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 ON THE WELL-POSEDNESS OF RELAY SYSTEMS WITH 
FRACTIONAL ORDER 

Carmina GEORGESCU1, Alina PETRESCU-NITA2 

In aceasta lucrare introducem o noua clasă de sisteme discontinue 
fractionale şi stabilim condiţii suficiente pentru unicitatea soluţiilor. Utilizând 
transformata Laplace, arătăm că tehnica propusa în [1], pentru systeme de tip relay 
lineare, poate fi utilizată cu success în studiul unicităţii solutiilor analitice pe 
porţiuni. Stabilim de asemenea o condiţie suficientă pentru existenţa şi unicitatea 
soluţiilor in spaţiul funcţiilor continuu diferentiabile.Un exemplu este prezentat în 
acest sens. 

In this paper a new class of fractional-order discontinuous-time systems 
containing relays is introduced and sufficient conditions for the uniqueness of 
solutions are established. By using the Laplace transform, we show that the 
technique proposed in [1]  for linear relay systems may be suitably applied to this 
new class, in order to state the uniqueness of piecewise analytic solutions. Then we 
derive a sufficient condition for the existence and uniqueness of solutions in the 
space of continuously differentiable functions. An example is also presented.  

Keywords: Relay systems, fractional discontinuous systems, well-posedness. 

1. Introduction 

Many linear viscoelastic damping materials exhibit a macroscopic 
constitutive behavior involving fractional order derivatives. Such behavior has 
been the subject of many investigations. Also, some dynamical processes such as 
gas diffusion and heat conduction can be more precisely modeled using fractional-
order models than using integer-order models. 

Generally speaking, there are three mostly used definitions of the 
fractional derivative of a function: Grünwald-Letnikov fractional derivative, 
Riemann-Liouville fractional derivative and Caputo’s fractional derivative. While 
the pure mathematicians work with the first two definitions (which have certain 
disadvantages when trying to model real-world phenomena), the last one seems to 
be more convenient in engineering applications and thus, adopted by the applied 
scientists. 
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The physical interpretation of fractional derivatives and the solutions of 
fractional differential equations have been discussed in [2]. In this paper we shall 
deal with the following Caputo definition. 

 
Definition 1. Let 0 1α< ≤ . The Riemann-Liouville integral of order α  

for a function 1(.) ((0; ); )nx L∈ ∞ R  is defined as 

 1

0

1( ) ( ) ( ) ,  0,
( )

t
I x t t x s ds tα ατ

α
−= − ≥

Γ ∫  

where 1

0
( ) ,  0t pp e t dt p

∞ − −Γ = >∫  is the Gamma function. 

Definition 2. The Caputo derivative of order α  for a function (.)x   is 
given by  

 
0

1 '( ) ,   (0,1)
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( ),                           =1
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α

τ τ α
α τ
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∫
 

provided that the expressions on the right-hand side exist. For example, for 
(0,1)α ∈  and an absolutely continuous function (.)x , the fractional derivative 

exists.  
 

An important function that finds widespread use in the world of fractional 
calculus is the Mittag-Leffler function. The standard definition of the Mittag-
Leffler function with complex argument z∈  is the following 

 
0

( )
( 1)

k

k

zE z
kα α≥

=
Γ +∑  

which is, in fact, a (one-parameter) generalization of the exponential function (for 
a more general definition of Mittag-Leffler function with two parameters and its 
applications in fractional evolution processes, see e.g. [3], [4]). As the exponential 
function plays an important role in the theory of integer-order differential 
equations, the Mittag-Leffler function plays an analogous role in the solution of 
non-integer order differential equations. Among other properties, we mention the 
following: 

a) (0) 1Eα = and 1( ) zE z e= (that is, the exponential function corresponds to 
1α = ). 

b)
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( ) ( )
2 (2 1)
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E z E z z
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α α
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+ −
=

Γ +∑ . 
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c)
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d) If z∈  with arg( ) ,
2

z πα π⎛ ⎤∈⎜ ⎥⎝ ⎦
 then lim ( ) 0

z
E zα→∞

= . If  z∈  with 

arg( )
2

z πα< , then lim ( )
z

E zα→∞
= ∞ . In particular, if z +∈R , one has:  

 lim ( )
z

E zα→∞
= ∞  and lim ( ) 0

z
E zα→∞

− = . 

Given a matrix , ( )n nM ∈ RM , we say that M is a P -matrix if all its principal 
minors are strictly positive. M  is said to be a 0P -matrix if all its principal minors 
are non-negative. In the sequel, nI  will stand for the unit matrix of size n . For a 
vector v  we write 0v  if the inequality holds component wise. The script L  
will stand for the Laplace transform. 
 

Definition 3. Let : l lh →R R  be a continuous function such that there 
exists a finite family of affine functions { }1,..., kh h that maps mR into itself and for 

every lx∈R  there is an 1,i k= such that ( ) ( )ih x h x= . Then, h  is said to be 
piecewise affine (PWA). If, in addition, det( )iJh has the same nonzero sign for all 

1,i k= , then the PWA function h  is said to be coherently oriented. 
 
A switched system is said to have an accumulation point 0τ ≥  of switches 

at the right (left) of τ  if for any switched point T τ> (T τ< ), there exists another 
one 'T τ>  ( 'T τ< ) such that 'T T<  ( 'T T> ) and the sequence of these switches 
tends to τ . 

 
In the remainder of this note, we formulate the problem and then the 

approach proposed in [1] is adopted in order to state the global well-posedness of 
this new class of relay systems, relatively to the space of piecewise analytic 
functions. We also establish a condition under which the local uniqueness of 
solution holds in a larger class, that of continuously differentiable functions. The 
note is concluded in Section 3. 

2. Linear relay fractional-order systems. 

For 0 1α< ≤ , we consider the following fractional-order, multi-input 
multi-output relay system (FO-MIMO relay system, on short): 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ( )),    1,   i i

D x t Ax t Bu t

y t Cx t Du t

u t Sgn y t i m

α⎧ = +
⎪⎪ = +⎨
⎪ ∈− =⎪⎩

 (1.1) 

  
with the initial condition 0(0) nx x= ∈R , where , ( )n nA∈ RM , , ( )n mB∈ RM , 

, ( )m nC∈ RM , , ( )m mD∈ RM ; ( )iu t and ( )iy t  stand for the i-th component of the 

control input vector ( )u t  and of the output ( )y t , respectively. For 1,i m= , each 

pair ( ),i iu y  satisfies an ideal relay characteristic, via the multi-valued (.)Sgn  

function, where (0) [ 1,1]Sgn = − . 
It is well known (see, for instance, [5]) that the above system is equivalent 

to the following Volterra system coupled to relays 

 

0 10

1 ( ) ( )( )
( ) ( )

( ) ( ) ( )

( ) ( ( )),     1, .

t

i i

Ax Bux t x d
t

y t Cx t Du t

u t Sgn y t i m

α

τ τ τ
α τ −

⎧ +
= +⎪ Γ −⎪

⎪ = +⎨
⎪ ∈− =⎪
⎪⎩

∫
 (1.2) 

The equivalent form in (1.2) will be useful later in the study of 1C solutions.  
 

Previous works. For m n=  and nC I= , 0nD = , the system (1.1) becomes 
 ( ) ( ) ( ( ))D x t Ax t Bs x tα ∈ − , 

where 

 
1( )

( )
( )n

Sgn x
s x

Sgn x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

A class of such discontinuous systems was investigated in [6]. More precisely, 
using a selection theorem due to Cellina, the author approximates the above 
inclusion by a single-valued fractional order problem, which in turn, is solved by 
using a fractional numerical scheme proposed in [7]. This scheme is a 
generalization of the classical multistep method Adams-Bashforth-Moulton.  

Another class of FO-MIMO systems but without relays, continuous in 
time, was studied in [8]. Due to the absence of relays, the realization of these 
systems as the so called ”cone fractional systems” is obtained.  

Let us now introduce the following  
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Definition 4. A triple ( , , ) :[0, ) l l nu x y ∞ → × ×R R R  is called a forward 
solution to the relay system (1), if ( )t x t is continuous on [0, )∞ and there exists 
a countable number of switching times 0 10 ... ...jt t t= < < < <  such that, for every 

interval 1[ , )j jt t + , the triple ( , , )u x y  satisfies the following conditions 

i) For any 1,i l=  and 1[ , ),  ( )ij jt t t u t+∈  and ( )iy t  correspond to one and 
only one of the following three branches:  

( ) 0 and ( ) 1iiy t u t⎡ ⎤> = −⎣ ⎦   

( ) 0 and ( ) 1iiy t u t⎡ ⎤< =⎣ ⎦   

[ ]( ) 0 and ( ) ,i i iiy t u t α β⎡ ⎤= ∈⎣ ⎦ . 

i) ( , , )u x y is analytic on 1[ , )j jt t + . 

ii) ( , , )u x y verifies (1) with initial condition ( ) lim ( )
j

j t t
x t x t= . For 0j = the 

initial condition is as for (1): 0(0)x x= . 
It is our purpose to give a short but self-contained approach in the study of 

the well-posedness of FO-MIMO relay system (1.1). In what follows, 
considering (0,1)α ∈ , we investigate the well-posedness of system (1.1) in the 
sense of Definition 4. The first result of this section is contained in the following 
theorem. 

 
Theorem 1. If there exists 0 0s ≥  such that 1( ) ( )nG s C s I A B Dα −= − + is 

an  invertible 0P -matrix for 0s s≥  then, for any initial condition 0(0)x x= , the 

relay system (1.1) admits a unique forward solution ( (.), (.), (.)),   0u x y t ≥ .  
 

Proof. Following [1], we show that system (1.1) may be  transformed into 
a rational complementarity system. First, let us introduce ([9]) the following 
vectors in 2mR  

 
1 ( )

( )
1 ( )

m

m

u t
u t

u t

⎛ ⎞+
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 and 
( )
( )

( )
( )

( )

y t
y t

y t

+

−

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

where 1m  denotes the constant vector in mR  with all components being equal to 

one; ( )( )y t
+
 is the non-negative part of ( )y t  and ( )( )y t

−
 is the non-positive part 

of this vector, that is ( ) ( )( ) ( ) ( )y t y t y t
+ −

= − . With the above notations, one has 
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=
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Then, the relay system can be described by the former two equations of (1.1) with 
the additional complementarity constraints  

 0 ( ) ( ) 0,u t y t⊥  (1.3) 
where ( ) ( )u t y t⊥  indicates the orthogonality of ( )u t  and ( )y t , i.e. ( ) ( ) 0Tu t y t = . 
In order to apply the Laplace transform to (1.1)-(1.2), let us adopt the following 
notations: 

( ) [ ( )]( ),   ( ) ( ) ( ),   ( ) ( ) ( )X s x t s Y s y t s U s u t s⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦L� L� L� , 

1

1

1 ( )
( )

1 ( )
m

m

s U s
U s

s U s

−

−

⎛ ⎞+
= ⎜ ⎟⎜ ⎟−⎝ ⎠

  and   
( )
( )

( )
( )

( )

Y s
Y s

Y s

+

−

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

The relay system in (1) can be rewritten in the frequency domain as follows: 

 
1

0( ) ( )
,

( ) ( ) ( )

nX s s I A s x BU s

Y s CX s DU s

α α−⎧ ⎡ ⎤− = +⎪ ⎣ ⎦
⎨

= +⎪⎩
 (1.4) 

together with the constraints 
 0 ( ) ( ) 0,U s Y s⊥  (1.5) 

for s +∈R  sufficiently large (see Remark 2.1. in [10]). It is easy to see that 

ns I Aα −  is invertible and 
1 ( 1)

0

k k
n

k

s I A A sα α− − +

≥

⎡ ⎤− =⎣ ⎦ ∑ . Define the following 

matrices: 

 
1

,

1 1
,

( ) ( ) ( )

( ) ( ) ( ).
n m m

n m n

G s C s I A B D

T s C s I A s

α

α α

−

− −

= − + ∈

= − ∈

R

R

M

M
 

Hence system (1.3) is equivalent to 

 
1 11

0

0

( ) ( )
,

( ) ( ) ( ) ( )

n nX s s I A s x s I A BU s

Y s T s x G s U s

α α α− −−⎧ ⎡ ⎤ ⎡ ⎤= − + −⎪ ⎣ ⎦ ⎣ ⎦⎨
⎪ = +⎩
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Now, assuming ( )G s  to be invertible, we notice that the study of the well-
posedness of the initial system on a small time interval [ ]0,ε  is reduced ([10], 
[1]) to the study of the so-called rational complementarity problem 

( ) ( )( )( ),RCP q s M s : 
 ( ) ( ) ( ) ( ),U s q s M s Y s= +  (1.6) 

under the constraints given in (1.5), where 
1 1

0

1 1
0

( ) ( ) 1
( )

  ( ) ( ) 1
m

m

G s T s x s
q s

G s T s x s

− −

− −

⎡ ⎤− +
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
   and  

1 1

1 1

( )      - ( ) 
( )

- ( )       ( )
G s G s

M s
G s G s

− −

− −

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (1.7) 

 
For s∈R  fixed, the data of ( ) ( )( )( ),RCP q s M s  in (1.6) and (1.7) define 

a standard linear complementarity problem ( LCP  on short). Next, due to 
Theorem 4.1 and Theorem 4.9 in [11], the existence and uniqueness of solutions 
to ( ) ( )( )( ),RCP q s M s  is equivalent to the existence and uniqueness of solutions 

to ( ) ( )( )( ),LCP q s M s  for all s  sufficiently large.  

Now, supposing that there exists 0 0s ≥  such that ( )G s is an invertible 0P -

matrix for all 0s s≥ , the existence of solutions to ( ) ( )( )( ),  LCP q s M s follows 

immediately from Theorem 3.1 in [10]. Based on the correspondence between 
strictly proper rational functions and real-analytic time functions, we may 
conclude that the system (1.1) admits a unique forward solution.                         ⁭ 

 
Remark 1. In fact, once the solution ( (.), (.))U Y  of the rational problem 

(1.6), (1.4) is identified for 0s s≥ , due to Theorem 1 in [12], the solution to the 
state equation in (1.1) is given by the formula 

 0 0
( ) ( ) ( ) ( )

t
x t E At x t Bu dα

α φ τ τ τ= + −∫  (1.8) 

on some interval [0, )ε , where 
( 1) 1

0

( )
[( 1) ]

k k

k

A tt
k

α

φ
α

+ −

≥

=
Γ +∑ , 1( ) ( ) ( ),u t U s t− ⎡ ⎤= ⎣ ⎦L  

1( ) ( )
2

U s U s=  and 1−L  denotes the inverse Laplace transform.  

The global solution starting from 0x  will be constructed by taking the 

maximal interval [0, )ε , where u  and y  satisfy (1.1) and then, solving the system 
with the new initial condition ( ) lim ( )

t
x x t

ε
ε = . 
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Remark 2. As already remarked in [1] (see also [13]), the existence of 
finite accumulation points of relay switching instants (a kind of Zeno behavior) is 
allowed, but only at the left. The accumulations at the right of an instant should 
never occur in order to prove the uniqueness of forward solutions. In the case of 
the accumulations at the left, 1( )n nε ε≥ , we define ( ) lim ( )nn

x xε ε
→∞

= . 

Example 1. Consider the system (1.1) with initial state 1 2
0 0 0( , )Tx x x=  and 

the following coefficients  

 
0 1
1 0

A
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 
1
1

B
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (1  1)C = −  and 1D = . 

Notice first that 
2

,   2 1
,  2

k A k l
A

I k l
= +⎧

= ⎨ =⎩
. In view of the properties b), c) of the 

Mittag-Leffler function mentioned in the first section, after some computations we 
obtain 

( ) ( ) ( ) ( )
2 2( )

( ) ( ) ( ) ( )
2 2

E t E t E t E t

E At
E t E t E t E t

α α α α
α α α α

α
α α α α α

α α α α

⎛ ⎞+ − − −
⎜ ⎟
⎜ ⎟=
⎜ ⎟− − + −
⎜ ⎟
⎝ ⎠

  and 
0

( ) ( ) 1
t

t d E tααφ τ τ− = −∫ . 

Next, depending on the initial condition 0x , three possibilities may occur 
on a small interval (0, )ε  : 
 

Mode 1. ( ) 0y t <  and ( ) 1u t ≡ . Then, according to (1.8), the state equation will be 
of the form  

 

1 2 1 2
0 0 0 0

1 2 1 2
0 0 0 0

1 ( ) 1 ( )
2 2

( )
1 ( ) 1 ( )

2 2

x x x xE t E t
x t

x x x xE t E t

α α
α α

α α
α α

⎛ ⎞⎛ ⎞+ −
− + + + −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞+ −⎜ ⎟− + + − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

The inequality ( ) 0y t <  implies ( )1 2
0 0( ) 1E t x xα

α − − < − . 
 

Mode 2. ( ) 0y t >  and ( ) 1u t ≡ . Then the state equation will be of the form 

 

1 2 1 2
0 0 0 0

1 2 1 2
0 0 0 0

1 ( ) 1 ( )
2 2

( )
1 ( ) 1 ( )

2 2

x x x xE t E t
x t

x x x xE t E t

α α
α α

α α
α α

⎛ ⎞⎛ ⎞+ −
+ + + −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞+ −⎜ ⎟+ + − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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The inequality ( ) 0y t > implies ( )1 2
0 0( ) 1E t x xα

α − − > . 
 

Mode 3. ( ) 0y t ≡  and ( ) [ 1,1]u t ∈ − . Then the state equation will be of the form 

 

1 2 1 2
0 0 0 0

1 2 1 2
0 0 0 0

( ) ( ) 1 ( )
2 2

( )
( ) ( ) 1 ( )

2 2

x x x xu t E t E t
x t

x x x xu t E t E t

α α
α α

α α
α α

⎛ ⎞⎛ ⎞+ −
− + + + −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞+ −⎜ ⎟− + + − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

The equality ( ) 0y t ≡  implies ( )1 2
0 0( ) ( ) [ 1,1]E t x x u tα

α − − = − ∈ − .  

If the initial state satisfies 1 2
0 0 [ 1,1]x x− ∈ − then, taking into account the 

properties a) and d) of the Mittag-Leffler function (see also [3]), we have 
( )1 2

0 0( ) [ 1,1]  0E t x x tα
α − − ∈ − ∀ > , 

and the global solution corresponds to Mode 3, with ( )1 2
0 0( ) ( )u t E t x xα

α= − − − . 

Further, for any initial condition 1 2
0 0 0( , )Tx x x= satisfying 1 2

0 0 1x x− < −  (or 
1 2
0 0 1x x− > ), let us consider the maximal interval [0, )ε  such that the solution 

remains in Mode 1 (or Mode 2, respectively). At t ε=  we put ( ) lim ( )
t

x x t
ε

ε = . 

Once arrived on the surface 1 2( ) ( ) ( ) ( ) 0y t x t x t u t= − + = , the continuation on 

[ , )ε ∞  will be possible only in Mode 3, since ( )1 2
0 0( ) 1E t x xα

α − − ≤ . That is, the 

relay system has a unique global solution. 
The uniqueness of the solutions can also be obtained by computing the 

matrix ( )G s , 1
2( ) ( ) 1G s C s I A B Dα −= − + =  and observing that ( )G s  is an 

invertible 0P -matrix. 
 
Remark 3. The uniqueness of the solutions for the system considered 

above also holds if one replaces 1D = with 0D = . Indeed, for any initial 
condition 0x , there is a global solution corresponding to only one mode of the 

relay system (Note that in the case 1 2
0 0(0) 0y x x= − = , the solution will correspond 

to Mode 3 with ( ) 0u t ≡ ).  
Nevertheless, for 0D =  we cannot invoke Theorem 1 above in order to 

establish the well-posedness, since we obtain ( ) 0G s = . This shows that the 
condition of invertibility of ( )G s  in Theorem 1 is not necessary in the study of the 
wellposedness of system (1.1). 
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Remark 4. We point out that the method presented above (and that 
proposed by [1]), reduces the study of system (1.1) to the class of piecewise 
continuous functions (.)x  of exponential order, that is the well-posedness of (1.1) 
is studied in the space of all (.)x  for which there exist ,  0M a >  such that 

( ) atx t Me≤  for all 0t ≥ . In particular, as stated in Theorem 1, the matter of the 
uniqueness of solutions holds in the space of continuous piecewise analytic 
functions. 

 
In what follows we establish a condition under which the local uniqueness 

of solutions to system (1.1) holds in the space of continuously differentiable 
functions. Contrarily to the above linear FO-MIMO relay system, the next result 
allows for some nonlinearity in both equations of the state variable and of the 
output. Consider the following nonlinear FO-MIMO relay system 

 

( )

( ) ( ( )) ( )

( ) ( ( )) ( )

( ) ( ) ,    1,  i i

D x t f x t Bu t

y t g x t Du t

u t Sgn y t i m

α⎧ = +
⎪⎪ = +⎨
⎪

∈− =⎪⎩

 (1.9) 

with the initial condition 0(0) nx x= ∈R , where (.), (.) : n nf g →R R  are two given 
functions.  

The main idea is to rewrite the input-output condition in (1.9) as an affine 
variational inequality and then to apply the constructive theory of Affine 
Variational Problems. Further we treat the new system in the framework of 
fractional differential equations, using a uniqueness result due to [14]. 

 
Theorem 2. Suppose that (.)f  and (.)g  are Lipschitz continuous and 

( ),m mD∈ RM  is a P -matrix. Then, the relay system (1.9) has a unique 1C -
solution on some interval [0, ), 0ε ε > . 

Proof. Let us denote [ 1,1]mK = − . Solving inequality ( )( ) ( )i iu t Sgn y t∈− ,  

 1,i m=  is equivalent with the following affine variational problem: For 0t ≥  

find ( )u t K∈  such that ( )( ) ( ) 0,   
T

s u t y t s K− ≥ ∀ ∈ . Since D  is a P -matrix, 

according to Example 4.2.9 in [15], the normal map associated to the pair ( , )K D , 
given by 

: ,   ( ) ( ) ( )nor l l nor
K K K KM M Dλ λ λ λ→ = ⋅Π + −ΠR R  

where ( ) ( ; )K proj Kλ λ∏ = , is coherently oriented. Then, by Theorem 4.3.2 in 
[15], the affine variational problem has a unique PWA solution:  
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 ( ) ( ) ( )( )1
( ( )) ( ( ))nor

K Ku g x t M g x t
−

= Π −  

and thus, Lipschitz continuous, as a function of ( ( ))g x t . So also the function 

( )( ) ( )x v x u g x=  is Lipschitz continuous. The relay system (1.1) becomes a 
fractional system without relays  

 

( ) ( )( )
( ) ( )( )

1

1

0

( ) ( ( )) ( ( ))

( ) ( ( )) ( ( ))

(0) . 

nor
K K

nor
K K

n

D x t f x t B M g x t

y t g x t D M g x t

x x

α −

−

⎧ = + Π −⎪
⎪⎪ = + Π −⎨
⎪
⎪ = ∈
⎪⎩

R

 (1.10) 

The right-hand side in the first equation of (1.10) is a Lipschitz continuous 
function and the state equation in (1.10) is equivalent to the integral equation  

( ) ( )( )11
0

0

1( ) ( ) ( ( )) ( ( ))
( )

t
nor

K Kx t x t f x B M g x dατ τ τ τ
α

−− ⎡ ⎤= + − + Π −⎢ ⎥⎣ ⎦Γ ∫ . 

 
Therefore, we may apply Theorem 3.1. in [14] and we obtain that there exists a 
unique local solution to (1.10), of class 1C  in time.                   ⁭ 

 
Remark 5. Let us notice that when D  is a P -matrix and 

1( ) ( )nG s C s I A B Dα −= − +  is an invertible 0P -matrix (see Example 1), Theorem 1 
gives a characterization of the unique solution, namely the 1C -solution is analytic. 

 

3. Conclusions 

In this paper, we introduced a new class of relay fractional-order systems 
and a sufficient condition concerning the well-posedness of relay feedback 
systems is worked out along the same lines as in the integer-order case (see [10], 
[1] for 1α = ). This is done in Theorem 1. Next, under a stronger condition, we 
prove the local uniqueness of 1C solutions (Theorem 2). A simple example to 
illustrate the use of these results is given. We also remark that the condition of 

( )G s  being an invertible 0P -matrix is only sufficient in order to prove the global 
uniqueness of forward solutions. To the authors’ knowledge, relay fractional-
order systems have not been considered before. 
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