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PSEUDOINVEX FUNCTIONS ON RIEMANNIAN MANIFOLDS AND
APPLICATIONS IN FRACTIONAL PROGRAMMING PROBLEMS
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In this paper, we have obtained pseudoinvex functions from the ratio of
invexr and related functions to an affine and some generalized invex functions on Rie-
mannian manifolds. Further, we establish sufficient optimality conditions and duality
theorems for fractional nonlinear optimization problems under weaker assumptions on
Riemannian manifolds.
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1. Introduction

The ratio of a convex function to a positive affine function is a pseudoconvex function,
see, Cambini and Martein [2]. The concept of invex and generalized invex functions was given
by Hanson [8] and the same on Riemannian manifolds was given by Pini [14] and Barani
and Pouryayevali [1]. Now, we extend the results of Cambini and Martein [2] to Riemannian
manifolds. In our case the ratio of an invex function to a positive affine function is a
pseudoinvex function and some other similar results also.

A nonlinear fractional programming problem is an optimization problem. In the
applications of fractional programming the quotient of two functions is to be maximized or
minimized. If f is convex, g is concave and h is convex then the fractional programming
is defined as convex-concave fractional programming problem. If all the functions f, g
and h are invex then the programming is known as an invex problem. For invex fractional
programming problems, we may cited the fundamental work of Craven [4] in which the invex
function was advised first time and also the work of Reddy and Mukherjee [17], Singh and
Hanson [18], Mishra and Giorgio [13], Craven [3] and Craven and Glover [5]. We continue
this fractional programming to pseudoinvex case.

On the other hand, a manifold is not a linear space and extensions of results and
techniques from linear spaces to Riemannian manifolds are natural. The importance of the
extension is that, with the significant Riemannian metric the nonconvex optimization prob-
lems become convex optimization problems. In recent years, many important results and
techniques have been developed on various aspects of convex optimization on Riemannian
manifolds, see, [19]. We extend the results of Craven and Mond [6] on Riemannian theory
and in our case f is invex, g is positive and affine then the objective function is pseudoinvex.
Rapcsék [16] proposed optimality conditions for an optimization problem with constraints
on smooth manifold. Further, Jana and Nahak [9] have established sufficient optimality
conditions and duality results for an optimization problem on a differentiable manifold.
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Udriste [19] introduced the duality results on Riemannian manifolds for a convex program-
ming problem. Further, Ferrara and Mititelu [7] established the Mond-Weir duality results
on a smooth manifold for vector optimization problems.

Motivated by the work of Khan and Hanson [10], Udriste [19] and Jana and Nahak
[9] we extend the results of Khan and Hanson [10] under assumptions of pseudoinvexity of
objective function and of quasiinvexity of constraints on Riemannian manifolds.

This paper is organized as follows : In the next section, we present some preliminaries
definitions and concepts of Riemannian manifolds. In section 3, we consider the nonlinear
fractional programming problems and obtain pseudoinvex functions from the ratio of invex
and related functions to an affine and some generalized invex functions on Riemannian man-
ifolds. Further, we establish sufficient optimality conditions in the presence of pseudoinvex
functions. Finally, in the last section, we establish duality results for a fractional nonlinear
programming problem on Riemannian manifolds.

2. Preliminaries

In this section, we remember some known definitions and concepts of Riemannian
manifolds which will be useful for this paper. For standard material of differential geometry,
see, Klingenberg [11], Lang [12], and Prakash [15].

Definition 2.1. [9] A curve on a differentiable manifold M is a smooth map ~ from some
interval (—e,€) of the real line to M.

Definition 2.2. [9] A tangent vector on a curve 7 at a point y of M is

By CFM) S R, [ 5y (1) = S (for)l,

Definition 2.3. [9] The set of all tangent vectors at point y € M is defined as the tangent
space at y denoted by T, M.

Definition 2.4. [7] Let M be a differentiable manifold. Let T, M denote the tangent space
to M at y. Then
T™ = | T,M
yeM
be the tangent bundle of M.

Let M be a smooth manifold modelled on a Hilbert space H, either finite or infinite
dimensional, endowed with a Riemannian metric f,(.,.) on the tangent space T, M = H.
Then, we have a smooth inner product to each tangent space, written as

fy(u,v) = (u,v)y, forall u,v e TyM
Therefore, M is now a Riemmanian manifold.
Definition 2.5. [9] A manifold whose tangent spaces are endowed with a smooth varying
inner product with respect to a point y of M is called a Riemannian manifold. The smoothly
varying inner product, denoted as (£, (,) for every two elements of Ty M, is called a Rie-

mannian metric. If M is a smooth manifold, then there exist always Riemannian metrices
on M.

Definition 2.6. [7] Let f : M — R be a differentiable function. The differential of f at y,
namely df, : T,M — R, is given by

dfy(v) = df (y)v, ve€T,M,
and for the Riemannian manifold (M, (.,.)) by
dfy(v) = <df(y),v>y, veTyM,

where (.,.) is the Riemannian metric.
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Throughout this paper, let M be a Riemannian manifold and f : M — R be a
differentiable function and n : M x M — TM be a function such that for every xz,y € M,
n(z,y) € T,M.

The function f is said to be invex with respect to n on M, if for all x,y € M, we have

f(@) = fly) > dfy(n(z,y)).

The function f is said to be incave with respect to n on M, if for all x,y € M, we have

f(@) = fly) < dfy(n(z,y)).

Moreover, the function f is affine with respect to n on M, if for all x,y € M, we have

f(@) = fly) = dfy(n(z,y)).

Further, we introduce the following classes of generalized invex functions :
The function f is said to be pseudoinvex with respect to n on M, if for all x,y € M,
we have

dfy(n(z,y)) > 0= f(z) > f(y).

Again f is said to be strictly pseudoinvex with respect to n on M, if for all z,y € M with
x # y, we have

dfy(n(z,y)) > 0= f(x) > f(y).

The function f is said to be quasiinvex with respect to n on M, if for all x,y € M, we have
f(x) < fly) = dfy(n(z,y)) < 0.

3. Sufficient Optimality

Consider the nonlinear fractional programming problem on a Riemannian manifold
M :
(FP) min 5 Eg
subject to h(z) <0, z € M,
where f,g and h all are defined and differentiable functions on M.
fy9: M — R be real-valued functions and h : M — R™ be an m-dimensional vector-valued
function.

We need the following interesting results for sufficient optimality conditions.

Theorem 3.1. Consider the ratio z(x) = ﬁg;g, where f and g are differentiable functions
defined on an open Riemannian manifold M.

(i) If f is invex, and g is positive and affine, then z is pseudoinver;

(ii) If f is non-negative and invezx, and g is positive and incave, then z is pseudoinvex;
(iii) If f is positive and strictly invex, and g is positive and incave, then z is strictly pseu-
doinvezx;

(iv) If f is non-negative and invex, and g is positive and strictly incave, then z is strictly
pseudoinvex;

(v) If f is negative and strictly invex, g is positive and invex, then z is strictly pseudoinvex;
(vi) If [ is negative and invez, g is positive and strictly invex, then z is strictly pseudoinvex.

Proof. (i) Since f is invex, then for all z,y € M, we have

f(@) = fy) = dfy(n(z,y)). (1)
Again ¢ is affine, then for all x,y € M, we have
9(x) — g(y) = dgy(n(z,y)). (2)

To show z = % is pseudoinvex.
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Suppose,
d(£> (n(z,y)) >0, for all x,y € M.
|:g(y)d{1;(;/).§§y)dgy:| (77(33’ y)) >0,
dfy  fdgy]
i oy e 20
1 N A €) .
3 dfy(n(z,y)) (g(y))gdgy(n( ,y)) > 0.
Since g is positive, therefore
o) > g, (),
@) = 1) = dfyate ) = D0 ate) ~ 9000, 0y (1) and )
@)= 1) = Z0(0) - )
f@)g(y) — FWg(y) = fFy)g(z) — f(y)g(y)
f(@)g(y) = fy)g(x),
1) | )
glz) ~ gly)
!

Therefore, 5 is pseudoinvex on M.

(v) Since f is negative, let f = —k.
Again f is strictly invex, then for all z,y € M, we have

f(@) = fy) > dfy(n(z,y)),
—k(z) + k(y) > d(=k)y(n(z,y)),
—k(z) + k(y) > —dky(n(z,y)),
k(z) — k(y) < dky(n(z,y)). (3)
Now g is invex, then for all z,y € M, we have

9(x) — g(y) > dg,(n(z,y))- (4)

To show z = % is strictly pseudoinvex.
Suppose,

d(;) (n(z,y)) >0, for all x,y € M with x # y.
y

d(_;) (n(z,y)) =0,

[—g(y)dky + k(y)dg,

(9(y))?
[_dky k(y)dgy
9(y)  (9(y)?
k(y)

dky(n(z,y)) + dey(n(w,y)) > 0.

[tz =0,

[ > .

1
9(y)
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Since g is positive, therefore

’;gj; 0y (1(, ) > dby((z, ),
M) o) — g)) = E W dg, (n(e,9)) > diy () > (k) — k(w)). (by (3) and (4))
g(y glx gy _g(y Gy \TI\T, Y y\ TN\, Y € y)), (Y an
k(y)

—f(W)g(z) > —f(z)g(y),
f(@)g(y) > f(y)g(x),
1@ _ 1)
g(x) ~ 9(y)
Therefore, 5 is strictly pseudoinvex on M. O

Remaining parts can be proved on the lines of similar arguments.

Remark 3.1. A particular case of the above results given by Cambini and Martein [2] is
as follows :

Theorem 3.2. Consider the ratio z(x) = ﬁg;g, where f and g are differentiable functions

defined on an open conver set X C R™.

(i) If f is convex, and g is positive and affine, then z is pseudoconver;

1) If f is non-negative and convex, and g is positive and concave, then z is pseudoconvex;

(ii) g , and g is p , p ;

1) I 18 positive and strictly convex, and g is positive and concave, then z is strictl
p Y s g p Y

pseudoconvex;

(iv) If f is non-negative and convex, and g is positive and strictly concave, then z is strictly

pseudoconverx;

v) If f is negative and strictly convex, g is positive and convex, then z is strictly pseudo-
) g

convex;

(vi) If f is negative and convez, g is positive and strictly convez, then z is strictly pseudo-

convez.

Example 3.1. Define z(z) : M — R, by
22 +x+4
z(z) = T r+5
To show z is pseudoinvex with respect to n(z,y) =z — y.
Let f(z) = 22 + 2 + 4. Then for all z,y € M, we have
fla) = fy) = (dfy.n(z,y)y = (2° —y*) + (x —y) = 2y + Lz —y)
=@x—-ylz+y+1-2y—1)
=(z—y)*>0,

, rz+5>0, x € M.

which is always true.
Therefore,
f(@) = fy) = {dfy,n(@,y))y = 0.
Therefore, f(z) is invex with respect to n(z,y) on M.
Let g(z) = x + 5, z+5>0.
Since g(z) is composition of a linear function and a constant so g(z) is an affine function.
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Now g(x) is positive and affine function with respect to n(z,y) on M.
Therefore, z = 5 is pseudoinvex function with respect to n(x,y) =« —y on M.

The following constraint qualification [9] will be needed in the sequel :
Let D be the set of all feasible solutions of (FP). Let & € D be an optimal solution of (FP)
and we define the set
J'={jel,.,m:h;jz) =0}
Suppose that the domain D satisfies the following constraint qualification at T :

R(z):Fv e TM :d(hj)z(v) <0,
where d(hjo)z(v) is the vector components of d(h;)z(v), Vj € J, taken in increasing order
of j.
Remark 3.2. If a feasible point 2° € M be an optimal solution of the problem (FP) and

satisfies the constraint qualification R(Z), then the following Kuhn-Tucker conditions are
necessary for (FP) :

d(£> U(U(m,xo)) + )\OTtho (n(z,2°)) = 0, 5
)\OTh(:]CO) _ 0, (6)
A0 > 0. o

Further, the next theorem proves that if the functions in (FP) are under suitable invexity,
then the conditions (5)-(7) are sufficient for optimality.

Theorem 3.3. Suppose that 2°€M be feasible for (FP), and that the Kuhn-Tucker condi-
tions (5)-(7) are satisfied at x°. Let f be invex, g be positive and affine and h be quasiinvex
with respect to n on M. Then z° is a minimum for (FP).

Proof. Let x° be a feasible point for problem (FP).
Since f be invex, g be positive and affine with respect to n on M, then by Theorem (3.1),
5 be pseudoinvex with respect to n on M.

Since h be quasiinvex with respect to n on M, then for all ,2° € M, we have
h(z) — h(z°) <0 = dhgo(n(z,z°)) <0,
— A" dh0 (n(z,2°)) <0, (since \° > 0)
— —d(£) ,((@,2%) <0, (by (5))
Using pseudoinvexity of g with respect to n on M, we have

fl@) _ fa)

g(x) ~ g(z%)

is a global minimum. O

Therefore, z°

Remark 3.3. It should be observed that Khan and Hanson [10] noticed that the frac-
tional programming problem is an invex problem but under weaker assumptions our above
results show that (FP) is also a pseudoinvex problem on Riemannian manifolds under ap-
propriate assumptions of pseudoinvexity of the objective function and of quasiinvexity of
the constraints. Therefore our result is stronger than that of Khan and Hanson [10].
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4. Duality Results

Consider the following Mond-Weir dual model for (FP) :

f)
(FD) max 9

subject to d(;) (n(x°,v)) + AT dh,(n(2°,v)) = 0, (8)
) M'h(v) =0, (9)
A>0. (10)

Theorem 4.1. (Weak duality) Let 2° be feasible for primal problem (FP) and v be feasible
for dual problem (FD) then

o) = gw)’

Proof. Since x° be feasible for (FP) and (v, \) be feasible for (FD), then the above Kuhn-

Tucker conditions (8)-(10) hold.
Since h be quasiinvex with respect to n on M, then for all z°,v € M, we have

h(x°) — h(v) < 0 = dh,(n(z°,v)) <0,
= ATdh,(n(z°,v)) <0, (since A > 0)
— —d(£), (n(=,v)) <0, (by (8))

— d(£),(n(=°,v)) > 0.

By the pseudoinvexity of g with respect to n on M, we have

O

Remark 4.1. In the following, suppose the functions f be invex, g be positive and affine
with respect to n(x®,v) on M, then 5 be pseudoinvex (according to Theorem 3.1) with

respect to 7(z%,v) on M, so ATh(.); A > 0 is pseudoinvex with respect to n(z°,v) on M.
Theorem 4.2. (Strong duality) Under the Kuhn-Tucker conditions, suppose x° be mini-

mal for (FP) then there exists 0 < \° € R™ such that (z°,\°) be mazimal for (FD) and the
optimal values of (FP) and (FD) are equal.

Proof. Let any vector (v, \) also satisfies the constraints of (FD), then (v, \) satisfies the
Kuhn-Tucker conditions as follows :

d(f;) (12, 0)) + AT dh (2, v)) = 0, (1)
ATh(v) =0, (12)
A>0. (13)

To prove (z°, \Y) is maximal for (FD), we have to show

0
) I,

9(z%)  g(v)
Since h be quasiinvex with respect to (2%, v) on M, then we have

h(2°) — h(v) < 0 = dh,(n(z°,v)) <0,
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= ATdh,(n(z°v)) <0, (by (13))

— —\dh,(n(z°,v)) > 0.
From the constraint (12), we have
d(1), (% v)) = (L), (n(z°,v)) = ATh(v),
> —ATdh,(n(2°v)) — ATh(v), (from (11))
> —ATh(v), (from (14))

> - ATh(aY),
(since ATh(.) is pseudoinvex with respect to n(x°,v) on M)
Therefore,
i(L) o =0
9/

since h(2?) < 0 and by using (13).
By the pseudoinvexity of g with respect to n(z°,v) on M, we have

C I

g(@)  g(v) —

Therefore, (20, \°) is maximal for (FD) and objective values are equal in both problems.

O

Theorem 4.3. (Converse duality) If (z°,\°) be mazimal for (FD) and a dual constraint

qualification R(Z) be satisfied at (z°,\?), then z° be minimal for (FP).

Proof. Since a constraint qualification R(Z) be satisfied at 2, then the following Kuhn-

Tucker conditions hold at (2%, \Y), i.e.
d(£> (n(z,2°)) + A" dhgo (n(z,2°)) = 0,
z0
A" h(20) =0,
A0 > 0.
Since h be quasiinvex with respect to n(z,2°) on M, therefore

h(x) — h(2°) < 0= dhyo(n(z,z°)) <0,
— A dhyo(n(z,2) <0, (by (17))

— A" dhyo(n(z,2°)) > 0.
Since )\OTh(.) be pseudoinvex with respect to n(z,z°) on M, therefore
A dhgo (p(z,2°)) = 0 = A" h(z) > A° h(z?),
— A" B(2%) = A" h(z) < 0.
For any x € M, satisfying the constraints of (FP), we have

d(£>z0 (n(z,2°)) = —)\OTdhmo (n(zx, 2°)), (by (15))

> =\ dhgo (n(z, 2°)) + A% h(2°) = 2" h(z),

(15)

(19)
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(using (19))
> —/\OTh(ac)7 (by (16) and (18)).
Therefore,
d(jgr)wo (n(zx,z%)) >0, being h(z) <0 and by (17).

Since g be pseudoinvex with respect to n(z, %) on M, then we have

f@) @)

g(z)  g(z0) =

is minimum for (FP). O

Hence, 2°

Remark 4.2. Khan and Hanson [10] gave similar results assuming that f is invex, g is
positive and incave but under weaker assumptions on Riemannian manifolds that f is invex,
g is positive and affine our objective function is a generalization of objective function of
Khan and Hanson [10]. Therefore our duality results are more general than that of Khan
and Hanson [10].

5. Conclusions

We obtained pseudoinvex functions from the ratio of invex and related functions to
an affine and some other generalized invex functions on Riemannian manifolds. Again,
we consider the nonlinear fractional programming problems and established the sufficient
optimality conditions and duality theorems under appropriate assumptions of pseudoinvexity
of the objective function and of quasiinvexity of the constraints on Riemannian manifolds.
In this way under weaker assumptions our optimality and duality results are more general.
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