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HILL’S EQUATIONS AND LIOUVILLE’S FORMULA

Milena LEKIC?, Miloje RAJOVIC?

Periodicity (and its consequence, i.e. oscillatority in case of combined
effect of more forces) is surely the basic and the most important phenomenon of
nature. The differential equation has periodic solutions only if coefficients are
periodic with the same period (or specially, constants). This is the necessary
condition for the periodicity of the differential equation. However, the sufficient
conditions are related to the properties of classes of equations and can be rather
different. In this work we have offered four theorems on periodic solutions of
Hill’s equation, which we have not found in familiar monographic works [1] and
[2]. We have shown that theorems 1° — 4°can serve for establishing different
classes of Hill’s equations, but periodic solutions can be obtained only for very
narrow sub-classes of equations and only for certain values of given coefficients
in supposed particular integrals.

Keywords: Differential equations, periodicity, oscillatority, analiticality,
Liouville’s formula.

1. Introduction

The equation of the following form:

y'+b(x)-y=0 (1.1)
where b(x) is a periodic function, is called Hill’s equation. This equation is a well-
known differential equation which frequently occurs in physical, technical and
astronomic problems. A great number of important equations, frequently or
directly or after performing adequate transformations, belongs to the Hill’s
equation type. For example, these are some Legendre’s equations, some
hypergeometric equations and Bessel and Matthew’s equations.

One of the basic questions related to the equation (1.1) is if it has periodic
solutions, either one class of periodic solutions or all periodic solutions, when we
say that the solutions are in co-existence.

The necessary condition for periodicity of solutions of the differential
equations requires all coefficients to be periodic with the same or commensurable
period. Since the coefficient 5(x) is periodic, it means that the necessary condition
is fulfilled. However, the literature does not emphasize enough the problem of the

second condition, i.e. if the integral jb(x)-dx is periodic or non-periodic and
when this is condition for one or both solutions to be periodic.
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If y, is one particular integral of the differential equation:

y'+a(x)-y' +b(x)-y=0 (1.2)
then a second particular solution is found according to Liouville’s formula:
e—fa(x)dx
Y2=n f 2 - dx (1.3)
Y1

However, since a(x) =0 for Hill’s equation, then the first Liouville’s formula for
the equation (1.1) has the following form:
dx
va=y = (1.4)

N1
Nevertheless, the influence of the coefficient b(x) on the solution y, cannot be
explicitly seen from the (1.4). That is why we use Liouville’s connection between
particular integrals and the coefficient b(x) of the equation (1.1) based on which
we obtain:

oo
b(x)=——- =—- B A 15
(x) OO (V- ¥2 =1 ¥3) (1.5)
—J:a(x)dx
Since W(x)=W () =W(xg)-e ™ =W(xq)=C=const.#0

because the Wronskian determinant is either identically equal to zero or different
from zero for each value of the variable x from the observed interval, then,
without reducing the general nature, we can take that #(x) =1 and obtain the

following:
b(x) =y yy =y )" (1.6)
After being divided with y}?, it follows that: &,xz) = (y—})’, which leads to
Yo Y2
y_}:J-b(x),;dx (1.7)
Y2 Y2

The influence of the coefficient h(x) and function y)”> on periodicity of the

solution can be seen from the relation (1.7). Therefore, if (1.7) is integrated, the
following is obtained:

, b(x

v =04 %dx)-dx (L8)
2

The relation (1.8) represents the second Liouville’s formula. Such

b(x) dx is

12
Yo

approach makes possible for us to make discussion when the integral J
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periodic, if the solution y, is periodic. This is the basic question related to the
periodicity of the solution (1.8).

2. Main results

Since the particular integrals y; and y, of the Hill’s equation fulfill the
second Liouville’s formula, there is the need to separate two kinds of coefficients.
These are:

a) b(x) is a complete continuous analytic function, which can be developed
into Fourier series, convergent along the whole period, where b(x) either
has permanent sign or zeros and changes sign.

b) b(x) is periodic function which is not analytic, because it has interruptible
or algebraic critical points and it cannot be developed into Fourier’s series.
Now the question of the periodicity of the solution (1.7) is being
conditioned because

¢) if particular integral y, does not have zeros and it is not periodic, based

on some previous theorems, the derivative y, must have zeros.

It follows that i,z has poles of the second order, because y}> has zeros of
the second order. This f;Zads to the question if the integral
(209 gy (2.1)
is going to remazin periodic and under what conditions.

d) also the question of the relation of zeroes and poles of coefficient b(x) with
zeros and poles of the function y;> must be considered

(A)Let b(x) be periodic, complete continuous analytic function. Then, by
substitution

Y7 or y= ejz‘dx (2.2)
y

the equation (1.1) is reduced to canonic Riccati’s equation of the first order
-b(x)=2Z'+2? (2.3)

which is more suitable for solving because it is of the first order and the
coefficient b(x) is separated from the unknown function Z = Z(x)

If y = y(x)is periodic solution, then from the first formula (2.2), it follows
that the function Z is also periodic. However, from the second formula (2.2) it
does not follow that y(x) must be periodic solution if Z(x) is periodic function.

Therefore, (2.3) cannot solve the issue of co-existence of periodicity. That
is why we must act rather systematically and consequently.
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Therefore, first we look for periodic solution Z of the equation (2.3). If
(2.3) is integrated, we obtain:

—jb(x)-dx=Z+C+jzzdx (2.4)

Since b(x) is a complete continuous analytic periodic function, then, based on
Cauchy’s theorem, solution Z(x) of the equation (2.3) is also analytic function.
This means that if 5(x) can be developed into convergent Fourier series

b(x)=ay + Y a, coskx+Y b, sinkx, (2.5)
k=1 k=1
then also Z has its development into Fourier series
Z(x)= A, + Y A, coskx+) B, sinkx, (2.6)
k=1 k=1

where the coefficients (4, ,B,)dependon (a,,b,).
However, from the following relation
J'szx = J(A0 + Y A, coskx+) B, sinkx)’dx =
0 0 k=1 k=1
:HAO2 +(§ A, cos kx)? +(in sin kx) % + 24, iAk cos kx +2.4, in sin kx+
0 k=1 k=1 k=1 k=1
(2.7)
23 4, coskx)-(3. B, sin kx)Jdx
k=1 k=1

it follows that each integral which figurate in the relation (2.7) is non periodic,
because

jcos kx-d j1+C052kx :£+ismkx and
° 2 4k
jsm kx - dx = jl cos 2hx x=£—isinkx
iy 2 4k
Therefore, the integral Jzzdx remains periodic if 4y =4, =4,=...=4, =...=0
and B, =B, =B, =..=B, =..=0, so that all other products in the observed

series also fall. Consequently, if Z is periodic analytic solution of the equation

(2.3), the integral jZde cannot be periodic. From (2.4) it follows that:
0

—J‘b(x)-dx—Z—Czj'iZde (2.8)
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Let b(x) be such analytic periodic function, so that the interval f b(x) - dx

is also periodic. In that case, the left side of the equation (2.4) is periodic, while
the right side is non-periodic. This leads to contradiction created by the premise
that Z is periodic solution. Therefore, if Z is analytic function, it cannot be
periodic solution of the equation (2.3). From (2.2) it follows that solution
y = y(x) cannot be periodic, either. Thus, it follows:

Theorem 2.1. Hill’s equation (1.1) in which b(x) is a complete, continuous,
analytic function and where jb(x) -dx is also periodic, cannot have a completely

analytic and periodic solution.
Hence, Hill’s equation can have some periodic solution only if the integral

jb(x) -dx is non-periodic, or if the coefficient b(x) is not an analytic function.

Example 2.2. Hill’s equation y"—(cos®*x—sinx)y=0  has analytic
periodic coefficient b(x), whose integral

J'b(x) dx = J'(cos2 x—sinx)dx :§+ %sin 2x + COS x

is non-periodic. The equation obviously has one periodic particular solution

sinx

v, =e’ ", while the other particular solution is not periodic.
We have been familiar with the theorem that the integral Ib(x)-dx is

periodic if b(x) is periodic function which has at least one zero of the odd order
within one period, i.e. if b(x) changes the sign. Therefore, the change of the sign

of the coefficient (x) within one period, can be signal that the integral _[ b(x)-dx

is periodic and that Hill’s equation does not have complete periodic solutions in
the form of Fourier series. However, these can be possible under certain
conditions.

The situation is clearer if the coefficient (x) has permanent sign. In this

case the theorem on monotony and oscillatority of the solutions is valid. It means
that if b(x) is analytic function which has permanent sign in the interval of one
period length, then Hill’s equation cannot have periodic solutions. If 5(x)<0, the
solutions of the equation (1.1) are monotonous and can possibly have definite
number of zeros. If b(x)>0, solutions are oscillating.
Example 2.3. Matthew’s equation y"+(a+bcos2x)-y =0, where a>b>0 is
special case of Hill’s equation and it does not have periodic solutions. However
Matthew’s equation, as canonical equation of the second order meets the
requirements of the classic theorem on oscillations, since:

b(x)=a+b-cos2x >0 for x € (0,+x), because a>b>0 and
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jb(x)-dx=j(a+bCOSx)-dx=+oo.
0 0

That is why it has continuous oscillating solutions y; and y, whose zeros
are located in cross sections of the curve F(x) =x-+a+bcos2x with horizontal

. 1 . . . .
lines y=nz and y=(n —E)ﬂ', i.e. in the solutions of the following equations

x-NJa+bcos2x =nnz,n=0,1,2,...and x-+a+bCcos2x = (Zn—l)'%, n=1,23...

(B) Let now the integral jb(x)~dx be non-periodic, while the coefficient b(x)

is a complete periodic function. We are going to consider the possibility if b(x) is
also analytic function, whether it is possible for Hill’s equation (1.1) to have
analytic solution.

Let —b(x) be analytic function presented by Fourier series

—b(x) =ay + Y a, -Coskx+Y b, -sinkx,
k=1 k=1

but in such a way so that the integral — Ib(x) -dx should not be periodic function.
However it should be:

—Jb(x)-dxzao Z Z—k OSkx+zb—k,
k=1 k=1 k k=1 k
where a, # 0 and the series Z—" converges.
k=1

Then, based on the relations (2.4.) and (2.6.), we obtain:
(a0x+z—)+z sin kx—i%"coskxz

1 ok
= (4o +2Ak coskx+ZBk smkx)+jZ dx (2.10)
k=1 k=1

Based on the relation (2.6), we calculate the integral szdx, so it follows:

IZde = (4o + ZAk coskx + ZBk sinkx)?dx =
O : :

I{AO +(ZAkcoslcx) +(ZBksmkx) +2A02Akcoskx+ZAOZBkS|nch+ZZZAkB -COSkx - smjx}dx_
0 k=1 k=1 k=1 k=1 k=1j=1
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X
=I{AO +2Ak cos kx+222AkA - COSkx - COSJx+ZBk sin kx+ZZZBkB -Sinkx-sin jx +
0 =1 k=1j=1 k=1j=1

+24g D Ay COSkx +24y Y By sinkx+2%. > 4, B; ~coskx~sinjx}dx:

k=1 k=1 k=1j=1
:j{AOZ +3 42 ArcosZhr ZB,€2M+2AO 3 A, coskx+24y Y By sinkx +
0 k=1 k=1 k=1 k=1

+ ZZAk - €S kx - COSJx+22 ZBk -sin kx - 5|n]x+22 ZAk - €0S kx - sinjx pdx =
k=1j=1 k=1j=1 k=1j=1

2

:A02 Xt Z(Ak + B, )+2AOZ Z Sln2kx Z—S|n2kx+
2 2 Py =1 4k

+24, - Z—smkx 24, - Z—coskx+222AkA jcoskx COS jix - dx +
=k =1k k=1j=1

+ZZZBkB jsmkx sin jix - dx+222AkB jcoskx sinjix - dx =
k=1j-1 0 k=1j=1

—X[Ao +- Z(Ak + By )}+2A027+Q(x)

k =1 k=1
where Q(x) is trigonometric series which must be convergent.
If we substitute the obtained result in (2.4), we are going to obtain

[ao X+ ib—kJ+P(x) =Ay +R(x)+
= k

+x- A02+1§(A,(2+B,(2) +2AO§B—"+Q(x) (2.11)
2ia ik

where P, O and R are trigonometric series which have free members.

Now it is easy to separate linear part of the non-periodic integral from the
periodic one of the trigonometric series: L, (x) + P(x) = L, (x) + R(x) + O(x),
where there are:

Li(x)=ay-x+ z%and

o . 2.12)
Ly (%) :x'{Aoz +%kz_:1(‘4k2 +Bk2):|+Ao +24, kZ_le"

If the linear parts are identical to the equation, then the following equality
of the series is valid
P(x) =R(x)+QO(x) (2.13)
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which provides general connections between known coefficients (ax, by and the
unknown and wanted (4, By).
The equality L,(x) =L,(x) annuls the deviation from the periodicity when
talking about the integraI—J'b(x)-dx and J.Zz(x)-dx
Hence, it follows:
a, = 4, +%Z(Ak2 +Bk2)
k=1

and (2.14)

0

b, “ B,
E_ZA.l 22_
k °[+“kj

k=1
It is so, if the integrals of the products sinkx-sin jx, COSkx-cCOS jx,
sinkx-cos jx, on substitution of the lower limit, do not produce one more

constant which would supplement the second of the last two formulae (2.14).
In this case, the convergence of the series is necessary above all:

=k =1 k k=1 k=1
although the first formula from (2.14) is the most important for the procedure.

Namely, it clearly shows that a, =0 is not possible, since the integral jb(x) ~dx

is non-periodic and it does not have to contain a free member «,, which makes
for the same reasons 4, = 0. Therefore from (2.13) and (2.14) it is possible to
establish the system of recurrent connections (a,,b,)<> (4,,B,), Which, in
general, at least lead to determination of the periodic solution of Riccati’s
equation (2.3) with possible periodicity of the integral jZZ(x)'dxthrough (2.2)
and periodicity of the solution y=y(x) of Hill’s equation.

It is obvious that, due to complicated sums and lack of symmetry , it is not
possible to determine explicitly the coefficients 4, and B, in the function of the
known a; and by. That is why it is not possible to set the general theorem and we
must refer to the monograph [1], which achieved the most, but only some special
sufficient conditions.

Example 2.4 The simplest and the most convenient example of Hill’s equation is
the equation of harmonious oscillations.

y'+n®-y=0
The coefficient b(x) = n® = const. is periodic function whose period is any real
number. However the integral J.b(x) dx = J'nz -dx =n”-x is non-periodic, so
periodic solutions of Riccati’s equation can be expected.

-n*=2'+7°
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If we separate the variables, we obtain:
Z =n-1g(C —nx) and y, =cos(C-nx), because z =2
y
By introducing substitution y =y, -W , we obtain the second particular
integral y, =sin(C —nx) . By linear combination we obtain general solution:
y=C,cosnx+ C,sinnx
However, such quadratures are possible only in small number of cases.

C) Let us consider the case when the coefficient 5(x) is a non-analytic
function. In this case the coefficient b(x) has interruptions, poles, algebraic and
logarithmic critical points and cannot be developed into Fourier’s series. These
are quite often cases when the periodicity of the integral of coefficient b(x) is
maintained, no matter if the undefined integral exists or not within the interval of
the one period’s length, as in the following example:

1 1 1
b(x)=——— —5— —,
cos’x’ sin’x’ sinx

Then, based on Liouville’s formula , the functions bx) and jb(x)dx should be
yl 1

investigated when they are periodic. This makes us look for the connection

between coefficient »(x) and properties of the solution and properties of the

derivative of the solution of Hill’s equation. In that sense the following theorems

should be proved:

Theorem 2.5. Zeroes of the first order of the solution y; of Hill’s equation are

simultaneously the poles of the first order of the coefficient b(x).

Theorem 2.6. Zero of the complete order » of the solution y; of Hill’s equation is

the pole of the second order of the coefficient b(x)

Theorem 2.7. Every zero of any complete order, any algebraic critical point of the

order a or b (a #1,b#1) or pole of the order a or b, represent only pole of the

second order for the coefficient b(x).
The theorems are easily proven if Hill’s equation is written in the form

b(x) =- V') and then
y(x)

¥, = (sinx) - P(x)
¥, = (sinx)" - P(x)
¥ = (sinx)* - P(x)
¥ = (sinx)* - (cosx)” - O()

where P(x) and Q(x) are only polynomial whose zeros are not zeros of the
functions sin x i.e. cosx, and where <0 and b<0 can be possible.
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However, the opposite case can also be valid, i.e. the poles of the first order
of the coefficient b(x) are zeros of the first order of solution y; of Hill’s equation.
Equally, if the coefficient b(x) has poles of the second order, these can be either
poles of the higher order or zeros of the higher order or algebraic critical points of
any order « (except the first one), of the Hill’s equation.

This method serves for solving probably the greatest number of Hill’s
equations.

Example 2.8. The equation y”—%-[lﬁinzx)y =0 has negative
sin“x-cos”x \ 4

coefficient b(x) unlike the previous equation. Since the coefficient b(x) has the

poles of the second order, the theorems on monotony and oscillatority are not

valid here. According to our theorems, the given equation can have particular

solution of the following form:

y, = (sinx)* - (cosx)” - P(x)
However, owing to the symmetry, it is the best way to take that P(x)=1 and
p =-a, so the particular integral y, = (zgx)“. If we substitute y, and y/, we
obtain the identity:

[a(a—l -ﬂ.(tgx)“ +(20° —%)-(tgx)“ + (o +a—%)-(tgx)“+2 -0

which will be fulfilled for every real x, if parameter « is the solution of the
following system:

az—a—gzo, 2052—2:0, a2+a—%:0

The system is fulfilled for « :%, so one particular integral is y, = (tgx)%.

According to Liouville’s formula the general integral:

dx dx
y:Cly1+C2yl.[7=C1 (l‘gx)3 +Cyy (tgx)3 J
1

tgsx -

= C,4/(tgx)® + C,+/(tgx)® - (Insin x + _12 )=
2sin” x
. 1
=./(tex)?| C, + C,(Insin x +
(tgx) { 1 2 ( X ZSinzx}
pia

is periodic function, interruptible in the following points: x, =0, x, =5 and

Xy =70,
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Example 2.9. Based on known theorems, for Hill’s equation
, 3—2sinx-cosx
" 1+2sinx-cosx
v, =(sinx+cosx)”-P(x) has been suggested. P(x)=1 has the following
solution:
y=(sinx+cosx)“
where o is a parameter which should be determined. If we substitute y and "
in the given equation, we obtain the identity which is fulfilled for every real x if

=0, the solution of the following type

. L 1
a =-1. Therefore, one particular solution is y, =—— . The general
sin x +CoS x
solution is easily found according to Liouville’s formula.
y= Clyl +C2y1J.d_); :_;‘}‘ Cl +C2(X_COSZ x)
i SIN x +COS x

However, it is not periodic, because it does not have two linearly independent
periodic particular integrals, i.e. two integrals which are in coexistence. The given
equation has only one periodic sub-class of particular integrals.

3. Conclusion

In this work we have shown that Hill’s equation (1.1) can have periodic
solutions if the integral _[b(x)-dx is non-periodic function or if the periodic
coefficient b(x) is not analytic function (the function is analytic if it has derivative

of any series, i.e. if it can derive into Taylor’s series). That is why the Hill’s
equation is very often written in the following form:

V'+(A+0(x)-y=0 (3.2)
where

b(x) =1+ Q(x) (3.2
is periodic function as a sum of constant and periodic function, while the integral

j b(x)dx = j (A+0(x)dx=A-x+ j O(x)dx (3.3)

is non-periodic, because it contains the linear part A -x

We have also shown, by using Liouville’s formula, that the poles of the first
order of the coefficient b(x) of the equation (1.1) are simultaneously the zeros of
the first order of particular integral y,. This is used for solving many Hill’s
equations. Namely, by substitution

vy =l (3.4)

where Z =Z(x)is a new unknown function, the Hill’s equation is most often
reduced to Riccati’s equation:

Z"+a(x)Z% +b(x)Z +c(x) =0 (3.5)
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So it is very important to determine the form of its particular integral, because it is
known that in general case, the equation (3.5) cannot be solved by applying
quadratures.

We have shown that the poles of second order of the coefficient of the
equation (1.1) can be either poles of higher order or zeros of higher order or
algebraic critical points of any order, except the first one, solutions of Hill’s
equations.

By using this facts, periodic solutions for some narrow subclasses of Hill’s
equation can be determined, as well as for some values of the given coefficients in
the supposed particular integrals.

Therefore, periodic coefficient b(x) in the Hill’s equation (1.1) is a
necessary but not sufficient condition for the equation to have one periodic
particular solution or both periodic solutions, when we say that solutions are co-
existing.
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