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ON THE WELL-POSEDNESS OF RELAY SYSTEMS WITH
FRACTIONAL ORDER

Carmina GEORGESCU', Alina PETRESCU-NITA?

In aceasta lucrare introducem o noua clasa de sisteme discontinue
fractionale si stabilim conditii suficiente pentru unicitatea solutiilor. Utilizand
transformata Laplace, aratam ca tehnica propusa in [1)], pentru systeme de tip relay
lineare, poate fi utilizata cu success in studiul unicitatii solutiilor analitice pe
portiuni. Stabilim de asemenea o conditie suficientd pentru existenfa s§i unicitatea
solutiilor in spatiul functiilor continuu diferentiabile.Un exemplu este prezentat in
acest sens.

In this paper a new class of fractional-order discontinuous-time systems
containing relays is introduced and sufficient conditions for the uniqueness of
solutions are established. By using the Laplace transform, we show that the
technique proposed in [1] for linear relay systems may be suitably applied to this
new class, in order to state the uniqueness of piecewise analytic solutions. Then we
derive a sufficient condition for the existence and uniqueness of solutions in the
space of continuously differentiable functions. An example is also presented.

Keywords: Relay systems, fractional discontinuous systems, well-posedness.
1. Introduction

Many linear viscoelastic damping materials exhibit a macroscopic
constitutive behavior involving fractional order derivatives. Such behavior has
been the subject of many investigations. Also, some dynamical processes such as
gas diffusion and heat conduction can be more precisely modeled using fractional-
order models than using integer-order models.

Generally speaking, there are three mostly used definitions of the
fractional derivative of a function: Griinwald-Letnikov fractional derivative,
Riemann-Liouville fractional derivative and Caputo’s fractional derivative. While
the pure mathematicians work with the first two definitions (which have certain
disadvantages when trying to model real-world phenomena), the last one seems to
be more convenient in engineering applications and thus, adopted by the applied
scientists.
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The physical interpretation of fractional derivatives and the solutions of
fractional differential equations have been discussed in [2]. In this paper we shall
deal with the following Caputo definition.

Definition 1. Let 0<a <1. The Riemann-Liouville integral of order «
for a function x(.) € L' ((0;00);R") is defined as

1°x(t) = ﬁ jo (t—7)* " x(s)ds, t >0,

where ['(p) = .[: e”'t"'dt, p>0 is the Gamma function.

Definition 2. The Caputo derivative of order a for a functionx(.) is
given by

! jo’ x'(r)a dz, ae(0,)
Dax(t): r(l_a) (t—T) ,

—x(?), =1
th() a

provided that the expressions on the right-hand side exist. For example, for
a €(0,1) and an absolutely continuous functionx(.), the fractional derivative

exists.

An important function that finds widespread use in the world of fractional
calculus is the Mittag-Leffler function. The standard definition of the Mittag-
Leffler function with complex argument z € C is the following

k

z

B = 2 k)
which is, in fact, a (one-parameter) generalization of the exponential function (for
a more general definition of Mittag-Leffler function with two parameters and its
applications in fractional evolution processes, see e.g. [3], [4]). As the exponential
function plays an important role in the theory of integer-order differential
equations, the Mittag-Leffler function plays an analogous role in the solution of
non-integer order differential equations. Among other properties, we mention the
following:

a) E, (0)=1landE (z)=e"(that is, the exponential function corresponds to

a=1).
E,(2)+E, (-z) _ z*
b) 2 N ; Ika+1)’
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E (z2)-E (-2) _ z zH

© P T2k + Do +1]

d)If ze C with |arg(z)| (a%ﬂ} then lim £, (z)=0.If zeC with

Iz
|arg(z)| < a% , then ‘l‘im E,(z)=o00. In particular, if ze R, , one has:
limE, (z)=o and imE (-z)=0.
Given a matrix M e M, ,(R), we say that M is a P-matrix if all its principal
minors are strictly positive. M 1is said to be a F,-matrix if all its principal minors

are non-negative. In the sequel, /, will stand for the unit matrix of size n. For a

vector v we write v> 0 if the inequality holds component wise. The script £
will stand for the Laplace transform.

Definition 3. Let #:R’ - R’ be a continuous function such that there
exists a finite family of affine functions {hl,...,hk } that maps R"” into itself and for

every xeR' there is an i =1k such that /(x)=/h'(x). Then, / is said to be
piecewise affine (PWA). If, in addition, det(Jh')has the same nonzero sign for all
i= I,_k , then the PWA function / is said to be coherently oriented.

A switched system is said to have an accumulation point 7 > 0 of switches
at the right (left) of ¢ if for any switched point T > 7 (T < 7)), there exists another
one T'>7 (T <r)suchthat T'<T (T >T) and the sequence of these switches
tends to 7.

In the remainder of this note, we formulate the problem and then the
approach proposed in [1] is adopted in order to state the global well-posedness of
this new class of relay systems, relatively to the space of piecewise analytic
functions. We also establish a condition under which the local uniqueness of
solution holds in a larger class, that of continuously differentiable functions. The
note is concluded in Section 3.

2. Linear relay fractional-order systems.

For 0<a <1, we consider the following fractional-order, multi-input
multi-output relay system (FO-MIMO relay system, on short):
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D*x(t) = Ax(¢) + Bu(t)
»(t) = Cx(t)+ Du(?) (1.1)
ui(t) e =Sgn(y,(t)), i=lm

with the initial condition x(0)=x,€R", where 4eM, (R), Be M, (R),
CeM (R), DeM

. o (R) u;(f) and ;i () stand for the i-th component of the
control input vector ;(t) and of the output ;(t), respectively. For i =1,_m, each
pair (L_ti,;,.) satisfies an ideal relay characteristic, via the multi-valued Sgn(.)
function, where Sgn(0) =[-1,1].

It is well known (see, for instance, [5]) that the above system is equivalent
to the following Volterra system coupled to relays

1 J Ax(7)+ Bu(r)

x(t)=x,+ =
INa)’o (@-7)"
»(t) = Cx(t)+ Du(t) (1.2)

ui(t) e =Sgn(y,(t)), i=1m.

The equivalent form in (1.2) will be useful later in the study of C'solutions.

Previous works. For m=n and C=1 ,
D*x(t) € Ax(t)— Bs(x(1)),

D =0,, the system (1.1) becomes

where
Sgn(x;)
s(r)=|
Sgn(x,)
A class of such discontinuous systems was investigated in [6]. More precisely,
using a selection theorem due to Cellina, the author approximates the above
inclusion by a single-valued fractional order problem, which in turn, is solved by
using a fractional numerical scheme proposed in [7]. This scheme is a
generalization of the classical multistep method Adams-Bashforth-Moulton.
Another class of FO-MIMO systems but without relays, continuous in
time, was studied in [8]. Due to the absence of relays, the realization of these
systems as the so called ”cone fractional systems” is obtained.
Let us now introduce the following
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Definition 4. A triple (u,x,y):[0,00) > R'xR'xR" is called a forward
solution to the relay system (1), if ¢ — x(¢) is continuous on [0, ) and there exists
a countable number of switching times 0=¢, <f, <...<?, <... such that, for every
interval [¢,,7,,,) , the triple (;,)_c,;) satisfies the following conditions

i) For any i=1,/ and te[t iolia)s ui(t) and ;;(f) correspond to one and
only one of the following three branches:

[i (t)>0 and u;(f) = —1]
[i (t) <0 and u: () = 1]
[;i(t) =0 and ui(1) €[a;, ,«]] :
1) (;,)_c,;) is analytic on [7,,7,,,) .
ii) (u,x,y)verifies (1) with initial condition x(t,)= limx(r). For j=0the
initial condition is as for (1): x(0) =x, . ]
It is our purpose to give a short but self-contained approach in the study of

the well-posedness of FO-MIMO relay system (1.1). In what follows,
considering € (0,1), we investigate the well-posedness of system (1.1) in the

sense of Definition 4. The first result of this section is contained in the following
theorem.

Theorem 1. If there exists s, >0 such that G(s)=C(s"I,— A)"' B+ Dis

an invertible P, -matrix for s>s, then, for any initial condition x(0)=x,, the

relay system (1.1) admits a unique forward solution (;(.),;(.),;(.)), t>0.

Proof. Following [1], we show that system (1.1) may be transformed into
a rational complementarity system. First, let us introduce ([9]) the following

vectors in R*”
1, +u() ()
u@y=| " = and yoy=| |,
Ly —u() (»®)
where 1, denotes the constant vector in R” with all components being equal to
one; (;(r))+ is the non-negative part of y(¢) and (;(t))f is the non-positive part

of this vector, that is y(¢) = (;(r))+ —(;(r))f . With the above notations, one has
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u" ()0 =[1, +u) | () +[1, -] (o)
-1 (30) +(0) |+(w0) >0
e Yy~ Y yO- »Oen(y,0)

(>0 »;(£)<0 i=l.m
={0}.

Then, the relay system can be described by the former two equations of (1.1) with
the additional complementarity constraints

0 =u() L y(t) =0, (1.3)
where u(¢) L y(¢) indicates the orthogonality of u(¢) and y(z), i.e. u(t)" y(¢t)=0.
In order to apply the Laplace transform to (1.1)-(1.2), let us adopt the following
notations:

X(s)=LIxO](s), Y(s)=L[3)](5), Uls)=L[u(®)](s),

[sllm + U(S)] (y(s))+
U(s)= _ and Y(s)=
s, =U(s) (?(S))f

The relay system in (1) can be rewritten in the frequency domain as follows:

X(s)[s“I —A|=s""x,+BU(s
X(9)[s°1,~ 4] =s""x +BUGs) (14
Y(s)=CX(s)+DU(s)
together with the constraints
0=U(s) LY(s)=0, (1.5)

for seR, sufficiently large (see Remark 2.1. in [10]). It is easy to see that
s“I —A is invertible and [S‘ZIH—AT1 => 4"'s""  Define the following

k>0
matrices:

G(s)=C(s“1,-A)'B+DeM,, (R)
T(s)=C(s"I,—A)'s*" e M, (R).
Hence system (1.3) is equivalent to
X(s)=[s°1,~A] s“'x,+[s°I, - 4] BU(s)

9

Y(s5) = T(s)x, + G(s)U(s)
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Now, assuming G(s) to be invertible, we notice that the study of the well-
posedness of the initial system on a small time interval [0,5] is reduced ([10],
[1]) to the study of the so-called rational complementarity problem
(RCP(q(s).M(s))):

U(s)=q(s)+M(s)Y(s), (1.6)
under the constraints given in (1.5), where

o) {—G ()T (), +5™ Lﬂ} and M) :{ (07

G ()T (s)x, +s'1,

G'(s) -G\(5)
Gl'(s)  Gs)

For seR fixed, the data of (RCP(q(s),M(s))) in (1.6) and (1.7) define

a standard linear complementarity problem (LCP on short). Next, due to
Theorem 4.1 and Theorem 4.9 in [11], the existence and uniqueness of solutions

to (RCP(q(s),M (s))) is equivalent to the existence and uniqueness of solutions
to (LCP(q(s),M(s))) for all s sufficiently large.

Now, supposing that there exists s, >0 such that G(s)is an invertible F,-
matrix for all s>s,, the existence of solutions to (LCP(q(s),M (s))) follows

immediately from Theorem 3.1 in [10]. Based on the correspondence between
strictly proper rational functions and real-analytic time functions, we may
conclude that the system (1.1) admits a unique forward solution. ]

Remark 1. In fact, once the solution (U(.),Y(.)) of the rational problem
(1.6), (1.4) is identified for s >s,, due to Theorem 1 in [12], the solution to the
state equation in (1.1) is given by the formula

x(t)=E, (At“)x, + jo #(t —7)Bu(r)dr (1.8)

Akt _ .
on some interval [0,¢), where ¢(¢)= z ut)y=L" [U (s)] (1),

STk +Da]’
U(s)= EU (s) and £ denotes the inverse Laplace transform.

The global solution starting from x, will be constructed by taking the

maximal interval [0,&), where u and ; satisfy (1.1) and then, solving the system
with the new initial condition x(&) = li/m x(1) .
t/e
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Remark 2. As already remarked in [1] (see also [13]), the existence of
finite accumulation points of relay switching instants (a kind of Zeno behavior) is
allowed, but only at the left. The accumulations at the right of an instant should
never occur in order to prove the uniqueness of forward solutions. In the case of
the accumulations at the left, (¢,),., /" ¢, we define x(¢) = liig x(e,) .

nx1
Example 1. Consider the system (1.1) with initial state x| = (x;,x;) and
the following coefficients

0 1 1
A= ,B=| |, C=(1 -1)and D=1.
10 1

. |4, k=20+1 . i
Notice first that A" = I kol In view of the properties b), ¢) of the
20 K=
Mittag-Leffler function mentioned in the first section, after some computations we
obtain

E, )+ E, (") E,()-E, (")

2 2 ’
A o — d — d =E ¢ _1
Eo(4r) E,(t“)-E (—t*) E,(t“)+E, (-t%) o !W Dz =E )
2 2

Next, depending on the initial condition x,, three possibilities may occur

on a small interval (0,¢) :

Mode 1. y(¢)<0 and u(¢)=1. Then, according to (1.8), the state equation will be

of the form

1 2
Xo —Xo

1 2
—1+Ea(z“)(1+x°+T)C°j+Ea(—t“)
x(t)=
1,2 12
—1+Ea(t“)(l+x°+Tx°J—E (—t“)%

The inequality ;(t) <0 implies E,(—t") (xé - xé) <-1.

Mode 2. ;(t) >0 and ;(t) =1. Then the state equation will be of the form
1 2 12
1+Ea(t“)[1+x°+Tx°]+Ea(—z“)%

x(t) = L
Xo —Xo

1 2
1+Ea(t“)£1+x°+Tx°j—Ea(—t“)
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The inequality ;(t) >0 implies E,(—t") (xé - xé) >1.

Mode 3. ;(t) =0 and ;(t) €[—-1,1]. Then the state equation will be of the form

1 2
Xo — Xy

_ 1 2
—u(t)+E, (t“)(l +’C°+Tx<]j+Ea(—za)
x(t) - 1 2 1 2
—u(t)+E, (t") 1+x0+_x0 _Ea(_ta)u
2 2
The equality y(1)=0 implies E, (—t“)(x, —x; ) = —u(t) e[-1,1].
If the initial state satisfies x,—x; €[~1,1]then, taking into account the
properties a) and d) of the Mittag-Leffler function (see also [3]), we have
E,(-t)(xy—x;)e[-L1] V¢>0,
and the global solution corresponds to Mode 3, with u(t) = -E, (—t”’)(x(‘J - xé) .
Further, for any initial condition x, =(x;,x;)satisfying x;—x; <—1 (or
x,— X, >1), let us consider the maximal interval [0,&) such that the solution

remains in Mode 1 (or Mode 2, respectively). At t=¢ we put x(&)= li/mx(t).
t/ ¢

Once arrived on the surface ;(t) =x'(t)-x*(t) +L_I(t) =0, the continuation on

E,(=1*)(x;—x; )| <1. That is, the

[£,0) will be possible only in Mode 3, since

relay system has a unique global solution.
The uniqueness of the solutions can also be obtained by computing the
matrix G(s), G(s)=C(s“I,—A)'B+D=1 and observing that G(s) is an

invertible F,-matrix.

Remark 3. The uniqueness of the solutions for the system considered
above also holds if one replaces D =1with D=0. Indeed, for any initial
condition x,, there is a global solution corresponding to only one mode of the

relay system (Note that in the case ;(O) =x, —x, =0, the solution will correspond

to Mode 3 with u(¢)=0).

Nevertheless, for D=0 we cannot invoke Theorem 1 above in order to
establish the well-posedness, since we obtain G(s)=0. This shows that the
condition of invertibility of G(s) in Theorem 1 is not necessary in the study of the
wellposedness of system (1.1).
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Remark 4. We point out that the method presented above (and that
proposed by [1]), reduces the study of system (1.1) to the class of piecewise
continuous functions x(.) of exponential order, that is the well-posedness of (1.1)

is studied in the space of all x(.) for which there exist M, a >0 such that
|x(t)| < Me" for all ¢>0. In particular, as stated in Theorem 1, the matter of the

uniqueness of solutions holds in the space of continuous piecewise analytic
functions.

In what follows we establish a condition under which the local uniqueness
of solutions to system (1.1) holds in the space of continuously differentiable
functions. Contrarily to the above linear FO-MIMO relay system, the next result
allows for some nonlinearity in both equations of the state variable and of the
output. Consider the following nonlinear FO-MIMO relay system

Dx(t)= f (x(1)) + Bu(1)
(1) = g(x(t)) + Du(t) (1.9)
ui(t) e —Sgn(;,. (r)), i=Lm
with the initial condition x(0) =x, e R", where f(.),g(.):R" - R" are two given
functions.
The main idea is to rewrite the input-output condition in (1.9) as an affine
variational inequality and then to apply the constructive theory of Affine

Variational Problems. Further we treat the new system in the framework of
fractional differential equations, using a uniqueness result due to [14].

Theorem 2. Suppose that f(.) and g(.) are Lipschitz continuous and
DeM,,(R) is a P-matrix. Then, the relay system (1.9) has a unique C'-

solution on some interval [0,&),&>0.

Proof. Let us denote K =[—1,1]". Solving inequality u; (1) e —Sgn (;, (t)),

i=1,m is equivalent with the following affine variational problem: For >0
— — T
find u(t) e K such that (s —u(t)) ()20, VseK. Since D is a P-matrix,
according to Example 4.2.9 in [15], the normal map associated to the pair (K, D),
given by
MR >R, My (A)=D-T(A)+A-T1,(2)

where [, (1) = proj(K;1), is coherently oriented. Then, by Theorem 4.3.2 in
[15], the affine variational problem has a unique PWA solution:



On the well-posedness of relay systems with fractional order 101

— -1

(o) =11, (M) (=g x))
and thus, Lipschitz continuous, as a function of g(x(¢)). So also the function
X v(x) =;( g(x)) is Lipschitz continuous. The relay system (1.1) becomes a

fractional system without relays

D) = )+ 811 (37) (~gx()

§(0) = gx(e)+ DI (M) (~gx0) (110
x(0)=x, eR".

The right-hand side in the first equation of (1.10) is a Lipschitz continuous
function and the state equation in (1.10) is equivalent to the integral equation

=5+ s Jo—or [, () (s o

)%

Therefore, we may apply Theorem 3.1. in [14] and we obtain that there exists a
unique local solution to (1.10), of class C' in time. O

Remark 5. Let us notice that when D is a P-matrix and
G(s)=C(s“I,— A)"'B+ D is an invertible P,-matrix (see Example 1), Theorem 1

gives a characterization of the unique solution, namely the C'-solution is analytic.

3. Conclusions

In this paper, we introduced a new class of relay fractional-order systems
and a sufficient condition concerning the well-posedness of relay feedback
systems is worked out along the same lines as in the integer-order case (see [10],
[1] for ¢ =1). This is done in Theorem 1. Next, under a stronger condition, we
prove the local uniqueness of C'solutions (Theorem 2). A simple example to
illustrate the use of these results is given. We also remark that the condition of
G(s) being an invertible F,-matrix is only sufficient in order to prove the global

uniqueness of forward solutions. To the authors’ knowledge, relay fractional-
order systems have not been considered before.
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