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A STABILITY STUDY OF NON-NEWTONIAN FLUID FLOWS 

Corina CIPU1 , Carmen PRICINĂ2, Victor ŢIGOIU3 

Se studiază problema de curgere a unui fluid Oldroyd –B generalizat între 
două plăci paralele. Ne interesează dacă soluţiile de tip von Karman sunt admisibile 
pentru acest fluid. Precizăm un cadru al problemei din punct de vedere al 
stabilităţii. Prezentăm restricţii asupra parametrilor constitutivi, ca rezultat al  unei 
anumite inegalităţi. Punem în evidenţă caracterul stabil al unei curgeri de bază 
pentru fluidul Oldroyd–B cu parametri de material constanţi. 

 
The problem of the flow of a generalized Oldroyd –B fluid between two 

parallel plates is studied. We are interested if a von Karman type solutions are 
admissible for this fluid. We precise a frame of the problem from the point of 
stability view. We discuss some restrictions by certain inequality  upon  constitutive 
parameters. We determine the stability  character  of non –trivial base flows for 
Oldroyd–B fluid with constant material moduli. 
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1. Introduction 

By a stability study for an incompressible second grade fluid, from 
Clausius- Duhem inequality are obtained restrictions for the constitutive moduli of 
Cauchy stress tensor: 
 0,0 21 =+≥ ααμ , (1.1) 
and 01 ≥α  if the free energy is to be minimum in equilibrium(see J.E. Dunn, R.L 
Fosdick [1]). In the paper of R. L. Fosdick and B. Straughan (see [2]), for 
instance, was investigated the instability in a fluid of third grade. Employing the 
Clausius- Duhem inequality and demanding that the free energy be a minimum in 
equilibrium, Fosdick and Rajagopal [3] have shown that the corresponding 
constitutive equation for an incompressible fluid of third grade is: 
 .0,2424,0,0 121 ≥≤+≤−≥≥ αμβααμββμ  (1.2) 
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In [2], the authors assume that the inequalities 1)2.1(  are strict inequalities. 

They show that the condition 01 <α , which is compatible with the Clausius- 
Duhem inequality but not with the free energy, being a minimum in equilibrium 
and thus they leads  to behavior which may not be physically acceptable. 

2. The flow problem  

The  paper deals with  the problem concerning the flow of a generalized 
Oldroyd –B fluid between two parallel plates.  The Cauchy stress tensor is: 
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where the convective derivative is expressed by (see Fetecau [4], [5]): 
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t
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In the equation (2.1), ET  is the extra–stress tensor (effective stress – tensor), 
I- p  denotes the indeterminate spherical stress, L  is the velocity 

gradient, T
1 LLA +=  is the first Rivlin – Ericksen tensor, λ  is the relaxation 

time, μ  is the dynamic viscosity, 1α  and 2α  are the constant constitutive 
coefficients. We have the constitutive restrictions (see Tigoiu [6], [7]):  

0,0 21 =+≥ ααμ .   (2.3) 
The fluid flows between two parallel plates. The upper plate is supposed to 

be porous and the fluid passes through with constant vertical velocity, meaning:   
 jy)v(x,  dy 0v−== , (2.4) 

and  the lower plate moves with the velocity: 
 iy)v(x,  0y cx== , (2.5) 

where “d” is distance between the two plates, i and j  are the unit vector in the 
horizontal and respective vertical directions and “c” is a given constant. We  
remark that the origin is preserved at rest (see Fig. 1).  

 
Fig. 1. Flow domain 
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We shall suppose, like in [8], that the admissible velocity field is of von 
Karman’s type: 
 )(cdfv),(cxfu ' ηη −== , .ηdy ≡  (2.6) 

We study if a generalized Oldroyd -B fluid accept a von Karman’s 
solutions for the flow problem described above. 

This flow field satisfies the constraint of incompressibility. Since the 
velocity field is independent of z, the stress field will also be independent of z. 
Therefore from the constitutive equation (1.1) we obtain the following system: 

01''

1''')''''''3(''

1'2')''''2('2

1313
1313

1211
1212

2

2
1

1111
1111

2
2

22
2

1

=++
∂

∂
−

∂
∂

++
∂

∂
−

∂
∂

=−+

++
∂

∂
−

∂
∂

=+−

EE
EE

EE
EE

EE
EE

TTcf
T

cf
x

T
cxf

TTf
d
cxT

cf
x

T
cxfffff

d

xcf
d
xc

TTcf
T

cf
x

T
cxff

d

xcffcfc

λη

λη
αμ

λη
αμ

 

222212

2222
2

2

2

2
2

1

1'2''2

')''''2('2

EEE

EE

TTcfTf
d
cx

T
cf

x
T

cxff
d

xcffcfc

λ

η
αμ

+−+

+
∂

∂
−

∂
∂

=++−
 (2.7) 

.01'

01''''

33
3333

232313
2323

=+
∂

∂
−

∂
∂

=+−+
∂

∂
−

∂
∂

E
EE

EEE
EE

T
T

cf
x

T
cxf

TTcfTf
d
cxT

cf
x

T
cxf

λη

λη
 

 The equations of the  motion are: Tba div+= ρρ . The acceleration is  

given by: jia ' ff dc)''ff'f(xc 22 +−= 2 . If we consider 0,b =  then the flow 
equations are: 
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 We suppose that the effective stress is of the form:   
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 Then we will be able to suppose that the pressure has the same type like 
function ij

ET  does: 

 )()/()()/()(),( 2
22

10 ηηηη pdxpdxpxp ++= .   (2.10) 
If we use the relations 53 )7.2(,)7.2( , 3)8.2(  we can  determine  the 

expressions for the components 2313, nEnE TT and the equation for the function 

).(ηf  We remark that employing the relations: 0,0 13
2

23
1 ≡≡ TT , we arrive 

at the following equation for f: 
.0'3'6'' 22 =−+ fcffcf λλ                                                    (2.11) 

Thus the problem is to solve the equation )11.2( under conditions obtained 
from the described mechanical problem, which are: 

0)1(',1)0(',)1(,0)0( 0 ==== ff
cd
v

ff .                        (2.12) 

The problem is if the equation obtained for )(ηf  has a  solution if we 
consider any two point problem of type (2.12). Using (2.12)1 (2.12)3 we found: 

λ2/1=c .                                                                                            (2.13) 
Thus the equation (2.11) becomes: 

.0'6'6'' 22 =−+ ffff                                                       (2.14) 
For the study of the above problem, we first develop the function f in 

power series, in order to determine the coefficient of second order in η : 
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From (2.12)1 (2.12)3 we calculate that: 

cdvaaa /5.0,1,0 0210 ==== .                                                (2.16) 
For the second approximation (of f) in η  we make a change of the 

function introducing a new function )1( η−h : 
22

2 )1()( ηηηηη −−+= haf ,                                                       (2.17) 

getting for )(th , η−≡ 1t , a differential Cauchy problem:  

++−−−−+−=−−− )3)1(()1)(')1(421('')3)2(()1( 35 ththththhhhtt     

           )')1()1(22(6)')1()1(22(6 222 hthtththtt −+−−−−−+−−−+  (2.18) 
0)0(,1)0( =′= hh . 

 By a numerical calculus we determine the function h only for  
]62.0,0[∈η , fit the data of function h, and obtain a seventh degree polynom (see 

Fig.2). The value 62.0=η  express the first point for which 0)( =ηh . For 
]1,62.0[∈η  we shall use the fitted polynom,  h being a continuous function. 
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Fig.2 Computed function h and fitted polynom 

       
Fig. 3 Function f: numerical computed and using interpolated polynom 

 
The approximation of h over the interval [0, 0.62] is:
 124.04.424485401200840)( 234567 +−+−−+−≅ tttttttth , (2.19) 
and the f approximation by polynom over the same interval is: 

−−+−−−−+≅ 56722 )1(540)1(1200)1(840[5.0 ηηηηηηf  

 ]1)1(24.0)1(4.4)1(24)1(48 234 +−−−+−−−− ηηηη . (2.20) 

3. Stability of the solution by numerical analysis 

For the fluid studied, now we consider a small perturbation of the base 
flow. The perturbed flow is given by the following expressions: 

uugfcxu +=+′= ))(')((~ ηεη , vvgfcdv +=+−= ))()((~ ηεη .       (3.1)  
Since u~ , v~  are given by the same equations of motion like u and v does, 

the small perturbation u , v , must satisfies:  
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0)0(',)0(,0)2()12('6)2('' 22 ===+′′+′+−′++ gggffggfgfgfg εεεε ,(3.2) 

neglecting )( 22gO ε  in respect with )( fO . 

 
Fig. 4 The small perturbation g. 

6. Conclusions 

Our study conclude that existence of von Karman type solution for the 
Oldroyd –B fluid implies a certain constants for obtaining dimensionless values of 
the velocity: λ2/1=c , and cdv 20 = . Also, we observe that small perturbations 

of the base flow  are numerically stable ( )()( 2εOgO ≈  as were imposed initially 
in 0=η ,  see Fig. 4). 
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