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HILL’S EQUATIONS AND LIOUVILLE’S FORMULA 

Milena LEKIC1, Miloje RAJOVIC2 

Periodicity (and its consequence, i.e. oscillatority in case of combined 
effect of more forces) is surely the basic and the most important phenomenon of 
nature. The differential equation has periodic solutions only if coefficients are 
periodic with the same period (or specially, constants). This is the necessary 
condition for the periodicity of the differential equation. However, the sufficient 
conditions are related to the properties of classes of equations and can be rather 
different. In this work we have offered four theorems on periodic solutions of 
Hill’s equation, which we have not found in familiar monographic works [1] and 
[2]. We have shown that theorems 1o – 4ocan serve for establishing different 
classes of Hill’s equations, but periodic solutions can be obtained only for very 
narrow sub-classes of equations and only for certain values of given coefficients 
in supposed particular integrals. 

Keywords: Differential equations, periodicity, oscillatority, analiticality, 
Liouville’s formula.  

 1. Introduction 

  The equation of the following form: 
0)( =⋅+′′ yxby             (1.1.) 

where b(x) is a periodic function, is called Hill’s equation. This equation is a well-
known differential equation which frequently occurs in physical, technical and 
astronomic problems. A great number of important equations, frequently or 
directly or after performing adequate transformations, belongs to the Hill’s 
equation type. For example, these are some Legendre’s equations, some 
hypergeometric equations and Bessel and Matthew’s equations.  
  One of the basic questions related to the equation (1.1) is if it has periodic 
solutions, either one class of periodic solutions or all periodic solutions, when we 
say that the solutions are in co-existence.  
  The necessary condition for periodicity of solutions of the differential 
equations requires all coefficients to be periodic with the same or commensurable 
period. Since the coefficient b(x) is periodic, it means that the necessary condition 
is fulfilled. However, the literature does not emphasize enough the problem of the 
second condition, i.e. if the integral ∫ ⋅ dxxb )(  is periodic or non-periodic and 
when this is condition for one or both solutions to be periodic.  
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 If 1y  is one particular integral of the differential equation: 
    0)()( =⋅+′⋅+′′ yxbyxay                (1.2) 

then a second particular solution is found according to Liouville’s formula: 
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However, since 0)( =xa  for Hill’s equation, then the first Liouville’s formula for 
the equation (1.1) has the following form: 
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Nevertheless, the influence of the coefficient b(x) on the solution 2y  cannot be 
explicitly seen from the (1.4). That is why we use Liouville’s connection between 
particular integrals and the coefficient b(x) of the equation (1.1) based on which 
we obtain: 
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because the Wronskian determinant is either identically equal to zero or different 
from zero for each value of the variable x from the observed interval, then, 
without reducing the general nature, we can take that 1)( =xW  and obtain the 
following: 

 yyyyxb ′′⋅′−′⋅′′= 121)(                 (1.6) 

After being divided with 2
2y′ , it follows that:  ,)()(
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The influence of the coefficient b(x) and function 2
2y′  on periodicity of the 

solution can be seen from the relation (1.7). Therefore, if (1.7) is integrated, the 
following is obtained: 
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  The relation (1.8) represents the second Liouville’s formula. Such 

approach makes possible for us to make discussion when the integral ∫ ′
dx

y
xb
2

2
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periodic, if the solution 2y  is periodic. This is the basic question related to the 
periodicity of the solution (1.8).  

2. Main results 

  Since the particular integrals y1 and y2 of the Hill’s equation fulfill the 
second Liouville’s formula, there is the need to separate two kinds of coefficients. 
These are: 

a) b(x) is a complete continuous analytic function, which can be developed 
into Fourier series, convergent along the whole period, where b(x) either 
has permanent sign or zeros and changes sign.  

b) b(x) is periodic function which is not analytic, because it has interruptible 
or algebraic critical points and it cannot be developed into Fourier’s series. 
Now the question of the periodicity of the solution (1.7) is being 
conditioned because 

c) if particular integral 2y  does not have zeros and it is not periodic, based 
on some previous theorems, the derivative 2y′  must have zeros.  

It follows that 2
2

1
y′

 has poles of the second order, because 2
2y′  has zeros of 

the second order. This leads to the question if the integral 

 ∫ ⋅
′

dx
y

xb
2

2

)(                  (2.1) 

is going to remain periodic and under what conditions. 
d)   also the question of the relation of zeroes and poles of coefficient b(x) with 

zeros and poles of the function 2
2y′  must be considered  

(A) Let b(x) be periodic, complete continuous analytic function. Then, by 
substitution 

Z
y
y
=

′
 or ∫=

⋅dxZ
ey                 (2.2) 

the equation (1.1) is reduced to canonic Riccati’s equation of the first order 
 2)( ZZxb +′=−                 (2.3) 

which is more suitable for solving because it is of the first order and the 
coefficient b(x) is separated from the unknown function )(xZZ =  
  If )(xyy = is periodic solution, then from the first formula (2.2), it follows 
that the function Z is also periodic. However, from the second formula (2.2) it 
does not follow that y(x) must be periodic solution if Z(x) is periodic function. 
  Therefore, (2.3) cannot solve the issue of co-existence of periodicity. That 
is why we must act rather systematically and consequently.  
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  Therefore, first we look for periodic solution Z of the equation (2.3). If 
(2.3) is integrated, we obtain: 

 ∫ ∫++=⋅− dxZCZdxxb 2)(                (2.4) 
Since b(x) is a complete continuous analytic periodic function, then, based on 
Cauchy’s theorem, solution Z(x) of the equation (2.3) is also analytic function. 
This means that if b(x) can be developed into convergent Fourier series  
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then also Z has its development into Fourier series 
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where the coefficients ),( kk BA depend on ),( kk ba . 
 However, from the following relation 
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it follows that each integral which figurate in the relation (2.7) is non periodic, 
because 
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Therefore, the integral ∫
x

dxZ
0

2  remains periodic if 0......210 ====== kAAAA  

and 0......210 ====== kBBBB , so that all other products in the observed 
series also fall. Consequently, if Z is periodic analytic solution of the equation 

(2.3), the integral ∫
x

dxZ
0

2  cannot be periodic. From (2.4) it follows that: 
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  Let b(x) be such analytic periodic function, so that the interval ∫ ⋅ dxxb )(  
is also periodic. In that case, the left side of the equation (2.4) is periodic, while 
the right side is non-periodic. This leads to contradiction created by the premise 
that Z is periodic solution. Therefore, if Z is analytic function, it cannot be 
periodic solution of the equation (2.3). From (2.2) it follows that solution 

)(xyy =  cannot be periodic, either. Thus, it follows: 
Theorem 2.1. Hill’s equation (1.1) in which b(x) is a complete, continuous, 
analytic function and where ∫ ⋅ dxxb )(  is also periodic, cannot have a completely 
analytic and periodic solution.  
  Hence, Hill’s equation can have some periodic solution only if the integral 

∫ ⋅ dxxb )(  is non-periodic, or if the coefficient b(x) is not an analytic function.  

Example 2.2. Hill’s equation  0)sin(cos2 =−−′′ yxxy  has analytic 
periodic coefficient b(x), whose integral  

 ∫∫ ++=−=⋅ xxxdxxxdxxb cos2sin
4
1

2
)sin(cos)( 2   

is non-periodic. The equation obviously has one periodic particular solution 
xey sin

1 = , while the other particular solution is not periodic. 
  We have been familiar with the theorem that the integral ∫ ⋅dxxb )(  is 
periodic if b(x) is periodic function which has at least one zero of the odd order 
within one period, i.e. if b(x) changes the sign. Therefore, the change of the sign 
of the coefficient b(x) within one period, can be signal that the integral ∫ ⋅dxxb )(  
is periodic and that Hill’s equation does not have complete periodic solutions in 
the form of Fourier series. However, these can be possible under certain 
conditions. 
 The situation is clearer if the coefficient b(x) has permanent sign. In this 
case the theorem on monotony and oscillatority of the solutions is valid. It means 
that if b(x) is analytic function which has permanent sign in the interval of one 
period length, then Hill’s equation cannot have periodic solutions. If b(x)<0, the 
solutions of the equation (1.1) are monotonous and can possibly have definite 
number of zeros. If b(x)>0, solutions are oscillating. 
Example 2.3. Matthew’s equation 0)2cos( =⋅++′′ yxbay , where a>b>0 is 
special case of Hill’s equation and it does not have periodic solutions. However 
Matthew’s equation, as canonical equation of the second order meets the 
requirements of the classic theorem on oscillations, since: 
 02cos)( >⋅+= xbaxb  for ),0( +∞∈x , because a>b>0 and 
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  That is why it has continuous oscillating solutions y1 and y2 whose zeros 
are located in cross sections of the curve xbaxxF 2cos)( +⋅=  with horizontal 

lines πny =  and π)
2
1( −= ny , i.e. in the solutions of the following equations 

πnxbax =+⋅ 2cos , n=0,1,2,… and 
2

)12(2cos π
⋅−=+⋅ nxbax ,  n=1,2,3… 

 (B) Let now the integral ∫ ⋅dxxb )(  be non-periodic, while the coefficient b(x) 
is a complete periodic function. We are going to consider the possibility if b(x) is 
also analytic function, whether it is possible for Hill’s equation (1.1) to have 
analytic solution.  
  Let –b(x) be analytic function presented by Fourier series 
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but in such a way so that the integral ∫ ⋅− dxxb )(  should not be periodic function. 
However it should be: 
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where Q(x) is trigonometric series which must be convergent. 
 If we substitute the obtained result in (2.4), we are going to obtain 
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where P, Q and R are trigonometric series which have free members. 
 Now it is easy to separate linear part of the non-periodic integral from the 
periodic one of the trigonometric series:      ),()()()()( 21 xQxRxLxPxL ++=+  
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If the linear parts are identical to the equation, then the following equality 
of the series is valid 

)()()( xQxRxP +=                          (2.13) 
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which provides general connections between known coefficients (ak , bk) and the 
unknown and wanted (Ak , Bk). 
 The equality )()( 21 xLxL ≡  annuls the deviation from the periodicity when 
talking about the integral ∫ ⋅− dxxb )(  and ∫ ⋅ dxxZ )(2  

Hence, it follows: 
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It is so, if the integrals of the products jxkx sinsin ⋅ , jxkx coscos ⋅ ,  
jxkx cossin ⋅ , on substitution of the lower limit, do not produce one more 

constant which would supplement the second of the last two formulae (2.14). 
 In this case, the convergence of the series is necessary above all: 
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although the first formula from (2.14) is the most important for the procedure. 
Namely, it clearly shows that 00 =a  is not possible, since the integral ∫ ⋅ dxxb )(  

is non-periodic and it does not have to contain a free member 0a , which makes 
for the same reasons 00 ≠A . Therefore from (2.13) and (2.14) it is possible to 
establish the system of recurrent connections ( ) ( )kkkk BAba ,, ↔ , which, in 
general, at least lead to determination of the periodic solution of Riccati’s 
equation (2.3) with possible periodicity of the integral ∫ ⋅ dxxZ )(2 through (2.2) 
and periodicity of the solution y=y(x) of Hill’s equation.  
  It is obvious that, due to complicated sums and lack of symmetry , it is not 
possible to determine explicitly the coefficients Ak and Bk  in the function of the 
known ak and bk. That is why it is not possible to set the general theorem and we 
must refer to the monograph [1], which achieved the most, but only some special 
sufficient conditions.  
Example 2.4 The simplest and the most convenient example of Hill’s equation is 
the equation of harmonious oscillations. 
 02 =⋅+′′ yny    

The coefficient .)( 2 constnxb ==  is periodic function whose period is any real 
number. However the integral xndxndxxb ⋅=⋅=⋅ ∫∫ 22)(  is non-periodic, so 
periodic solutions of Riccati’s equation can be expected. 
 22 ZZn +′=−  
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 If we separate the variables, we obtain: 
 )( nxCtgnZ −⋅=  and ),cos(1 nxCy −=  because 

y
y

Z
′

=  

  By introducing substitution Wyy ⋅= 1 , we obtain the second particular 
integral )sin(2 nxCy −= . By linear combination we obtain general solution: 
 nxCnxCy sincos 21 +=  
However, such quadratures are possible only in small number of cases. 
 C) Let us consider the case when the coefficient b(x) is a non-analytic 
function. In this case the coefficient b(x) has interruptions, poles, algebraic and 
logarithmic critical points and cannot be developed into Fourier’s series. These 
are quite often cases when the periodicity of the integral of coefficient b(x) is 
maintained, no matter if the undefined integral exists or not within the interval of 
the one period’s length, as in the following example: 

 ,
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1)( 2 x
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Then, based on Liouville’s formula , the functions 2
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 and ∫ ′21
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investigated when they are periodic. This makes us look for the connection 
between coefficient b(x) and properties of the solution and properties of the 
derivative of the solution of Hill’s equation. In that sense the following theorems 
should be proved: 
Theorem 2.5.  Zeroes of the first order of the solution y1 of Hill’s equation are 
simultaneously the poles of the first order of the coefficient b(x).  
Theorem 2.6. Zero of the complete order n of the solution y1 of Hill’s equation is 
the pole of the second order of the coefficient b(x) 
Theorem 2.7. Every zero of any complete order, any algebraic critical point of the 
order a or b )1,1( ≠≠ ba  or pole of the order a or b, represent only pole of the 
second order for the coefficient b(x). 
 The theorems are easily proven if Hill’s equation is written in the form 
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where P(x) and Q(x) are only polynomial whose zeros are not zeros of the 
functions xsin  i.e. xcos , and where a<0  and b<0 can be possible.  
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 However, the opposite case can also be valid, i.e.  the poles of the first order 
of the coefficient b(x) are zeros of the first order of solution y1 of Hill’s equation. 
Equally, if the coefficient b(x) has poles of the second order, these can be either 
poles of the higher order or zeros of the higher order or algebraic critical points of 
any order a (except the first one), of the Hill’s equation.  
 This method serves for solving probably the greatest number of Hill’s 
equations.  

Example 2.8. The equation 0sin
4
1

cossin
3 2

22 =⋅⎟
⎠
⎞

⎜
⎝
⎛ +⋅

⋅
−′′ yx

xx
y  has negative 

coefficient b(x) unlike the previous equation. Since the coefficient b(x) has the 
poles of the second order, the theorems on monotony and oscillatority are not 
valid here. According to our theorems, the given equation can have particular 
solution of the following form: 
 )()(cos)(sin1 xPxxy ⋅⋅= βα  
However, owing to the symmetry, it is the best way to take that 1)( ≡xP  and 

αβ −= , so the particular integral α)(1 tgxy = . If we substitute 1y  and 1y ′′ , we 
obtain the identity: 

 0)()
4

15()()
2
92()(

4
3)1( 2222 ≡⋅−++⋅−+⋅⎥⎦
⎤

⎢⎣
⎡ −− +− ααα ααααα tgxtgxtgx  

which will be fulfilled for every real x, if parameter α  is the solution of the 
following system: 

 0
4
32 =−−αα ,  0

2
92 2 =−α ,  0

4
152 =−+αα  

 The system is fulfilled for 
2
3

=α , so one particular integral is 2
3

1 )(tgxy = .  

According to Liouville’s formula the general integral: 

⎥⎦
⎤

⎢⎣
⎡ ++=

=+⋅+=

=⋅+=+= ∫∫

x
xCCtgx

x
xtgxCtgxC

xtg
dxtgxCtgxC

y
dxyCyCy

221
3

2
3

2
3

1

3
3

2
3

12
1

1211

sin2
1sin(ln)(

)
sin2

1sin(ln)()(

)()(

 

is periodic function, interruptible in the following points: 01 =x , 
22
π

=x  and 

π=3x .  



Hill’s equations and Liouville’s formula                                  149 

  

Example 2.9. Based on known theorems, for Hill’s equation 
0

cossin21
cossin23

=⋅
⋅+
⋅−

−′′ y
xx
xxy , the solution of the following type 

)()cos(sin1 xPxxy ⋅+= α  has been suggested. 1)( ≡xP  has the following 
solution: 

α)cos(sin xxy +=  
where α  is a parameter which should be determined. If we substitute y  and y ′′  
in the given equation, we obtain the identity which is fulfilled for every real x if 

1−=α . Therefore, one particular solution is 
xx

y
cossin

1
1 +
= . The general 

solution is easily found according to Liouville’s formula. 

 [ ])cos(
cossin

1 2
212

1
1211 xxCC

xxy
dxyCyCy −++

+
=+= ∫  

However, it is not periodic, because it does not have two linearly independent 
periodic particular integrals, i.e. two integrals which are in coexistence. The given 
equation has only one periodic sub-class of particular integrals.  

 3. Conclusion 

  In this work we have shown that Hill’s equation (1.1) can have periodic 
solutions if the integral ∫ ⋅ dxxb )(  is non-periodic function or if the periodic  
coefficient b(x) is not analytic function (the function is analytic if it has derivative 
of any series, i.e. if it can derive into Taylor’s series). That is why the Hill’s 
equation is very often written in the following form: 

  0)(( =⋅++′′ yxQy λ                 (3.1) 
where 

  )()( xQxb += λ                 (3.2) 
is periodic function as a sum of constant and periodic function, while the integral 

  ∫∫ ∫ +⋅=+= dxxQxdxxQdxxb )())(()( λλ                         (3.3) 
is non-periodic, because it contains the linear part x⋅λ  
 We have also shown, by using Liouville’s formula, that the poles of the first 
order of the coefficient b(x) of the equation (1.1) are simultaneously the zeros of 
the first order of particular integral y1. This is used for solving many Hill’s 
equations. Namely, by substitution 

  ∫=
dxxZ

exy
)(

)(                             (3.4) 
where )(xZZ = is a new unknown function, the Hill’s equation is most often 
reduced to Riccati’s equation: 

  0)()()( 2 =+++′′ xcZxbZxaZ                 (3.5) 
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So it is very important to determine the form of its particular integral, because it is 
known that in general case, the equation (3.5) cannot be solved by applying 
quadratures.  
  We have shown that the poles of second order of the coefficient of the 
equation (1.1) can be either poles of higher order or zeros of higher order or 
algebraic critical points of any order, except the first one, solutions of Hill’s 
equations.  
  By using this facts, periodic solutions for some narrow subclasses of Hill’s 
equation can be determined, as well as for some values of the given coefficients in 
the supposed particular integrals. 
  Therefore, periodic coefficient b(x) in the Hill’s equation (1.1) is a 
necessary but not sufficient condition for the equation to have one periodic 
particular solution or both periodic solutions, when we say that solutions are co-
existing. 
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