x).x$, for each $x \in \mathfrak{A}$. By Proposition 1.4 of [14], we conclude that φ is a module map. Hence $D = \varphi + d$, where φ is a module map and d is a derivation. Then by Lemma 2.1, D is a dual generalized derivation. \square

REFERENCES

- [1] *W. G. Bade, P. C. Curtis and H. G. Dales*, Amenability and weak amenability for Beurling and Lipschitz algebras, *Proc. London Math. Soc.*, **55** (1987), 359-377.
- [2] *F. F. Bonsal and J. Duncan*, Complete normed algebras, Springer-Verlag, Berlin 1973.
- [3] *M. Brešer*, On the distance of the composition of two derivations to the generalized derivation, *Glasgow Math. J.*, **33** (1991), 89-93.
- [4] *P. C. Curtis and R. J. Loy*, The structure of amenable Banach algebras, *J. London Math. Soc.*, **40** (1989), No. 2, 89-104.
- [5] *H. G. Dales, F. Ghahramani and N. Grønbæk*, Derivations into iterated duals of Banach algebras, *Studia Math.*, **128** (1998), No. 1, 19-54.
- [6] *M. Eshaghi Gordji and A. Jabbari*, Approximate ideal amenability of Banach algebras, *U.P.B. Sci. Bull. Series A*, **74** (2012), No. 2, 57-64.
- [7] *M. Eshaghi Gordji and T. Yazdanpanah*, Derivations into duals of ideals of Banach algebras, *Proc. Indian Acad. Sci.*, **114** (2004), No. 4, 399-403.
- [8] *B. E. Forrest, and L. W. Marcoux*, Derivations of triangular Banach algebras, *Indiana Univ. Math. J.*, **45** (1996), 441-462.
- [9] *B. E. Forrest and L. W. Marcoux*, Weak amenability of triangular Banach algebras, *Trans. Amer. Math. Soc.*, **354** (2001), 1435-1452.
- [10] *F. Ghahramani and R. J. Loy*, Generalized notion of amenability, *J. Funct. Anal.*, **208** (2004), 229-260.
- [11] *N. Grønbæk*, A characterization of weakly amenable Banach algebras, *Studia Math.*, **94** (1989), 149-162.
- [12] *N. Grønbæk*, Commutative Banach algebras, module derivations, and semigroups, *J. London Math. Soc.*, **40** (1989), No. 2, 137-157.
- [13] *A. Jabbari*, Approximate character amenability of Banach algebras, *Stud. Univ. Babes-Bolyai Mathematics*, **57** (2012), No. 3, 409-420.
- [14] *B. E. Johnson*, Cohomology in Banach algebras, Amer. Math. Soc., Providence, R. I., 1972.
- [15] *E. Kaniuth, A. T. Lau and J. Pym*, On φ -amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.*, **144** (2008), 85-96.
- [16] *A. R. Medghalchi, M. H. Sattari and T. Yazdanpanah*, Amenability and weak amenability of triangular Banach algebras, *Bull. Iranian Math. Soc.*, **31** (2005), No. 2, 57-69.
- [17] *M. S. Monfared*, Character amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.*, **144** (2008), 697-706.
- [18] *V. Runde*, Lectures on Amenability, Vol. 1774, Springer, New York, 2002.
- [19] *J. Vukman*, A note on generalized derivations of semiprime rings, *Taiwanse J. Math.*, **11** (2007), 367-370.
- [20] *B. Zalar*, On centralizers of semiprime rings, *Comment. Math. Univ. Carol.*, **32** (1991), 609-614.