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A STABILITY STUDY OF NON-NEWTONIAN FLUID FLOWS

Corina CIPU' , Carmen PRICINA?, Victor IIGOIU3

Se studiaza problema de curgere a unui fluid Oldroyd —B generalizat intre
doua pldci paralele. Ne intereseaza daca solutiile de tip von Karman sunt admisibile
pentru acest fluid. Precizam un cadru al problemei din punct de vedere al
stabilitatii. Prezentam restrictii asupra parametrilor constitutivi, ca rezultat al unei
anumite inegalitati. Punem in evidentd caracterul stabil al unei curgeri de baza
pentru fluidul Oldroyd—B cu parametri de material constanti.

The problem of the flow of a generalized Oldroyd —B fluid between two
parallel plates is studied. We are interested if a von Karman type solutions are
admissible for this fluid. We precise a frame of the problem from the point of
stability view. We discuss some restrictions by certain inequality upon constitutive
parameters. We determine the stability character of non —trivial base flows for
Oldroyd-B fluid with constant material moduli.
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1. Introduction

By a stability study for an incompressible second grade fluid, from
Clausius- Duhem inequality are obtained restrictions for the constitutive moduli of
Cauchy stress tensor:

u=0,01+0y=0, (1.1)
and o >0 if the free energy is to be minimum in equilibrium(see J.E. Dunn, R.L
Fosdick [1]). In the paper of R. L. Fosdick and B. Straughan (see [2]), for
instance, was investigated the instability in a fluid of third grade. Employing the
Clausius- Duhem inequality and demanding that the free energy be a minimum in
equilibrium, Fosdick and Rajagopal [3] have shown that the corresponding
constitutive equation for an incompressible fluid of third grade is:

1>0,8>0-24uB <oy +ar <[24uB,a >0. (1.2)
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In [2], the authors assume that the inequalities (1.2); are strict inequalities.

They show that the condition o <0, which is compatible with the Clausius-

Duhem inequality but not with the free energy, being a minimum in equilibrium
and thus they leads to behavior which may not be physically acceptable.

2. The flow problem

The paper deals with the problem concerning the flow of a generalized
Oldroyd —B fluid between two parallel plates. The Cauchy stress tensor is:

DTg 1 2 DA
T=pl+Tg,—+—Tg = + oA, T +o—, 2.1
pl+Te,— =+ Te KA +ar Ay [ (2.1)
where the convective derivative is expressed by (see Fetecau [4], [5]):
%=A+AL+ LTA. (2.2)

In the equation (2.1), Tg is the extra—stress tensor (effective stress — tensor),
-pl denotes the indeterminate spherical stress, L is the velocity

gradient, A =L+ LT is the first Rivlin — Ericksen tensor, A is the relaxation
time, u 1is the dynamic viscosity, &) and a, are the constant constitutive
coefficients. We have the constitutive restrictions (see Tigoiu [6], [7]):
u=0,00+ay=0. 2.3)
The fluid flows between two parallel plates. The upper plate is supposed to
be porous and the fluid passes through with constant vertical velocity, meaning:

v(x,y)‘y:d =-voJ, (2.4)
and the lower plate moves with the velocity:
v(x,y)|y-o = exi, 25)

where “d” is distance between the two plates, i and j are the unit vector in the
horizontal and respective vertical directions and “c” is a given constant. We
remark that the origin is preserved at rest (see Fig. 1).
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Fig. 1. Flow domain
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We shall suppose, like in [8], that the admissible velocity field is of von
Karman’s type:

u=cxf (), v=—cdf(n), y=dn. (2.6)

We study if a generalized Oldroyd -B fluid accept a von Karman’s
solutions for the flow problem described above.

This flow field satisfies the constraint of incompressibility. Since the
velocity field is independent of z, the stress field will also be independent of z.
Therefore from the constitutive equation (1.1) we obtain the following system:

2.2 11 11
oT oT
e foay 22 e S 2y E_ pOE e 1 Ly 1
d? ox on 2
2 12 12
X cx oTg oTg cx 1mn 1. 12
C . ||+a 3 ] ll_ m"m :cxl _C +7 ”T +—T
ﬂdf 17d2(ff S =cexf o faﬁ df e 7T
13 13
oT oT
exf! £ —cf £ +cf'TE13+lTE13:0
Ox on A
2
2 2 22
cx oT, oT
—2cu fHay (2t f fre— )= e
d ox on 2.7)

+2(;—xf”TElz 2 T2 +%TE22

23 23

oTg oTg cx 13 23 1.2
cexf”! -c +— T —cf'T +—T =0
f o f on df E f'TE 2

33 33

aTE aTE 1 33
cxf’ -c +—T =0.
Al on A E

The equations of the motion are: pa= pb+divT. The acceleration is

given by: a:czx(f'z—ff”)i+czd ff'j. If we consider b = 0, then the flow
equations are:

o o oTg? arg'! g
petx(fP-fy = e S (28)
on Ox Ox

22 12 23 13

o= OlE” OTp~ op O™ OTp~ _
0 ox on  On ox
We suppose that the effective stress is of the form:
L2 n .
1" =Y =T, ). (2.9)
n=0dn
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Then we will be able to suppose that the pressure has the same type like

function 7Y does:

p(x.) = po () +(x/d)p1 () + (x> 1d*) p, (). (2.10)
If we use the relations (2.7)3,(2.7)5, (2.8)3 we can determine the

expressions for the components Tg n13,T E n23 and the equation for the function

f(n). We remark that employing the relations: T; 123 =0, T 213 =0, we arrive
at the following equation for f:

Acf" [P +6Acf”=3f'=0. (2.11)

Thus the problem is to solve the equation (2.11)under conditions obtained
from the described mechanical problem, which are:

v

f(0)=0, f(l)=£, fO=1 fa=0. (2.12)

The problem is if the equation obtained for f(77) has a solution if we
consider any two point problem of type (2.12). Using (2.12),; (2.12); we found:

c=1/21. (2.13)
Thus the equation (2.11) becomes:
frrv6?-61'=0. (2.14)

For the study of the above problem, we first develop the function f in
power series, in order to determine the coefficient of second order in 7:

f) =ag+aymy +ayn® +azn> +..a,n” +... (2.15)
From (2.12); (2.12); we calculate that:
ap=0,a1=1a,=05=vy/cd. (2.16)

For the second approximation (of f) in 7 we make a change of the
function introducing a new function A(1—7):

fay=n+ayn® —=h(-nn°, (2.17)
getting for 4(¢), ¢t = 1—n€, a differential Cauchy problem:
A=1>(Q2=h=3)Yah"=(1-2h+ 41 =R Y1-) h((1-)h -3 +1)+

+6(2-t=-2(1-Dh+(1-0)21)2 =6 2—-t-2(1-h+(1—t>)h') (2.18)
h(0) =1,4'(0)=0.

By a numerical calculus we determine the function h only for
n €10, 0.62], fit the data of function h, and obtain a seventh degree polynom (see

Fig.2). The value 1 =0.62 express the first point for which A(7)=0. For
n €[ 0.62,1] we shall use the fitted polynom, h being a continuous function.
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Fig. 3 Function f: numerical computed and using interpolated polynom

The approximation of h over the interval [0, 0.62] is:

h(t) =840t 7 —1200¢5 +540¢° —48¢* — 241 +4.4¢2 —024t+1,  (2.19)
and the f approximation by polynom over the same interval is:

F=n+0.5n% 5?8401 -n)7 —1200(1-7)° +540(1-7)° -
—48(1-m)* —24(1-n) +44(1-n)? —024(1-n)+1]. (2.20)

3. Stability of the solution by numerical analysis

For the fluid studied, now we consider a small perturbation of the base
flow. The perturbed flow is given by the following expressions:

u=cx(f' ) +eg'm)=u+u,v=—cd(f(m+egm)=v+v. (3.1

Since u, v are given by the same equations of motion like u and v does,
the small perturbation E, \_z, must satisfies:
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g"(f7 +26f0)+6¢'(2f ~1+ &g+ g f"(2f +£8) =0,g(0) = £, g'(0) = 0.(3.2)
neglecting 0(82 gz) in respect with O(f).

n
Fig. 4 The small perturbation g.

6. Conclusions

Our study conclude that existence of von Karman type solution for the
Oldroyd —B fluid implies a certain constants for obtaining dimensionless values of
the velocity: ¢ =1/24, and vy = 2cd . Also, we observe that small perturbations

of the base flow are numerically stable (O(g) = O(g2 ) as were imposed initially
in 7=0, see Fig. 4).

BIBLIOGRAPHY

[1]. J. Ernest, R.L.Fosdick, thermodynamics, stability, and boundedness of Fluids of complexity 2
and fluids of second Grade,Archs Rational Mech.Anal.56, 191-252,(1974).

[2]. R. L. Fosdick, B. Straughan, Catastrophic instabilities and related results in a fluid of third
grade, Int.J.Non-Linear Mechanics,16, 191-198, (1981).

[3]. R. L. Fosdick,K. R. Rajagopal, Thermodynamics and stability of fluids of third
grade,Proc.Roy.Soc. A339, 351, (1980).

[4]. C. Fetecau, Analytical solutions for non-Newtonian fluid flows in pipe-like domains,
Int.J.Non-LinearMech. 39, 225-231, (2004).

[5]. C. Fetecau, Corina Fetecau, Decay of a potential vortex in a Maxwell fluid, Int.J.Non-
LinearMech. 38, 985-990, (2003).

[6]. V. Tigoiu, Prepr.ser.Math.69.INCREST,Bucharest,(1984).

[7]. V. Tigoiu, Studii si Cercetari Mat. 39(4), 279-348, (1987).

[8]. V. Tigoiu, The flow of a viscoelasic fluid between two parallel plates with heat
transfer,Int.J.Engng Sci., 29, 12, 1545-1556, (1991).



