U.P.B. Sci. Bull.,, Series C, Vol. 71, Iss. 4, 2009 ISSN 1454-234x

MODEL FOR A GRID INFRASTRUCUTRE BASED ON JAVA

Radu Adrian NICULITA', Nicolae TAPUS?

In aceastd lucrare este prezentat un model de infrastrucutra GRID bazat pe
avantajele pe care le prezinta utilizarea Java in Grid computing. Modelul se afla la
baza dezvoltarii unui middleware care poate crea un sistem Grid bazat pe o
paradigma hibrida. Modelul este construit pornind de la o arhitectura pe trei nivele.
Ideea fundamentala este incercarea de a utiliza puterea de calcul nefolositd a
fiecareuia dintre calculatoarele noaste, anume a tuturor PC-urilor din intreaga
lume care sunt conectate la internet.

This paper presents a model for a GRID infrastructure based on the
advantages of using Java in the field of GRID computing. The model is the
foundation of the development and implementation of a middleware which can
create a GRID system based on a hybrid paradigm. The model is build starting from
three tier architecture. The basic idea is to benefit from the unused computing power
of each one of our computers, namely of all the PCs connected to the Internet in the
world.

Keywords: Grid computing, middleware, Java
1. Introduction

The scientific community around the field of computational research has
been long in the vanguard of advanced computing, because of the persistent need
to resolve problems that require resources that cannot be supplied even by the
most powerful computers available. Examples of such applications can be found
in many areas, from the financial modelling and simulations of vehicles up to
computational genetics and weather. For years, these considerations have led
researchers to conclude that a more aggressive should be used and have given rise
to innovative ideas, such as vector computers, parallel systems, clusters and other
innovative computational technologies.

In recent years, the availability on a large scale of a high-performance
high-speed network infrastructure, as well as the increasing awareness of the
existence of new ways of solving problems, has made it possible to use these
networks for coupling systems and resources distributed over a large geographic
area and have stimulated interest in so-called Grid computing. The term "Grid"
refers to a type of infrastructure with an increasing presence in several scenes,

L PhD. student, Universitatea POLITEHNICA of Bucharest, Romania
2 Professor, Universitatea POLITEHNICA of Bucharest, Romania, e-mail:ntapus@cs.pub.ro

114 Radu Adrian Niculita, Nicolae Tapus

which offers security, access to resources and information and other services that
make possible the sharing and management of distributed resources in a
controlled and coordinated fashion. The collaboration takes place between the so-
called "virtual organizations" made up dynamically of individuals or organizations
pursuing a common interest. At the same time, there are a large number of
ambitious projects that apply concepts of Grid computing to solve complicated
problems, such as distributed analysis of data from physical access engineers in
the field of seismological studies. At the same time we see "scientific portals”
being created, which are accessible by small client applications and provides
access to collection of information sources and to simulation systems which
support a scientific discipline.

At the foundation of the progress of both the Grid computing and parallel
calculation in general, there is a common need for coordination and
communication mechanisms that can allow multiple use of resources in a
concerted manner in order to solve complex problems. Engineering and scientific
applications have largely addressed these needs especially using ad hoc
approaches, most of them in low-level and specific manners, using message
passing libraries inside of parallel computers and various ways of communication
between computers in the network.

But, unfortunately, although these low-level approaches have allowed
users to achieve their purpose in terms of performance criteria, an unintended
consequence has been that much of the scientific community does not benefit
much from the remarkable positive developments in terms of the software
engineering, developments that were significant in the last period. In particular,
the many benefits of Java, which seems to be the ideal medium of communication
in a multi paradigm environment, are not exploited at all [1]. Java binary code is
platform independent and can be executed in any secure virtual machine from
almost any operating system, making Java an attractive environment for Grid
computing. In addition, the performance of Java in relation to the implementation
of the sequential code translating increased substantially in the last period of time;
the development of “Grande” applications is much closer. Moreover, Java
provides a framework for sophisticated graphical interfaces, as well as a paradigm
for method innovation over remote objects. These features are of great interest in
the handling of scientific instruments from a distance.

The rapid development of Java technology now makes it possible to
support various structures of communication and coordination necessary for
scientific applications in a single object-oriented framework. In the next part of
this paper, we will present an approach that can be achieved and paradigms of
communication in Java.

Model for a Grid infrastructure based on Java 115

2. How Can Grid Computing Benefit From Using Java?

We can say that Java is an environment suitable to be used in a Grid
computing environment, as the basic paradigm of such middleware [3]. Some
reasons leading to this conclusion are presented in this section.

A GRID infrastructure is fundamentally based on the parallelism of the
application it is running. Java programming language includes features beneficial
for engineering projects of large scale software, such as packages, object
orientation, inheritance, single formats, garbage collection and unified data
formats. Since threads of execution and concurrency control mechanisms are part
of the language, it is possible to express the parallelism at user level.

The development of GRID applications needs to benefit from pre-existent
libraries in order to make the programming of such applications less complex.
Java offers a wide variety of libraries containing additional classes including
functions essential for Grid computing, such as the opportunity to make a secure
transfer of data through sockets or through message passing. On the other hand,
Java provides a architecture based on the JavaBeans component hence allowing
the development of programs based on components.

Application distribution is always a burden in GRID environments. Java
binary code allows easy distribution of software through Web browsers and
through automatic installation features.

When we are talking about GRID computing, portability is the key. In
addition to the unified data format, binary format Java ensure full portability
following the popular concept of "write once, run anywhere". On the other hand,
Java implementations exist on many types of devices. The workplace of scientists
will be extended at many devices that can run Java, such as PDAs, mobile phones
or smart cards.

Performance was always regarded as the major setback of using Java.
Recent research results show that the performance of many Java applications may
be a lot closer to the C or C + +.

Last but not least, scientific projects sometimes require longevity
evaluation of a technology before it can be used. The high level of support that
Java enjoys among producers makes this technology actual and very future-proof.
Also, universities throughout the world are teaching Java to their students.

3. A Java-based Grid Middleware Model

A distributed system, especially a Grid one, consists of several
components that are present in different locations and working together for a
common purpose. Each of these components has its own role and responsibilities.
They form the Grid middleware and should provide a working environment and
performance.

116 Radu Adrian Niculita, Nicolae Tapus

Our intention is to create an architectural model for a middleware which is
building on the ideas presented in the above paragraphs. This model is at the heart
of developing a middleware that can create a GRID system based on a hybrid
paradigm. Thus, there will be some central elements that will facilitate the
exchange of messages, which will make the planning and will oversee the entire
infrastructure.

But the actual computing power, the machines that will run the
computational part, will be developed on a peer-to-peer model. More specifically,
just like in a few cases already famous (SETI @ Home [8], Genome @ Home),
the basic idea is to develop a system in which everyone that has a computer
connected to the Internet can participate, offering both available processor cycles
on his computer, and as the beneficiary, being able to send their applications to
run.

3.1. The Architecture of the Model

Three-tier architecture

In all GRID environments, we are dealing with three entities that take part
in the system: the consumer that submits application, the central part of the system
receives, schedules and handles the application and the producers that are doing
the actual computational part.

The model has three basic functions:

e It allows users (developers of Grid applications) to send applications

that they want to run into the system;

e [t allows users to contribute to the computational resources with their
own computers;

e It manages the available resources, as well as their entry and exit from
the system.

The proposed model is based on architecture with three layers, which

consist of:

e Consumers, who send applications into the system;

o The resource broker and the system core, which deals with the
management of the resources and scheduling, with a central view over
the entire system;

e Producers, which execute the code sent into the system.

The structure of the entire application is based on the existence of a
blocking message passing mechanism over the network between machines that are
part of the system [2]. This implies that one of the parties can wait for an
incoming message without consuming CPU time and can be notified of the arrival
of such a message by the messaging system. Building on the variety of existing
Java libraries (born due to the intrinsic portable nature of Java), a programmer can
choose between several such libraries available both in the free land, as well as in

Model for a Grid infrastructure based on Java 117

the commercial one (e.g. Jini, JavaSpace, GigaSpace etc.). From this point
forward we call this central element (library) the communication system.

A general view of the system is shown in fig. 1; the functions and purpose
of each component will be detailed in the following.

The connection between the components is provided through the existing
network, either through a LAN environment type (if the system will run on a
cluster) or through the Internet (if the system will run over a vast geographical
environment).

Consumer
Producer

Consumer Producer

Consumer \ \ e —

Internet/LAN e Producer

Resource Broker

Resource Broker

\—
Task Producer Task Producer Task Producer Task Producer
JavalC JavalC JavalC JavalC
Sparc Solaris Intel Solaris Intel Linux Intel Windows

SYSTEM CORE

Fig. 1. Components of the model

The components of our middleware are:

The Consumer

The consumer is the one who sends applications in the system. It can be
any system connected to the network running the needed components and a
graphical interface. Any computer connected to the Internet can play this role,
using a Java application that runs for example in a web browser or in a screen
saver. The user can send into the system a file containing the applications, using a
web interface. File format depends on the programming language used (for Java
JAR / ZIP for C, etc.). This application will need to extend some existing
methods, one of which is the task producer. This will be subsequently carried on
the machine where it will generate tasks, which in turn will then be sent to the
producers. The Result Collector will run on the same machine with the consumer.

118 Radu Adrian Niculita, Nicolae Tapus

This component will receive the results generated by the task execution on
producer machines.

At the consumer layer one will also be able to submit new modules into
the system, such as new communication protocols. These modules will also need
to extend on existing components.

The System Core

The System Core is the centre of the model and it contains three type of
elements:

The Resource Broker

The Resource Broker is the core of the system. At the most general level, it
is only intended to do planning. This is necessary for several reasons. The first
and most obvious is the need to control the presence and usage of the resources,
especially taking into account that we are dealing with multiple applications
running simultaneously in the same system.

Also, there are some objective needs deriving from the need to run non-
Java applications on our infrastructure. Taking into account that a middleware,
even created in Java, should allow to run code written in other programming
languages, the resource manager must keep a list of resources processing that can
run native code. This is necessary taking into account that, unlike Java, most
programming languages produce platform-dependent code or even library-
dependent code. The scheduler must choose the right platform for the producer
who will run the sent code. At the resource broker's level, there are two types of
scheduling to be done: application scheduling (applications that are sent by the
user) and task scheduling (the computational components that each provides one
part of the final result).

Even though there are many approaches related to planning in distributed
systems, our model here focuses on a centralized scheduler (however planning can
be influenced by performing pattern-matching at consumer level when objects are
restored via the communication system).

The Task Producer

The task producer is a machine which is part of the central elements in our
system; it is part of the "master" component of the hybrid paradigm used. This
component generates tasks, which are then planned by the resource broker. An
application presented to the system contains an entry point that will subsequently
start to generate, at the runtime, computational tasks in the form of object code,
which then will be serialized, packed and sent to the producers. They will perform
the task, and will return the results. The model is exactly the one in the divide and
Imperia algorithm; a big problem is divided into sub-problems that in this case
will be executed on other machines.

Taking into account that we should support running non-Java code, the
task producer will need to be run on the same type of platform as the producer

Model for a Grid infrastructure based on Java 119

who will run the tasks written in non-Java code (the actual code that will be run
by producers is generated at the task producer level). Thus, each task producer
will run either Java coded applications (which can run on any platform) or code
compiled for the platform-specific task producer.

The Data Server

The data server is a machine dedicated to file storage. Any data file used
by any application developed on top of our middleware can be sent to the data
server. From inside any task, the programmer can obtain access to a data file
specific to the applications that generated the task. With reference they obtained,
the task may write / read chunks of the file or even the entire file.

The Producer

The producer is a machine that has volunteered part of its processing
power to run the Grid applications. It will receive task objects from the system in
the form of serialized objects; they will be dynamically loaded than started. The
result obtained for each task will then be sent to the consumer that submitted the
original application.

Producers and consumers can share the same physical machine, which is
the usual case in a wide geographical environment. A totally different approach is
usual in a cluster or campus type work environment, where there could be
computers that run only producers, as computing power, and a few that will run
the consumer to send applications to process.

3.2. The Communication Inside the Model

In this section we will present the algorithm that will be the foundation for
the application that will run on our system. All the steps that an application will
follow are presented in Fig. 2, following the references that are placed inside the
communication system. Many additional messages existing in the lifecycle of the
system will not be covered here as we will concentrate on the basic functionality
of the system.

To better understand how everything should work, let’s take a look at the
general algorithm that an application will follow with respect to object transfer
through the network.

1. A user sends a new application in the system from a consumer machine in
the form of a JAR archive containing all the necessary classes, including at least
one task generator class and a results collector class; for a functional application,
we will also need at least one task class and one result class;

2. The result collector is dynamically loaded, instantiated and started on the
consumer machine;

3. A new reference signalling the presence of a new application to be ran is
placed into the communication system;

4. The referenced placed at point 3 is retrieved by a resource broker that calls
the scheduling function which will in turn choose the task producer machine that

120 Radu Adrian Niculita, Nicolae Tapus

will run the application. A new reference destined to that machine which contains
a link to the new application is created; this reference will indicate the application
archive that is waiting to be retrieved on the consumer machine that initially sent
the application;

5. The chosen task producer retrieves the reference through for it from the
communication system and it downloads the archive file that contains the
application, from the consumer machine;

6. The task producer dynamically loads the task generator class of the
application and all the other necessary classes, it instantiates them and runs the
entry point in the application. This action will start the task generation process;

7. Each time a new task is generated and sent into the system this is first
serialized and added to a JAR archive that will also contain all the classes that are
referred by that object (including the result class). A new reference to that task is
then placed into the communication system, without a clear destination;

8. The resource broker takes the reference and calls the scheduler to choose a
producer that should run the task that is referred by the reference; this producer
can be changed later without affecting the reference. A new reference is placed
into the communication system, pointing to the file that contains the serialized
tasks on the task producer machine; this reference will be addressed to the chosen
producer;

9. The producer that was chosen at stem 8 takes the reference from the
communication system, downloads the file from the task producer and then
dynamically loads the object and all the other necessary classes. The new instance
is ran through a pre-established entry point;

10. The execution of the task will return an object which is the result of this
task. The result is serialized and placed in a JAR archive and a new object
reference is created, pointing to that file and having the destination set according
to the result delivery mode chosen when the application was first submitted. The
result will be sent to the resource broker that scheduled the application if the
results should be handled through the resource broker, or directly to the result
collector of the application, running at the consumer, if the result delivery mode is
direct delivery;

11. If the result delivery mode is direct delivery, the result manager running at
the consumer that submitted the application takes the reference to the result from
the communication system, downloads the file containing the result and
dynamically loads the result object, storing it locally in memory. When the result
collector requests a new result, this object is returned to it.

12. If the results are sent back through the result broker:

a. The resource broker takes the reference from the communication system

and downloads the file containing the serialized result pointed by the reference

and stores it on the secondary storage.

Model for a Grid infrastructure based on Java 121

b. The result collector running at the consumer decides to check for results
and sends a message to the resource broker asking for the number of results
that are stored there for the application that this result collector runs for. If
there are some results ready, the result collector can get them one by one. In
order to get a new result, the result collector puts a request for it in the
communication system;
c. The result manager running on the resource broker’s machine takes the
request (in form of a message) from the communication system and finds a file
containing a serialized result that belongs to the respective application. A new
object reference is created pointing to that file located on the resource broker’s
machine, with the destination the consumer machine that runs the result
collector and is written in the communication system;
d. The result manager running at the consumer that submitted the application
takes the reference to the result from the communication system downloads the
file containing the result and dynamically loads the result object, storing it
locally in memory. When the result collector requests a new result, this object
is returned to it.
13. When the application’s result collector returns, all the references that are
related to the application that has just terminated are removed from the
communication system.

Data files

Applications

Data chunks

Task
Producer

Resource

Task to be
schedulled

Result —
option 1

Result -
option 2

Fig. 2. Data and information transfer inside the proposed architecture

122 Radu Adrian Niculita, Nicolae Tapus

4. The Life of an Application in the System

In this paragraph we will present the live cycle of an applications in the
system, from the launch until the getting of the final result.

For starters, it is necessary that the application being developed is one that
is specific for our model; more exactly it needs to be constituted of several
components. Those components consist of an implementation of a task producer
class, which needs to return objects of type task. In turn, those constitute the
computational intensive and parallel part of the application, who will return
results in the form of objects that extend a predefined class.

The first step is that the developer or the user of the application to send the
application into the system in the form of an archive through a GUI interfaces. At
the interface level, the system is predefined through the indication of the IP
address of the resource broker, the core of the entire infrastructure. Applications
will be sent to the resource broker, who will download the archive in the form of a
file. From this point, the client applications may choose to remain on-line and to
expect the results as they are generated, or to return from time to time to reap
results that are available. The first approach is appropriate in an academic
environment or in a cluster type infrastructure, in which computers work together
to reach a result as soon as possible, and the machine that sent the application has
the sole purpose of finding the final result. By contrast, the second approach is
more appropriate in a widely distributed environment, such as the Internet, where
the search for the result is a very long term work and it is not desirable to the
expected results on-line (in applications such as the SETI or Human Genome
search).

After downloading the file containing the applications, the resource broker
will begin searching for a task producer who can meet the requirements related to
the platform and operating system on which to run that specific application. These
limitations exist when the application is depending on the platform (in the case it
is not developed in Java). In case the application is developed in Java, it can run
on any platform.

We should mention here that the task producer, as well as the producers,
are applications that run on distant machines, either in the form of a process in the
foreground (i.e. applications running) or in the form of a background process (a
daemon) or even in the form a screen saver. These applications will sign
themselves to the resource broker in order to start; one of the crucial functions of
the resource broker is to keep track of all producers and task producers that exist
in the system. The resource broker will also check their availability and will mark
as such in case they do not respond.

After finding an appropriate available task producer, the resource broker
will send an instance of the task producer class to that specific machine. The task

Model for a Grid infrastructure based on Java 123

producer will get this object and will run a certain method which is the entry
point. As a result of running this method will be obtained a multitude of instances
of task classes. All of these instances shall be submitted in live form
(instantiated), by serialization, to resource broker.

The resource broker will run the scheduler for each one of the received
tasks for the respective applications. Each such task will be planned to a particular
available producer, according to the planning algorithm.

Producers will run each task object and will get in the end, after
performing the computational part, a result type object. This item will be
serialized and then sent to the customer that sent the initial application (for the
online collection of results) or to the resource broker; later, the results available
until some point will be taken by the customer, on the case of off line result
handling.

All these operations will be executed until all the tasks generated by the
task producer class of a certain application will have been returned a result and
until all these results will reach the client who sent the application. Thereafter, the
resource broker will consider the application as being finished and it will free up
all the resources allocated to it.

5. Conclusions

Today, the Grid systems focus on effectiveness and on the existence of
scalable powerful middleware that can allow running the applications with
optimal performance [15]. However there is a possible unexplored side of what
can be and can become Grid computing; this side is comprise of the enormous
computing power that sits unused on the computers of each of us, on all the PCs
in the world, which, on the other hand, are increasingly frequently connected to
the Internet. However, in order to benefit from this power, there is a need for a
middleware that is, on the one hand, very simple to install and use, and on the
other hand totally independent of platform, operating system or installed libraries
on a personal computer. Computers that are part of the grid managed in academic
environments have a characteristic that is not valid for PCs of individual from the
Internet, namely that they benefit the possibility that a specialized administrator
installs and configures the system in such a way that it can run a dedicated Grid
middleware. The usual Internet user does not have enough knowledge to carry out
such at task, nor will he or she install and use a system that is complicated to use.
Aspects such as compiling a library are totally out of the reach of this user
category. Resolving these issues can be done easily through the use of the most
widely known and world spread portable platform that everyone has heard about:
Java. Building on a portable language that has become a legend can lead to results
that can bring Grid into anyone’s house. What would this mean? That anyone

124 Radu Adrian Niculita, Nicolae Tapus

could provide their unused computing power of its PC and in turn be able to turn
such applications; users could be able to be part of the millions of heroes who
solved an extremely complex problem for which nobody could ever find a way of
financing.

REFERENCES

[1] Viadimir Getov, Gregor von Laszewski, Michael Philippsen, lan Foster, Multiparadigm
Communications in Java for Grid Computing, Communications of the ACM,Volume 44,
Issue 10, Pages: 118 — 125, 2001

[2] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the
Message Passing Interface, The MIT Press, 1999

[3] M. Philippsen, B. Haumacher, C. Nester, More efficient serialization and RMI for Java.
Concurrency: Concurrency: Practice and Experience, 12(7):495-518, 2000

[4] Johan Prawira, ALIiCE, Java-based Grid Computing System, Honours Thesis, School of
Computing, National University of Singapore, 2002

[5] Gregor von Laszewski, lan Foster, Jarek Gawor, Peter Lane, A Java Commodity Grid Kit,
Concurrency and Computation: Practice and Experience, 13(89):643- 662, 2001.
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--cog-cpe-final.pdf.

[6] J Frey, I Foster, M. Livny, T. Tannenbaum, S. Tuecke, G. Condor, A Computation
Management Agent for Multi-Institutional Grids, University of Wisconsin Madison, 2001

[7] L.F.G. Sarmenta, Volunteer Computing. Ph.D. thesis. Department of Electrical Engineering
and Computer Science, MIT, March, 2001

[8] SETI@home: http://setiathome.ssl.berkeley.edu

[9] Distributed.Net: http://www.distributed.net

[10] Globus: http://www.globus.org

[11] The GLOBE Project: http://www.cs.vu.nl/~steen/globe/

[12]IEEE High Performance Distributed Computing (HPDC) symposium, 2008: http://www-
2.cs.cmu.edu/~hpdc

[13] High Performance Computing Symposium, 2002
http://wwwteo.informatik.unirostock.de/HPC

[14]9rd International Workshop on Grid Computing: http://www.gridcomputing.org/grid, 2008

[15]Sang Boem Lim, Hanku Lee, Bryan Carpenter, Geoffiey Fox, Runtime support for scalable
programming in Java, The Journal of Supercomputing archive Volume 4, Issue 2, February
2008.

