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BIFURCATION OF LIMIT CYCLES IN A CLASS OF LIÉNARD
SYSTEMS WITH A CUSP AND NILPOTENT SADDLE

Ali Zaghian1, Rasool Kazemi2, Hamid R. Z. Zangeneh3

In this paper the asymptotic expansion of first-order Melnikov function of
a heteroclinic loop connecting a cusp and a nilpotent saddle both of order one for
a planar near-Hamiltonian system are given. Next, we consider the bifurcation of
limit cycles of a class of hyper-elliptic Liénard system with this kind of heteroclinic
loop. It is shown that this system can undergo Poincarè bifurcation from which at
most three limit cycles for small positive ε can emerge in the plane. Also using
this asymptotic expansion it was shown that there exist parameter values for which
three limit cycles exist close to this loop.

Keywords: Melnikov function, Limit cycle, Heteroclinic loop, Chebyshev prop-
erty.

MSC2000: 34C07; 34C08; 37G15; 34M50

1. Introduction and statements of the main results

Consider the planar differential system

ẋ = Pn(x,y), ẏ = Qn(x,y) (1)

in which Pn and Qn are real polynomials of degree n in x,y. The second half of the
famous Hilbert’s 16th problem is related to maximum number of limit cycles and
their relative locations in planar differential system (1) for all possible Pn and Qn. A
weaker version of this problem is proposed by Arnold to study the zeros of Abelian
integrals obtained by integrating polynomial 1-forms along ovals of polynomial
Hamiltonian, that is called the weak Hilbert’s 16th problem [1]. More precisely,
consider a perturbed Hamiltonian system

ẋ = Hy + ε p(x,y,ε,δ ), ẏ =−Hx + εq(x,y,ε,δ ) (2)
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where p, q and H are Cω (analytic) function, ε is a small positive parameter and δ

is a vector parameter where δ ∈D⊂Rm and D is a compact set. Suppose the unper-
turbed system (2)|ε=0 has a family of periodic orbits Lh continuously depending on
h∈ (h1,h2) defined by the H(x,y) = h. Then, there exist a so-called first-order Mel-
nikov function or Abelian integral of the form I(h,δ ) =

∮
Lh

qdx− pdy|ε=0, which
is important in the study of bifurcation of limit cycles from system (2). Recall that
an Abelian integral is the integral of a rational 1-form along an algebraic oval. In
this paper first we study the asymptotic expansion of the Melnikov function of a
Hamiltonian system near a heteroclinic loop through a cusp and a nilpotent saddle,
both of order one. We recall that a heteroclinic orbit Γ is an orbit whose ω and
α-limit set of its points consist of two different equilibruim points S1 and S2. Now a
heteroclinic loop consist of equilibrium points S1, S2 and two heteroclinic orbits Γ1
and Γ2, heteroclinic to S1 and S2 and vice versa (see Figure 1). Then, we consider a
Liénard system of type (6,5) that is a small perturbation of Hamiltonian vector field
with a hyper-elliptic Hamiltonian of degree seven. Our system has a non-degenerate
center at O(γ,0), a cusp at S1(α,0) and a nilpotent saddle at S2(β ,0) with a hete-
roclinic loop passing through S1 and S2. Without loss of generality we may assume
that γ = 0 and α < 0 < β . Such a system will have the following form

dX
dτ

= Y,
dY
dτ

= X(X−α)2(X−β )3 := f (X). (3)

The Hamiltonian of (3) is H(X ,Y ) = 1
2Y 2+F(X) where F(X) =−

∫ X
0 f (t)dt. Since

this system has a loop passing through S1 and S2 then F(α) = F(β ) which implies
α =−3

4β . Let X = βx,Y = β−
5
2 y and τ = β

7
2 t, then system (3) with α =−3

4β will
be transformed into

ẋ = y, ẏ = x(x+
3
4
)2(x−1)3. (H0)

The Hamiltonian function of (H0) is

H(x,y) =
1
2

y2− 1
7

x7 +
1
4

x6 +
3
16

x5− 29
64

x4− 1
16

x3 +
9

32
x2, (4)

which has a cusp point S1(−3
4 ,0), a non-degenerate center O(0,0), a nilpotent

saddle S2(1,0) and a heteroclinic loop L 27
448

where Lh : {(x,y) | H(x,y) = h, h ∈
(0, 27

448)} (see Fig. 1). Inside L 27
448

, all orbits Lh are closed. We study a perturbation
of (H0) of the form:

ẋ = y, ẏ = x(x+
3
4
)2(x−1)3 + ε(a+bx2 + x4)xy, (Hε)

and especially, its Abelian integral given by I(h) = aI0(h)+ bI1(h)+ I2(h) where
Ik(h) =

∮
Lh

x2k+1ydx, and Lh is oriented clockwise. Here 0 < ε � 1 and (a,b) be-
longs to any bounded subset of R2.
The paper is organized as follows. In Section 2, we obtain the asymptotic expansion
of the Melnikov function for (2) near a heteroclinic loop connecting a cusp and a
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FIGURE 1. Level curves of equation (H0) for 0≤ h≤ 27
448

nilpotent saddle both of order one. In section 3 we show that, if I(h) is not identi-
cally zero, system (Hε) can undergo Poincaré bifurcation from which at most three
limit cycles emerges in this period annulus.

2. Asymptotic expansions of Melnikov function I(h,δ )

In this section we consider the Melnikov function I(h,δ ) near a heteroclinic
loop through a cusp and a nilpotent saddle both of order one for general planar near-
Hamiltonian systems. Let us suppose p(x,y,0,δ )=∑i+ j≥0 ai jxiy j and q(x,y,0,δ )=
∑i+ j≥0 bi jxiy j. Suppose system (2)|ε=0 has a cusp S1 and a nilpotent saddle S2.
Moreover assume that this system
(A1) has a heteroclinic loop denoted by L0 := {(x,y) : H(x,y) = hs} = L1 ∪ L2 ∪
{S1,S2}, where L1 and L2 are heteroclinic orbits connecting singular points S1 and
S2 so that ω(L1) = α(L2) = S2 and ω(L2) = α(L1) = S1.
(A2) In a neighborhood of L0 there is a family of periodic orbit of (2)|ε=0 denoted
by Lh = {(x,y) : H(x,y) = h} for 0 <−(h−hs)� 1.

Theorem 2.1. Consider the Cω system (2) and suppose (2)|ε=0 satisfy assumptions
(A1) and (A2). Then near h = hs corresponding to heteroclinic loop L0, Melnikov
function of system (2) has the following asymptotic expansion:

I(h,δ ) = c̃1 + c̃2|h−hs|3/4 + c̃3|h−hs|5/6 + c̃4|h−hs| ln |h−hs|+ c̃5(h−hs)

+ c̃6|h−hs|7/6 + c̃7|h−hs|5/4 + c̃8|h−hs|7/4 + c̃9(h−hs)
2 ln |h−hs|

+ c̃10|h−hs|11/6 +O((h−hs)
2) (5)

in which

c̃1 = M(hs,δ ) =
∮

L0

qdx− pdy|ε=0 =
2

∑
k=1

∮
Lk

(qdx− pdy)|ε=0,

c̃2 = c2(S2,δ ), c̃3 = c1(S1,δ ), c̃4 = c3(S2,δ ), c̃6 = c3(S1,δ ),

c̃7 = c5(S2,δ ), c̃8 = c6(S2,δ ), c̃9 = c7(S2,δ ), c̃10 = c4(S1,δ ),

where ci(S1,δ ), i= 1,3,4 are given in [4], ci(S2,δ ), i= 2,3,5,6,7 comes from [11],

c̃5 =
2

∑
k=1

∫
L0k

(px +qy−σk)|ε=0dt +
∫

L03

(px +qy)|ε=0dt +b1c̃2 +b2c̃3 +b3c̃4.
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provided b11 + 2a20|S2 = 0 where for k = 1,2, σk = (px + qy)|Sk ,L0k = L0∩Uk,Uk
denotes a disk of diameter εk ≥ 0 with centers at Sk and L03 = L0− (L01∪L02) In
particular, if c̃2 = c̃3 = c̃4 = 0 then

c̃5 =
∮

L0

(px +qy)|ε=0dt =
2

∑
k=1

∫
Lk

(px +qy)|ε=0dt. (6)

Proof. The idea of the proof is motivated by [8]. Also without loss of generality we
may assume hs = 0 and we use Theorem 1.2 in [4] and Theorem 2 in [11]. First
we use two linear transformations to move S1 and S2 to the origin and transform
(2) into the forms that was considered in Theorem 1.2 in [4] and Theorem 2 in [11]
respectively. For this let(

x
y

)
= Qk

(
u
v

)
+Sk, k = 1,2, (7)

where Qk are 2×2 matrices satisfying det(Qk) = 1. Therefore system (2) become:

u̇ =
∂Hk

∂v
+ ε pk(u,v,ε,δ ), v̇ =−∂Hk

∂u
+ εqk(u,v,ε,δ ) (8)

where

H1(u,v) =
1
2

v2 + ∑
i+ j≥3

h̄i juiv j =
1
2

v2 + h̄30u3 +O(u4 + |v||u,v|2),

H2(u,v) = −1
4

u4 + ∑
j≥5

h̃ j0u j + v2
∑

i+ j≥0
h̃i juiv j,

p1(u,v,0,δ ) = ∑
i+ j≥0

āi, juiv j, q1(u,v,0,δ ) = ∑
i+ j≥0

b̄i juiv j,

p2(u,v,0,δ ) = ∑
i+ j≥0

ãi juiv j, q2(u,v,0,δ ) = ∑
i+ j≥0

b̃i juiv j.

For εk sufficiently small we can write I(h,δ ) =∑
3
k=1 Ik(h,δ ), for 0<−h� 1 where

Ik(h,δ )=
∮

Lhk

(qdx− pdy)|ε=0, k= 1,2,3,Lhk =Lh∩Uk, k= 1,2, Lh3 =(Lh \∪2
k=1Lhk).

By Theorem 1.2 in [4] we can apply the formula for the local coefficients ci(S1,δ ), i=
1,3,4 to the system (8) with k = 1 and obtain the following expansion of I1:

I1(h) = c1(S1,δ )|h|5/6 + c3(S1,δ )|h|7/6 + c4(S1,δ )|h|11/6 +O(h2)+ϕ1(h,δ ) (9)

By Theorem 2 in [11] we can apply the formula for the local coefficients ci(S2,δ ), i=
2,3,5,6,7 to the system (8) with k = 2 and obtain the following expansion of I2:

I2(h) = c2(S2,δ )|h|3/4 + c3(S2,δ )|h| ln |h|+ c5(S2,δ )|h|5/4 + c6(S2,δ )|h|7/4

+c7(S2,δ )h2 ln |h|+O(h2)+ϕ2(h,δ ), (10)

for 0 < −h � 1 and ϕk ∈ Cω at h = 0, with ϕk(0,δ ) = O(εk). We set c̃2 =
c2(S2,δ ), c̃3 = c1(S1,δ ), c̃4 = c3(S2,δ ), c̃6 = c3(S1,δ ), c̃7 = c5(S2,δ ), c̃8 = c6(S2,δ ),
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c̃9 = c7(S2,δ ) and c̃10 = c4(S1,δ ). According to (9)-(10) for 0 <−h� 1 we have

I(h,δ ) = c̃2|h|3/4 + c̃3|h|5/6 + c̃4|h| ln |h|+ c̃6|h|7/6 + c̃7|h|5/4 + c̃8|h|7/4

+c̃9h2 ln |h|+ c̃10|h|11/6 +O(h2)+N(h,δ ) (11)

where N(h,δ ) = ϕ1(h,δ ) + ϕ2(h,δ ) + I3(h,δ ). Let N(h,δ ) = c̃1(δ ) + c̃5(δ )h+
O(h2). It is easy to see that

c̃1(δ ) = ϕ1(0,δ )+ϕ2(0,δ )+ I3(0,δ ) = lim
ε1,2→0

[ϕ1(0,δ )+ϕ2(0,δ )+ I3(0,δ )]

= lim
ε1,2→0

I3(0,δ ) =
∮

L0

(qdx− pdy)|ε=0 =
2

∑
i=1

∮
Li

(qdx− pdy)|ε=0 = I(0,δ )(12)

since ϕk(0,δ ) = O(εk),k = 1,2. By (11) and N(h,δ ) = c̃1(δ )+ c̃5(δ )h+O(h2), we
have

c̃5(δ )+O(h) = Nh(h,δ ) = Ih(h,δ )+
3
4

c̃2|h|−
1
4 +

5
6

c̃3|h|−
1
6 + c̃4(1+ ln |h|)+O(|h|

1
6 ).

According to [2] we know that Ih(h,δ ) =
∮

Lh
(px +qy)|ε=0dt, then

c̃5(δ ) = Nh(0,δ )= lim
h→0

[∮
Lh

(px +qy)|ε=0dt +
3
4

c̃2|h|−
1
4 +

5
6

c̃3|h|−
1
6 + c̃4(1+ ln |h|)

]
= lim

h→0

[
2

∑
k=1

∫
Lhk

(px +qy−σk)|ε=0dt +
∫

Lh3

(px +qy)|ε=0dt

+
2

∑
k=1

∫
Lhk

σkdt +
3
4

c̃2|h|−
1
4 +

5
6

c̃3|h|−
1
6 + c̃4(1+ ln |h|)

]
,

By corollary 1.2 in [8], corollary 4.4 in [6], and considering c̃2 = c2(S2,δ ) =

−4
√

2σ2∆02
3 , c̃4 = c3(S2,δ )=

√
2

2 ((2h̃50− h̃1,2)σ2+(b̃11+2ã20)) and c̃3 = c1(S1,δ )=

2
√

2σ1h̄
− 1

3
3 and under condition b̃11 +2ã20 = 0 we have

c̃5 =
2

∑
k=1

∫
L0k

(px +qy−σk)|ε=0dt +
∫

L03

(px +qy)|ε=0dt +b1c̃2 +b2c̃3 +b3c̃4.

Obviously c̃2=c̃3=c̃4=0 then c̃5(δ )=
∮

L0
(px +qy)|ε=0dt=∑

2
k=1

∫
Lk
(px +qy)|ε=0dt.

�

Now assume (2)|ε=0 has an elementary center C(0,0) with H(0,0) = 0 and
our assumption for p and q in the beginning of this section holds. For (x,y) near
C(0,0), we may assume H(x,y) = 1

2(x
2+y2)+∑i+ j≥3 hi jxiy j. Then I(h,δ ) near the

elementary center C(0,0) has the following expansion (see [3])

I(h,δ ) = ∑
j≥1

b j(δ )h j, 0 < h� 1. (13)
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To obtain more limit cycles we consider the limit cycles bifurcated from the annu-
lus not only near the center C(0,0) but also near the heteroclinic loop L0, by the
following theorem.

Theorem 2.2. Consider system (2) and assume (5) and (13) hold. Also suppose
there exists δ0 ∈ RN such that

c̃1(δ0) = c̃2(δ0) =, · · · ,= c̃m(δ0) = 0, c̃m+1(δ0) 6= 0,
b1(δ0) = b2(δ0) = · · ·= bk(δ0) = 0,bk+1(δ0) 6= 0

(14)

and

rank
∂ (c̃1, c̃2, · · · , c̃m,b1,b2, · · · ,bk)

∂δ
= m+ k. (15)

Then system (2) can have m+ k+ 1−sgn(I(h1,δ0)I(h2,δ0))
2 limit cycles for some (ε,δ )

near (0,δ0) in which m limit cycles are near the heteroclinic loop L0, k limit cycles
are near the center C(0,0) and 1−sgn(I(h1,δ0)I(h2,δ0))

2 limit cycle are surrounding the
center C(0,0), where h1 = hs−ε1, h2 = 0+ε2 with ε1 and ε2 are positive and small.

Theorem 2.2 can be proved similarly as theorem 2.1 proved in [10] by using
implicit function theorem, then here we omit its proof for the sake of brevity.

3. Limit Cycles of System (Hε)

In this section we provide a complete description of the number and the pos-
sible configurations of limit cycles for system (Hε).

3.1. Bifurcation of limit cycles from the period annulus

In this subsection we study the least upper bound of the number of limit cycles
which can bifurcate from the period annulus of system (H0). We use an algebraic
criterion developed in [5] and [7] to study the related Abelian integral I(h) of system
(Hε). But first we give the following definition:

Definition 3.1. The base functions {Ii(h), i= 1, . . . ,n} in the Melnikov function I(h)
is said to be a Chebyshev system with accuracy k, if number of zeros of any nontriv-
ial linear combination α0I0(h)+α1I1(h)+ · · ·+αnIn(h) counted with multiplicity
is at most n+ k−1. If k = 0, it simply said to be a Chebyshev system.

We will show that the base functions {I0(h), I1(h), I2(h)} in I(h) form a
Chebyshev system with accuracy one. Hence, the number (multiplicity taken into
account) of isolated zeros of I(h) in the open interval (0, 27

448) is at most three.
Let us consider Abelian integral I(h) with Hamiltonian function (4), which is a
linear combination of n := 3 Abelian integral {I0(h), I1(h), I2(h)}, where Ii(h) =∮

γh
x2i+1y2s−1dx, i = 0,1,2 with s = 1 and γh is a closed curve defined by

γh =
{
(x,y) : A(x)+B(x)y2m = h, 0 < h < 27/448

}
,

with A(x) = −1
7x7 + 1

4x6 + 3
16x5− 29

64x4− 1
16x3 + 9

32x2, m = 1 and B(x) = 1
2 . First

we check if the hypothesis of Theorem A in [7] are satisfied. We notice that the



Bifurcation of limit cycles in a class of Liénard systems with a cusp and nilpotent saddle 101

projection of period annulus on the x-axis is (−3
4 ,1) and xA′(x) > 0 for all x ∈

(−3
4 ,1)\{0}. Therefore, there exists an invertible function z(x) with−3

4 < z(x)< 0
such that A(x) = A(z(x)) for 0 < x < 1. But in this case m = 1, n = 4 and s = 1,
so one of the hypothesis of Theorem A in [7], i.e. s > m(n+ k−2) is not fulfilled.
However it is possible to overcome this problem using Lemma 4.1 in [5], and obtain
new Abelian integrals for which the corresponding s is large enough to verify the
inequality. Here we have to promote the power s to three such that the condition
s > n+ k−2 holds. On the oval γh for i = 0,1,2 we have

Ii(h) =
1
h

∮
γh

(
A(x)+

y2

2

)
x2i+1ydx =

1
2h

(∮
γh

2x2i+1A(x)ydx+
∮

γh

x2i+1y3dx
)
.

(16)
Using Lemma 4.1 in [5] with k= 3 and F(x)= 2x2i+1A(x) to get

∮
γh

2x2i+1A(x)ydx=∮
γh

Gi(x)y3dx, where Gi(x) = d
3dx(

2x2i+1A(x)
A′(x) ) = gi

42(4x+3)3(x−1)4 , and

gi = x2i+1
[
512(1+ i)x7− (1024i+960)x6− (832i+560)x5 +(2464i+1708)x4

+ (322i+21)x3− (2282i+1036)x2 +(84i+126)x1 +756(i+1)
]

By (16) we obtain

Ii(h) =
1

2h

∮
γh

(
x2i+1 +Gi(x)

)
y3dx =

1
4h2

∮
γh

(2A(x)+ y2)(x2i+1 +Gi(x))y3dx

=
1

4h2

(∮
γh

2(x2i+1 +Gi(x))A(x)y3dx+
∮

γh

(x2i+1 +Gi(x))y5dx
)
. (17)

Again using Lemma 4.1 in [5] with k = 5 and F(x) = 2(x2i+1 +Gi(x))A(x) to get∮
γh

2(x2i+1 +Gi(x))A(x)y3dx =
∮

γh

Hi(x)y5dx,

where Hi(x) = d
5dx(

2(x2i+1+Gi(x))A(x)
A′(x) ) = hi

2940(4x+3)6(x−1)8 , and

hi=
[
(262144i2 +1900544i+1638400)x14− (1048576i2 +7159808i+5955584)x13

+(196608i2 +1388544i+1490944)x12 +(4227072i2 +24812544i+17810944)x11

− (4024320i2 +22312704i+16308992)x10− (7096320i2 +34743744i+20726048)x9

+(10295040i2 +47087376i+28808416)x8 +(5986176i2 +24246516i+12042730)x7

− (12830076i2 +48586986i+26187560)x6− (2313640i2 +7908278i+3090675)x5

+(8987188i2 +29109332i+14592984)x4 +(103488i2 +360444i−338394)x3

− (3443328i2 +10638684i+4836888)x2 +(127008i2 +444528i+381024)x

+ (571536i2 +2000376i+1428840)
]

x2i+1

From (17) we obtain 4h2Ii(h) =
∮

γh
fi(x)y5dx≡ Ĩi(h), where fi(x) = x2i+1+Gi(x)+

Hi(x). It is clear that {Ĩ0, Ĩ1, Ĩ2} is a Chebyshev system with accuracy 1 on (0, 27
448) if

and only if {I0, I1, I2} is as well. Now since s = 3 and the condition s > m(n+k−2)
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satisfies, we can apply Theorem A in [7]. We set li(x) =
(

fi
A′

)
(x)−

(
fi
A′

)
(z(x)),

where z(x) is an analytic involution defined by A(x) = A(z(x)) with A(1) = A(−3
4),

then z = z(x) for x ∈ (0,1) satisfy A(x)−A(z) =− 1
448(x− z)q(x,z) = 0, where

(x− z)q(x,z) = 64(x7− z7)−112(x6− z6)−84(x5− z5)

+203(x4− z4)+28(x3− z3)−126(x2− z2).

So d
dx li(x) = d

dx(
fi
A′ )(x)− [ d

dz(
fi
A′ )(z(x))].

dz
dx , where dz

dx = −∂q(x,z)
∂x /∂q(x,z)

∂ z . We will
show that {l0, l1, l2} is a Chebyshev system with accuracy 1 on x ∈ (0,1):

Lemma 3.1.

(i) W [l0](x) 6= 0 for all x ∈ (0,1);
(ii) W [l0, l1](x) 6= 0 for all x ∈ (0,1);
(iii) W [l0, l1, l2](x) has a unique simple root x∗ ∈ (0,1).

Proof. Using Maple we find that

W [l0](x) =
8(x− z)w0(x,z)

21xz(4x+3)5(x−1)7(4z+3)5(z−1)7 ,

W [l0, l1](x) = − 64(x− z)3w1(x,z)
441(4x+3)10(x−1)14(4z+3)10(z−1)14W01(x,z)

,

W [l0, l1, l2](x) = − 1024(x− z)6w2(x,z)
3087(4x+3)14(x−1)21(4z+3)14(z−1)21W 3

01(x,z)
,

where wi(x,z), i = 0,1,2 are polynomials with long expression in (x,z) and

W01(x,z) = 320xz4−448xz3 +128zx4 +256x2z3 +192z2x3−168zx2−224zx3

−336z2x2−252z2x+406zx−126+64x5−112x4−84x3 +203x2

+28x−336z3−560z4 +384z5 +56z+609z2.

The resultant with respect to z between W01(x,z) and q(x,z) is

p01(x) = 4619872982007808(64x5−112x4−84x3 +203x2 +28x−126)(4x+3)11(x−1)14.

It is easy to see that p01(x) does not have a zero in (0,1). This implies that W [l0, l1]
and W [l0, l1, l2](x) are well defined in −3

4 < z < 0 < x < 1.
In order to determine if these three Wronskians have zeros on (0,1) , we shall
rely on the symbolic computations by Maple to compute the resultant between
wi(x,z), i = 0,1,2 and q(x,z) with respect to z, and then we apply Sturm’s The-
orem.
Case (i). The resultant with respect to z between q(x,z) and w0(x,z) is R(q,w0,z) =
(4x+3)28(x−1)38 p0(x), where p0(x) is a polynomial of degree 42 in x. By Sturm’s
Theorem we get that p0(x) 6= 0 for all x ∈ (0,1). Thus, w0(x,z) = 0 and q(x,z) = 0
have no common roots. This fact implies that W [l0](x) 6= 0 for all x ∈ (0,1).
Case (ii). The resultant with respect to z between q(x,z) and w1(x,z) is R(q,w1,z) =
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(4x+3)62(x−1)86 p1(x), where p1(x) is a polynomial of degree 98 in x. By apply-
ing Sturm’s Theorem, there is a unique root x0 ≈ 0.9662426637 ∈ (0,1), applying
Sturm’s Theorem to another resultant R(q,w2,z), we get that it has a root on (−3

4 ,0).
In order to make sure if there exist a common root of w1(x,z) and q(x,z) satisfy-
ing −3

4 < z < 0 < x < 1, we use a program to compute the intervals in which all
common roots exist (see [9]). From the result of the program, there are 6 pairs of
common roots of w1(x,z) and q(x,z) in 6 pairs of intervals as follow:

[[x=[1.424285889, 1.424293518], z=[-.2157721701, -.2157721701]],

[x=[.9662399292, .9662475586], z=[-.7610659790, -.7610583496]],

[x=[1.019927979, 1.019935608], z=[-.7454480087, -.7454480087]],

[x=[-.2157745361, -.2157669067], z=[1.424286746, 1.424286746]],

[x=[-.7454528809, -.7454452515], z=[1.019933805, 1.019933805]],

[x=[-.7610659790, -.7610583496], z=[.9662399292, .9662475586]]].

But none pair satisfy −3
4 < z < 0 < x < 1. Therefore W [l0, l1] 6= 0 for all x ∈ (0,1).

Case (iii). The resultant with respect to z between q(x,z) and w2(x,z) is R(w2,q,z)=
(4x + 3)97(x− 1)141 p2(x), where p2(x) is a polynomial of degree 164 in x. By
Sturm’s Theorem we get that p2(x) has a unique root in the interval (0,1) at x∗1 ≈
.7990077271. Substituting x = x∗1 into q(x,z), we find that q(x∗1,z) has also a unique
root in the interval (−3

4 ,0) at z∗1 ≈ −.6569892317. To make sure if (x∗1,z
∗
1) is the

common root of q(x,z) and w2(x,z), by program of the previous stage we obtain 4
pairs of common roots of w2(x,z) and q(x,z) in 4 pairs of intervals as follow:

[[x=[0.981296921, 0.981302643], z=[-.7186737061, -.7186660767]],

[x=[.7990055084, .7990112305], z=[1.171028761, 1.171028761]],

[x=[-.7186737061, -.7186660767], z=[0.981296921, 0.981302643]],

[x=[1.171028137, 1.171035767], z=[.7990077271, .7990077271]]].

Only the first pair denoted by (x∗,z∗) satisfies−1
2 < z < 0 < x < 1. Therefore, there

is a unique x∗ ∈ (0,1) such that W [l0, l1, l2](x∗) = 0. Now we want to show that x∗

is a simple root. We denote W [l0, l1, l2](x) by W3(x,z(x)). Its derivative is

dW3

dx
=− 1024(x− z)5w3(x,z)

3087(4x+3)15(x−1)22(4z+3)15(z−1)22W 5
01(x,z)

where w3(x,z) is polynomials with long expression in (x,z). Taking w3(x,z) in
place of w2(x,z) in our program, we obtain seven common roots of w3(x,z) and
q(x,z), but non of them is equal (x∗,z∗) and because q(x∗,z∗) = q(x∗,z(x∗)) = 0,
then w3(x∗,z(x∗)) 6= 0, hence x∗ is a simple root of w2(x,z). �

Based on the above arguments we obtain the following theorem.

Theorem 3.1. The collection {I0(h), I1(h), I2(h)} is a Chebyshev system with accu-
racy one on the interval (0, 27

448). Hence, if the Abelian integral I(h) is not identically
zero then in any compact subinterval of (0, 27

448) and for all values of parameters
(a,b) it has at most three zeros, counting the multiplicities, And the number of limit
cycles bifurcating from the period annulus is at most three.
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3.2. Asymptotic expansion of I(h) near the endpoints of (0, 27
448)

In this subsection we study the asymptotic expansion of Abelian integral I(h) at the
end points h = 0 and h = 27

448 , respectively. To obtain the asymptotic expansion of
I(h) when h→ 0+, we compute I(h) near the elementary equilibrium (0,0). Let
x = r cosθ , y = r sinθ , then the oval γh := {H(x,y) = h} will be transformed into

r
(

224−64r5 cos7
θ +112r4 cos6

θ +84r3 cos5
θ

−203r2 cos4
θ −28r cos3

θ −98cos2
θ
) 1

2 −
√

448h = 0,

with 0 < h,r� 1. Let ρ =
√

448h and define F(r,ρ) to be left hand expression of
the above equality. Then by applying the Implicit Function Theorem to F(r,ρ) = 0
at (r,ρ) = (0,0), we obtain that there exists a unique smooth function r = ϕ(ρ) and
a small positive number 0 < δ � 1 such that F(ϕ(ρ),ρ)≡ 0 for 0 < ρ < δ . It can
be checked that ϕ(ρ) has the following expansion

ϕ(ρ)=
ρ√

−98cos2 θ +224
+

ρ2 cos3 θ

14(49cos4 θ −224cos2 θ +256)
(18)

+
cos4 θ(193cos2 θ −464)ρ3

56
√
−98cos2 θ +224(343cos6 θ −2352cos4 θ +5376cos2 θ −4096)

+O(ρ4).

Let us compute I(h) in the coordinate system (r,θ). From (18) we have

I(h) =
∮

γh

(a+bx2 + x4)xydx =
∫ ∫

intγh

(a+bx2 + x4)xdxdy

=
∫ 2π

0
dθ

∫
ϕ(ρ)

0

(
a+br2 cos2

θ + r4 cos4
θ
)

r2 cosθ dr. (19)

Note that h = ρ2

448 . Thus we obtain the asymptotic expansion of I(h) as h→ 0+,

I(h) =
64
81

πh2
[

a+
(

5980
729

a+
80
27

b
)

h+
(

74894971
2834352

a+
269360
6561

b+
2240
243

)
h2

+

(
30174980537
1033121304

a+
3602369650

14348907
b+

10721536
59049

)
h3 +O(h4)

]
. (20)

We set

b1 =
64
81

πa, b2 =
64
81

π

(
5980
729

a+
80
27

b
)
, b3 =

64
81

π

(
74894971
2834352

a+
269360
6561

b+
2240
243

)
Now let us apply Theorem 2.1 to system (Hε) and obtain the asymptotic expansion
of Abelian integral I(h) as h→ ( 27

448)
−. It is clear that on the loop L 27

448
we have

H(x,y) = 27
448 , which implies that y± =± 1

56

√
(56x+42)(x−1)2(4x+3), thus

c̃1(δ ) = I(0,δ ) = 2
∫ 1

− 3
4

(a+bx2 + x4)xy+dx =
343
√

2
266048640

(8398a+3876b+2049)
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FIGURE 2. Distribution of limit cycles bifurcated from the period
annulus of system (Hε).

For S1 = (−3
4 ,0) let X = x+ 3

4 , Y = y, and still denote X ,Y by x,y , respectively.
Then system (Hε) becomes ẋ = y, ẏ =−(x− 3

4)x
2(x− 7

4)
3 + εyq1(x), where

q1(x) = x5− 15
4

x4 +(b+
45
8
)x3− (

9
4

b+
135
32

)x2 +(a+
27
16

b+
405
256

)x− 3
4

a− 27
64

b− 243
1024

.

For ε = 0 the Hamiltonian function is H(x,y) = −343
256x3 + 49

16x4− 21
8 x5 + x6− 1

7x7.

Thus from Theorem 2.1 we see that c̃3 = c1(S1,δ ) =
2

1
6 (−343)

2
3

21952 (768a + 432b +

243). For the nilpotent saddle S2 = (1,0), we make the transformations X =
√

7
2 (1−

x), Y = y and T =−
√

7
2 t and still denote X ,Y and T by x,y and t , respectively. Then

system (Hε) becomes ẋ= y, ẏ= x3− 30
49

√
7x4+ 288

343 x5− 128
2401

√
7x6+εyq2(x), where

q2(x)=
64x5−160

√
7x4

343
+

16(b+10)x3−8
√

7(3b+10)x2

49
+

4(a+3b+5)x
7

− (1+a+b)√
7

.

For ε = 0 the Hamiltonian function is H(x,y) = 1
2y2− 1

4x4 + 6
49

√
7x5− 48

343x6 +
128

16807

√
7x7. Therefore from Theorem 2.1 we have

c̃2 = c2(S2,δ ) =
8
√

14
21

(1+a+b)∆0,2, c̃4 = c3(S2,δ ) =
4
√

2
98

(29+a+15b)

3.3. Distribution of limit cycles of system (Hε)

In this section, we will use the coefficients given in previous section and apply
Theorem 2.2, to discuss distributions of limit cycles of system (Hε).
(1) c̃1(δ ) = 0 yields b =−13

6 −
683

1292a. If δ0 = (a,−13
6 −

683
1292a,1), then

b1(δ0) =
64
81

πa, c̃2(δ0) =
8
√

14
21

(
609

1292
− 7

6
a)∆0,2,

if we fix a ∈ (−∞,0)∪ (261
646 ,∞), then b1(δ0)c̃2(δ0)< 0, and 1−sgn(I(h1,δ0)I(h2,δ0))

2 = 1

for h1 = ε1 h2 =
27

448−ε2 with ε1 and ε2 positive and small. Note that rank
(

∂ (c̃1)
∂ (a,b,1)

)
=

1 and we can apply theorem (2.2) to deduce that there exists some (a,b,1) near
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(a,−13
6 −

683
1292a,1) for a ∈ (−∞,0)∪ (261

646 ,∞) and ε positive and small, such that
system (Hε) has 2 limit cycles, 1 limit cycle is near the heteroclinic loop L 27

448
and 1

limit cycle is surrounding the center L0, see Fig. 2(a).
Using the similar method as in (1) we obtain other cases as bellow:
(2) For ε positive and sufficiently small, there exists some (a,b,1) near (0,b,1) for
b ∈ (− 683

1292 ,0) , such that system (Hε) has 2 limit cycles, 1 limit cycle is near the
center L0, 1 limit cycle is surrounding the center L0(See Fig. 2(b)).
(3) For ε positive and sufficiently small, there exists some (a,b,1) near (261

646 ,−
907
646 ,1),

such that system (Hε) has 3 limit cycles, two limit cycles are near the heteroclinic
loop L 27

448
and one limit cycle is surrounding the center L0(See Fig. 2(c)).

(4) For ε positive and small, there exists some (a,b,1) near (0,− 683
1292 ,1), such that

system (Hε) has 3 limit cycles, for which one is near the heteroclinic loop L 27
448

, one
is near the center L0 and one is surrounding the center L0(See Fig.2(d)).
(5) For ε positive and small, there exists some (a,b,1) near (0,0,1), such that sys-
tem (Hε) has 2 limit cycles which are near center L0(See Fig.2(e)).

4. Conclusions

Based on the expansions of Melnikov function and the results of subsections
3.1 and 3.2 we proved the following theorem.

Theorem 4.1. There exist some parameter values such that the Abelian integral
I(h) has three isolated zeros in (0, 27

448).
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